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ABSTRACT 

The p” x p” matrix over Z/pZ whose entries are 
( 1 
ii j for 0 < i, j < p” ex- 

presses the operation f-, f(l/(l - x)) on functions F,. + F,.. This interpretation 
makes the behavior of the matrix m&parent. 

Let 9 = p” be a power of a prime, let IF, = Z/pZ be the field with p 
elements, and let J be the 9 x 9 matrix over F, whose (i, j) entry is the 

binomial coefficient 
(’ 1 

* +. j , 0 < i, j < 9 - 1. In a recent paper [l], N. Strauss 

demonstrated the surp~sing fact that J3 = I, and he went on to find the 
multiplicities of the eigenvahres. His results were proved by the method of 
generating functions. In this note I shall exhibit a natural linear transforma- 
tion that is represented by the matrix J in a suitable basis. Strauss’s results 
wiII then follow easily. 

THEOREM 1. Let IF, be the field with 9 elements. Let V be the vector 
space of all functions from F, to itself. Let h(x) = xi fm 0 < j Q q - 1, a 
bask of V. Let T: V + V be the linear mapping given by 

f(l/(l - x)). Then the matrix of T in the basis 4. is precisely 

*This work was supported in part by grants from the National Science Foundation. 

LINEAR ALGEBRA AND ITS APPLICATIONS 105:195-198 (1988) 195 

0 Elsevier Science Publishing Co., Inc., 1988 
52 Vanderbilt Ave., New York, NY 10017 0024-3795/88/$3.50 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 

https://core.ac.uk/display/82099019?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


196 WILLIAM C. WATERHOUSE 

Proof. We must of course clarify what (Tf )(l) is supposed to be. The 
point is that the operation x e l/(1 - X) is a bijection on the “projective 
line” F, U {co}. We can extend elements f E V to functions on this larger set 
by prescribing f(oo) = - C, E F, f(x), thus embedding V as those functions 
on IF, U { 00 } whose values sum to zero. Composition with the bijection 
r c, l/(1 - x) obviously is a linear isomorphism for the functions on the 
projective line, and it clearly preserves V. In this way we do have a 
well-defined operation on V that we can reasonably write as (Tf )(x) = 
tu/(l -x)). 

Now we observe that for every i and j we have 

( - l)‘(q - 1- j)(q - 1- j - 1). *. (q-j-i) 

=(j+l)(j+2)*.*(j+i) inIF,, 

and hence 

This implies that the entries in J below the secondary diagonal-those with 
i+j>q -are zero. (This can also be seen directly.) More important is the 
fact that for 1 # x E IF, we now have 

Thus the theorem is very nearly proved; it remains only to check it at r = 1. 
Using our extension of the functions, we can equally well check it at x = cc, 
which we now do. We have (I”)( cc) = 4(O), which is 1 when j = 0 and zero 
otherwise. On the other hand, the function 

i+j xt I at cc 
i 

j xi 
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The sum ZveF,yi is equal to 0 except for i = g - 1, where it is - 1; as 
fJ--1+j 

i i 
n 

i 
is 0 in IF, unless j = 0, the theorem is proved. 

COROLLARY 1. J3=I. 

Proof. This is an immediate consequence of Theorem 1 and the simple 
fact that the operation x ++ l/(1 - X) has order 3 as a function on the 
projective line. 

THEOREMS. Let 

I1 0 0 0 *** 0 
1 1 1 1 *** 1 

M= . . . . . . . . . . . . . . . . . . . . . . 

1 y y2 ys 0.. y4-r 
. . . . . . . . * . . . . . . . . . . . . . 

\ 

n 

I 

be the Vandermmde matrix formed from the elements O,l,. . . , y,. . . of IF,. 
Then MJM-’ has the form 

1 -1 0 -1 1 -1 0 -1 0 **. . . . -1 0 0 P 1 , 

where P is a permutation matrix. The structure of the permutation is: 

(i) two elements fixed, all others permuted in 3-cyc.?es, if q = 1 (mod3); 
(ii) all elements permuted in 3-cycles, if q = 2 (mod3); and 
(iii) one element fixed, all others permuted in Scycles, if q is a power 

of 3. 

Proof. We now look at the other natural basis of V, the functions g y 
where g,(y) = 1 and g,(z) = 0 for all other z E F,. [Note then g&co) = - 1.1 
Clearly fk = EY y kg,. Thus the Vandermonde matrix M gives the base change, 
and MJM- ’ is the matrix of the operation T in the basis gy. It is trivial to see 
that Tgy = gi-i,, -g, except for y = 0, where we get Tg, = -g,. This 
gives us all the structure of the matrix except the analysis of the permutation, 
which is simply the permutation induced by y * 1 - l/y on IF, \ (0, 1 }. As 
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the map has order 3, each element is either fixed or sent in a 3-cycle. Clearly 
an element y is fixed iff y2 - y + 1 = 0. When p = 3, this equation has the 
unique root y = 2. Otherwise, its roots are - [, - 12, where { is a nontrivial 
cube root of 1. Such roots exist in F, iff q = 1 (mod3). H 

COROLLARY 2. Zf q = 2 (mod3), then J is similar to a block matrix 
containing 1 X 1 blocks with eigenvalue 1 and 2 X 2 blocks of the form 

There are (q - 2)/3 blocks of the first type and (q + 1)/3 of the second type. 
Zf q = 1 (mod3), the same type of structure occurs, but there are (q +2)/3 
blocks of the first type and (q - 1)/3 of the second type. 

Proof. As p # 3 and T3 = I, the matrix MJM- ’ is separable, and hence 

it is similar to the direct sum of P and the upper corner (_y _i). Clearly P 

is similar to the direct sum of the permutation matrices for the cycles in it. 
Each cyclic permutation of three basis vectors e,, e2, e3 splits its space into 
two subspaces, the spans of e, + es + e, and of e, - e3, e, - e2, and a trivial 
computation shows that it thus yields one block of each type. n 

Over lfP2, of course, each of our 2 X 2 blocks splits to give two 1 X 1 blocks 
with eigenvalues 5 and l2 (the cube roots of unity). This happens over IF, iff 
p = 1 (mod3). 

Finally, a different splitting works well when p = 3. If we split V then as 
the direct sum of 3dimensional invariant subspaces where the functions have 
zero values except on y = 2 and on the elements of one 3-cycle in [F, U {CO}, 
it is trivial to see that each such subspace yields a single 3 X 3 Jordan block 
with eigenvalue 1. 
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