

William C. Waterhouse* Department of Mathematics The Pennsylvania State University University Park, Pennsylvania 16802

Submitted by Richard A. Brualdi

ABSTRACT

The $p^n \times p^n$ matrix over $\mathbb{Z}/p\mathbb{Z}$ whose entries are $\binom{i+j}{j}$ for $0 \leq i, j < p^n$ expresses the operation $f \mapsto f(1/(1-x))$ on functions $\mathbb{F}_{p^n} \to \mathbb{F}_{p^n}$. This interpretation makes the behavior of the matrix transparent.

Let $q = p^n$ be a power of a prime, let $\mathbb{F}_p = \mathbb{Z}/p\mathbb{Z}$ be the field with p elements, and let J be the $q \times q$ matrix over \mathbb{F}_p whose (i, j) entry is the binomial coefficient $\binom{i+j}{j}$, $0 \leq i, j \leq q-1$. In a recent paper [1], N. Strauss demonstrated the surprising fact that $J^3 = I$, and he went on to find the multiplicities of the eigenvalues. His results were proved by the method of generating functions. In this note I shall exhibit a natural linear transformation that is represented by the matrix J in a suitable basis. Strauss's results will then follow easily.

THEOREM 1. Let \mathbb{F}_q be the field with q elements. Let V be the vector space of all functions from \mathbb{F}_q to itself. Let $f_j(x) = x^j$ for $0 \le j \le q-1$, a basis of V. Let $T: V \to V$ be the linear mapping given by (Tf)(x) = f(1/(1-x)). Then the matrix of T in the basis f_j is precisely $\binom{i+j}{j}$.

LINEAR ALGEBRA AND ITS APPLICATIONS 105:195-198 (1988)

© Elsevier Science Publishing Co., Inc., 1988 52 Vanderbilt Ave., New York, NY 10017

0024-3795/88/\$3.50

195

^{*}This work was supported in part by grants from the National Science Foundation.

Proof. We must of course clarify what (Tf)(1) is supposed to be. The point is that the operation $x \mapsto 1/(1-x)$ is a bijection on the "projective line" $\mathbb{F}_q \cup \{\infty\}$. We can extend elements $f \in V$ to functions on this larger set by prescribing $f(\infty) = -\sum_{x \in \mathbb{F}_q} f(x)$, thus embedding V as those functions on $\mathbb{F}_q \cup \{\infty\}$ whose values sum to zero. Composition with the bijection $x \mapsto 1/(1-x)$ obviously is a linear isomorphism for the functions on the projective line, and it clearly preserves V. In this way we do have a well-defined operation on V that we can reasonably write as (Tf)(x) = f(1/(1-x)).

Now we observe that for every i and j we have

$$(-1)^{i}(q-1-j)(q-1-j-1)\cdots(q-j-i)$$

= $(j+1)(j+2)\cdots(j+i)$ in \mathbb{F}_{p} ,

and hence

$$(-1)^{i}\binom{q-1-j}{i} = \binom{i+j}{i} = \binom{i+j}{j}$$
 in \mathbb{F}_{p} .

This implies that the entries in J below the secondary diagonal—those with $i + j \ge q$ —are zero. (This can also be seen directly.) More important is the fact that for $1 \ne x \in \mathbb{F}_q$ we now have

$$(1-x)^{-j} = (1-x)^{q-1-j} = \sum_{i} (-1)^{i} {\binom{q-1-j}{i}} x^{i} = \sum_{i} {\binom{i+j}{j}} x^{i}.$$

Thus the theorem is very nearly proved; it remains only to check it at x = 1. Using our extension of the functions, we can equally well check it at $x = \infty$, which we now do. We have $(Tf_j)(\infty) = f_j(0)$, which is 1 when j = 0 and zero otherwise. On the other hand, the function

$$\sum_{i} \binom{i+j}{j} x^{i} \quad \text{at } \infty$$

is

$$-\sum_{y\in \mathbf{F}_q}\sum_{i}\binom{i+j}{j}y^{i}.$$

The sum $\sum_{y \in \mathbf{F}_q} y^i$ is equal to 0 except for i = q - 1, where it is -1; as $\begin{pmatrix} q - 1 + j \\ j \end{pmatrix}$ is 0 in \mathbb{F}_q unless j = 0, the theorem is proved.

Corollary 1. $J^3 = I$.

Proof. This is an immediate consequence of Theorem 1 and the simple fact that the operation $x \mapsto 1/(1-x)$ has order 3 as a function on the projective line.

THEOREM 2. Let

 $M = \begin{pmatrix} 1 & 0 & 0 & 0 & \cdots & 0 \\ 1 & 1 & 1 & 1 & \cdots & 1 \\ \cdots & \cdots & \cdots & \cdots & \cdots & \cdots \\ 1 & y & y^2 & y^3 & \cdots & y^{q-1} \\ \cdots & \cdots & \cdots & \cdots & \cdots & \cdots \end{pmatrix}$

be the Vandermonde matrix formed from the elements $0, 1, \ldots, y, \ldots$ of \mathbb{F}_q . Then MJM^{-1} has the form

0		P				
-1	-1	-1	-1	•••	-1	,
(0	1	0	0	•••	0	

where P is a permutation matrix. The structure of the permutation is:

(i) two elements fixed, all others permuted in 3-cycles, if $q \equiv 1 \pmod{3}$;

(ii) all elements permuted in 3-cycles, if $q \equiv 2 \pmod{3}$; and

(iii) one element fixed, all others permuted in 3-cycles, if q is a power of 3.

Proof. We now look at the other natural basis of V, the functions g_y where $g_y(y) = 1$ and $g_y(z) = 0$ for all other $z \in \mathbb{F}_q$. [Note then $g_y(\infty) = -1$.] Clearly $f_k = \sum_y y^k g_y$. Thus the Vandermonde matrix M gives the base change, and MJM^{-1} is the matrix of the operation T in the basis g_y . It is trivial to see that $Tg_y = g_{1-1/y} - g_1$ except for y = 0, where we get $Tg_0 = -g_1$. This gives us all the structure of the matrix except the analysis of the permutation, which is simply the permutation induced by $y \mapsto 1 - 1/y$ on $\mathbb{F}_q \setminus \{0,1\}$. As

the map has order 3, each element is either fixed or sent in a 3-cycle. Clearly an element y is fixed iff $y^2 - y + 1 = 0$. When p = 3, this equation has the unique root y = 2. Otherwise, its roots are $-\zeta$, $-\zeta^2$, where ζ is a nontrivial cube root of 1. Such roots exist in \mathbb{F}_q iff $q \equiv 1 \pmod{3}$.

COROLLARY 2. If $q \equiv 2 \pmod{3}$, then J is similar to a block matrix containing 1×1 blocks with eigenvalue 1 and 2×2 blocks of the form

$$\begin{pmatrix} 0 & 1 \\ -1 & -1 \end{pmatrix}.$$

There are (q-2)/3 blocks of the first type and (q+1)/3 of the second type. If $q \equiv 1 \pmod{3}$, the same type of structure occurs, but there are (q+2)/3 blocks of the first type and (q-1)/3 of the second type.

Proof. As $p \neq 3$ and $T^3 = I$, the matrix MJM^{-1} is separable, and hence it is similar to the direct sum of P and the upper corner $\begin{pmatrix} 0 & 1 \\ -1 & -1 \end{pmatrix}$. Clearly Pis similar to the direct sum of the permutation matrices for the cycles in it. Each cyclic permutation of three basis vectors e_1, e_2, e_3 splits its space into two subspaces, the spans of $e_1 + e_2 + e_3$ and of $e_1 - e_3$, $e_1 - e_2$, and a trivial computation shows that it thus yields one block of each type.

Over \mathbb{F}_{p^2} , of course, each of our 2×2 blocks splits to give two 1×1 blocks with eigenvalues ζ and ζ^2 (the cube roots of unity). This happens over \mathbb{F}_p iff $p \equiv 1 \pmod{3}$.

Finally, a different splitting works well when p = 3. If we split V then as the direct sum of 3-dimensional invariant subspaces where the functions have zero values except on y = 2 and on the elements of one 3-cycle in $\mathbb{F}_q \cup \{\infty\}$, it is trivial to see that each such subspace yields a single 3×3 Jordan block with eigenvalue 1.

REFERENCE

57

1 N. Strauss, Jordan form of a binomial coefficient matrix over \mathbb{Z}_p , Linear Algebra Appl. 90:65–72 (1987).

Received 8 September 1987; final manuscript accepted 10 September 1987