The Map Behind a Binomial Coefficient Matrix Over $\mathbb{Z} / \boldsymbol{p} \mathbb{Z}$

William C. Waterhouse*
Department of Mathematics
The Pennsylvania State University
University Park, Pennsylvania 16802

Submitted by Richard A. Brualdi

Abstract

The $\boldsymbol{p}^{n} \times \boldsymbol{p}^{n}$ matrix over $\mathbb{Z} / p \mathbb{Z}$ whose entries are $\binom{i+j}{j}$ for $0 \leqslant i, j<\boldsymbol{p}^{n}$ expresses the operation $f \rightarrow f(1 /(1-x))$ on functions $\mathbb{F}_{p^{n}} \rightarrow \boldsymbol{F}_{p^{n}}$. This interpretation makes the behavior of the matrix transparent.

Let $q=p^{n}$ be a power of a prime, let $\mathbb{F}_{p}=\mathbb{Z} / p \mathbb{Z}$ be the field with p elements, and let J be the $q \times q$ matrix over \mathbb{F}_{p} whose (i, j) entry is the binomial coefficient $\binom{i+j}{j}, 0 \leqslant i, j \leqslant q-1$. In a recent paper [1], N. Strauss demonstrated the surprising fact that $J^{3}=I$, and he went on to find the multiplicities of the eigenvalues. His results were proved by the method of generating functions. In this note I shall exhibit a natural linear transformation that is represented by the matrix J in a suitable basis. Strauss's results will then follow easily.

Theorem 1. Let \mathbb{F}_{q} be the field with q elements. Let V be the vector space of all functions from \mathbb{F}_{q} to itself. Let $f_{j}(x)=x^{j}$ for $0 \leqslant j \leqslant q-1, a$ basis of V. Let $T: V \rightarrow V$ be the linear mapping given by $(T f)(x)=$ $f(1 /(1-x))$. Then the matrix of T in the basis f_{j} is precisely $\left(\begin{array}{c}i \\ 1 \\ j\end{array}\right)$.

[^0]Proof. We must of course clarify what (Tf)(1) is supposed to be. The point is that the operation $x \mapsto 1 /(1-x)$ is a bijection on the "projective line" $\mathbb{F}_{q} \cup\{\infty\}$. We can extend elements $f \in V$ to functions on this larger set by prescribing $f(\infty)=-\sum_{x \in F_{q}} f(x)$, thus embedding V as those functions on $\mathbb{F}_{q} \cup\{\infty\}$ whose values sum to zero. Composition with the bijection $x \mapsto 1 /(1-x)$ obviously is a linear isomorphism for the functions on the projective line, and it clearly preserves V. In this way we do have a well-defined operation on V that we can reasonably write as $(T f)(x)=$ $f(1 /(1-x))$.

Now we observe that for every i and j we have

$$
\begin{gathered}
(-1)^{i}(q-1-j)(q-1-j-1) \cdots(q-j-i) \\
=(j+1)(j+2) \cdots(j+i) \quad \text { in } \mathbb{F}_{p}
\end{gathered}
$$

and hence

$$
(-1)^{i}\binom{q-1-j}{i}=\binom{i+j}{i}=\binom{i+j}{j} \quad \text { in } \mathbb{F}_{p}
$$

This implies that the entries in J below the secondary diagonal-those with $i+j \geqslant q$-are zero. (This can also be seen directly.) More important is the fact that for $1 \neq x \in \mathbb{F}_{q}$ we now have

$$
(1-x)^{-j}=(1-x)^{q-1-j}=\sum_{i}(-1)^{i}\binom{q-1-j}{i} x^{i}=\sum_{i}\binom{i+j}{j} x^{i}
$$

Thus the theorem is very nearly proved; it remains only to check it at $x=1$. Using our extension of the functions, we can equally well check it at $x=\infty$, which we now do. We have $\left(T f_{j}\right)(\infty)=f_{j}(0)$, which is 1 when $j=0$ and zero otherwise. On the other hand, the function

$$
\sum_{i}\binom{i+j}{j} x^{i} \quad \text { at } \infty
$$

is

$$
-\sum_{y \in \mathbf{F}_{q}} \sum_{i}\binom{i+j}{j} y^{i}
$$

The sum $\sum_{y \in F_{q}} y^{i}$ is equal to 0 except for $i=q-1$, where it is -1 ; as $\binom{q-1+j}{j}$ is 0 in \mathbb{F}_{q} unless $j=0$, the theorem is proved.

Corollary 1. $J^{3}=I$.

Proof. This is an immediate consequence of Theorem 1 and the simple fact that the operation $x \mapsto 1 /(1-x)$ has order 3 as a function on the projective line.

Theorem 2. Let

$$
M=\left(\begin{array}{cccccc}
1 & 0 & 0 & 0 & \cdots & 0 \\
1 & 1 & 1 & 1 & \cdots & 1 \\
\cdots & \cdots & \cdots & \cdots & \cdots & \cdots
\end{array}\right] \cdot .
$$

be the Vandermonde matrix formed from the elements $0,1, \ldots, y, \ldots$ of \mathbb{F}_{q}. Then $M J M^{-1}$ has the form

$$
\left(\right)
$$

where P is a permutation matrix. The structure of the permutation is:
(i) two elements fixed, all others permuted in 3 -cycles, if $q \equiv 1(\bmod 3)$;
(ii) all elements permuted in 3 -cycles, if $q \equiv 2(\bmod 3)$; and
(iii) one element fixed, all others permuted in 3-cycles, if q is a power of 3 .

Proof. We now look at the other natural basis of V, the functions g_{y} where $g_{y}(y)=1$ and $g_{y}(z)=0$ for all other $z \in \mathbb{F}_{q}$. [Note then $\left.g_{y}(\infty)=-1.\right]$ Clearly $f_{k}=\Sigma_{y} y^{k} g_{y}$. Thus the Vandermonde matrix M gives the base change, and $M J M^{-1}$ is the matrix of the operation T in the basis g_{y}. It is trivial to see that $T g_{y}=g_{1-1 / y}-g_{1}$ except for $y=0$, where we get $T g_{0}=-g_{1}$. This gives us all the structure of the matrix except the analysis of the permutation, which is simply the permutation induced by $y \rightarrow 1-1 / y$ on $\mathbb{F}_{q} \backslash\{0,1\}$. As
the map has order 3 , each element is either fixed or sent in a 3 -cycle. Clearly an element y is fixed iff $y^{2}-y+1=0$. When $p=3$, this equation has the unique root $y=2$. Otherwise, its roots are $-\zeta,-\zeta^{2}$, where ζ is a nontrivial cube root of 1 . Such roots exist in \mathbf{F}_{q} iff $q \equiv 1(\bmod 3)$.

Corollary 2. If $q \equiv 2(\bmod 3)$, then J is similar to a block matrix containing 1×1 blocks with eigenvalue 1 and 2×2 blocks of the form

$$
\left(\begin{array}{rr}
0 & 1 \\
-1 & -1
\end{array}\right) .
$$

There are $(q-2) / 3$ blocks of the first type and $(q+1) / 3$ of the second type. If $q \equiv 1(\bmod 3)$, the same type of structure occurs, but there are $(q+2) / 3$ blocks of the first type and $(q-1) / 3$ of the second type.

Proof. As $p \neq 3$ and $T^{3}=I$, the matrix $M J M^{-1}$ is separable, and hence it is similar to the direct sum of P and the upper corner $\left(\begin{array}{rr}0 & 1 \\ -1 & -1\end{array}\right)$. Clearly P is similar to the direct sum of the permutation matrices for the cycles in it. Each cyclic permutation of three basis vectors e_{1}, e_{2}, e_{3} splits its space into two subspaces, the spans of $e_{1}+e_{2}+e_{3}$ and of $e_{1}-e_{3}, e_{1}-e_{2}$, and a trivial computation shows that it thus yields one block of each type.

Over $\mathrm{F}_{p^{2}}$, of course, each of our 2×2 blocks splits to give two 1×1 blocks with eigenvalues ζ and ζ^{2} (the cube roots of unity). This happens over \mathbb{F}_{p} iff $p \equiv 1(\bmod 3)$.

Finally, a different splitting works well when $p=3$. If we split V then as the direct sum of 3 -dimensional invariant subspaces where the functions have zero values except on $y=2$ and on the elements of one 3-cycle in $\mathbb{F}_{q} \cup\{\infty\}$, it is trivial to see that each such subspace yields a single 3×3 Jordan block with eigenvalue 1 .

REFERENCE

1 N. Strauss, Jordan form of a binomial coefficient matrix over \mathbb{Z}_{p}, Linear Algebra Appl. 90:65-72 (1987).

[^0]: *This work was supported in part by grants from the National Science Foundation.

