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1. Introduction

The Cartan-Dieudonné theorem is a fundamental result in the theory of metric vector spaces.
It states that every orthogonal transformation is the composition of reflections with respect to
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hyperplanes. The classical proofs of the Cartan-Dieudonné theorem use induction on the dimension of
the vector space and are not constructive. See [1,2]. Recently, Uhlig [3] presented a constructive proof
of the Cartan-Dieudonné theorem for the case of vector spaces with a positive definite inner product,
and also a constructive proof of a weaker version of the theorem for generalized scalar product spaces
of signature (p, q) [3, Theorem 3].

The matrix representation of a reflection with respect to a hyperplane is called a Householder
matrix [3]. The analogues of Householder transformations on spaces with a non-degenerate bilinear
or sesquilinear form are studied in [4]. Householder matrices are also used in Gallier’s book [5, Ch. 7],
which discusses the Cartan-Dieudonné theorem for linear and affine isometries, including applications
to QR decomposition.

In the present paper we present an alternative proof of the Cartan-Dieudonné theorem for general-
ized real scalar product spaces of arbitrary signature. The proofyields an algorithm for the factorization
of a given orthogonal transformation as a product of reflections with respect to hyperplanes. This work
is a generalization to spaces of arbitrary signature of a previous one [6], where we provide an algorith-
mic proof of the Cartan-Dieudonné theorem in R" valid over the fields Q, R or C.

In the theory of Clifford algebras there is an alternative way to find the image of a vector under
a reflection with respect to a hyperplane. This is done using vector multiplications under the rules
of the Clifford algebras. This is the method that we propose for the computations involved in the
factorization algorithm. Additionally, our approach produces an alternative way for calculating the
Householder matrices with respect to orthogonal bases, but we do not use these matrices in the
numerical examples.

In Section 2 we present some results about vector spaces with non-degenerate bilinear forms. We
include some results about Artinian spaces because they are important for the development of our
proof of the Cartan-Dieudonné theorem. In Section 3 we present the proof for the case of spaces with
a symmetric non-degenerate bilinear form of arbitrary signature. In Section 4 we propose the use of
Clifford algebras as a computational tool to obtain the reflections that give the factorization of a given
orthogonal transformation. In Section 5 we present some examples of the factorization of orthogonal
matrices. Finally, in Section 6 some conclusions are given, including a comment about the relationship
with the Cartan-Dieudonné-Scherk theorem, and the minimum number of reflections required to
decompose a given orthogonal transformation.

2. Generalized scalar product spaces

In this section we present some basic results concerning real vector spaces equipped with a non-
degenerate symmetric bilinear form. We call such spaces (generalized) scalar product spaces. They are
also known as metric vector spaces or real orthogonal spaces. The proofs of the results presented here
can be found in [2].

Definition 2.1. Let X be a real vector space and let B : & x X — R be a map that satisfies the
conditions
(B1) (Bilinearity) For allv, v/, w,w’ € X and forall A € R

B (Av +v/, w) =AB(v,w)+B (v’, W) ,
and
B, \w +w) = AB(v,w) + B (v, w’) )

(B2) (Symmetry) Forallv,w € X, B (v,w) = B(w, V).
(B3) (Non-degeneracy) For each nonzero v in X there exists w in X such that B (v, w) # 0.
Then the pair (X, B) is said to be a (generalized) scalar product space.

Definition 2.2. Let X be a real vector space and 3 a bilinear form on X.

(1) The vectors u, v in & are orthogonal if B (u, v) = 0.
(2) Avector uin X is called isotropic if B (u, u) = 0.
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(3) We say that u is invertible if u is not isotropic, that is, if B (u, u) # 0. (This terminology will be
justified in Section 4.)

(4) Let W and V be vector subspaces of X. We say that W and V are orthogonal if B (v, u) = 0, for
allu e Vandv € w.

(5) A subspace V of X is called null subspace if B (v, u) = 0, forallu, v € V.

(6) Let W be a subspace of X. The orthogonal complement of W is the subspace W+ =
{fue x|Bv,u) =0, forallv e W}.

(7) Let W be a subspace of X. We say that W is a non-degenerate subspace, relative to 3, if the
restriction of B to W x W is non-degenerate.

Note that the vector subspace generated by an isotropic vector u is a null subspace of X.
The next proposition states when a subspace and its orthogonal complement decompose the space
X as a direct sum.

Proposition 2.3. Let (X, B) be a generalized scalar product space of dimension n and let W be a subspace
of X.ThenXx = wewt ifand only if W is non-degenerate. That is, the space (W, B |,y) is non-degenerate,
where B |y is the restriction of B to the subspace W. In particular, ifa € X we have ¥ = Ra® (Ra)J' if
and only if B(a, a) # 0, where Ra denotes the subspace generated by a.

For a proof see [2, Proposition 149.1].

In the remainder of this article (X, B) will denote a (generalized) scalar product space of dimension
n over the field of real numbers.

Let e = {eq, ey, ..., ey} be an ordered basis of the vector space X. For each pair of indices i, j in
{1,2,...,n}leta;j :=B (i, ej) . The matrix A = [a; ;] is called the matrix of B relative to the basis
e. It describes the bilinear form 3 in the following way. Let v, w in X and let x = [v],, y = [w], be
the coordinate (column) vectors of v and w with respect to the basis e. Then B (v, w) = x'Ay. Since B
is non-degenerate and symmetric, we see that A is a non-singular symmetric matrix.

Proposition 2.4. Let (X, B) be a generalized scalar product space. Then there exist an ordered basis
e* = (e}, ..., e}) of X and nonnegative integers p and q, with p + q = n, such that

(1) B(e}‘, e]‘) =1forj=1,2,...,p.
2) B(ej‘,ej‘) =—1forj=p+1,p+2,....p+q.
(3) B (e}, e;) = 0fori # .
This means that the basis e* diagonalizes the matrix associated with the bilinear form B.

(4) The number of elements that satisfy B (e]f‘, e;‘) = 1is independent of the basis that diagonalizes the
bilinear form B.

For a proof see [2, Proposition 159.1].

The basis e* is called an orthonormal basis with respect to B. If ¢ = 0 then the space (X, B) is
called positive definite.

Let p and g be nonnegative integers such that n = p + q. The bilinear form B* on the space R"
defined by

p p+q
B* (X,y) = D_Xiyi— > X,
i=1 i=p+1
where x = (X1,X2,...,Xp+q) and y = (y1,¥2, ..., Yp+g), is symmetric and non-degenerate. The

generalized scalar product space (R", B*) is denoted by R”-9,

Any generalized scalar product space (X, B) that satisfies conditions 1, 2 and 3 of the previous
proposition is isomorphic to the space RP9. Any such space (X, B) is said to have characteristic or
signature (p, q), and it is usually identified with RP-9. See [2, Theorem 177.1].
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2.1. The orthogonal group

Among the linear operators on (X, B) the most interesting are clearly those that preserve the
bilinear form.

Definition 2.5. Let T : X — X be a linear operator. Then T is an orthogonal transformation if and
only if

B(Tv, Tw) = B(v,w), v,weE X.
The set of all the orthogonal transformations is a group, called the orthogonal group of (X, B), and
denoted by O (X).

The group © (RP9) can be considered as the set of invertible n x n matrices Q that satisfy Q‘AQ = A,
where A is the matrix associated with the bilinear form B with respect to the canonical basis of R”-9,
We denote O (RP-9) by O(p, q).

Definition 2.6. SO (p, q) := {Q € O (p, q) | det (Q) = 1} is the group of special orthogonal trans-
formations or rotations of RP-9,

If a is an invertible vector ( B (a, a) # 0) then the subspace (Ra)L has dimension n — 1 and
it is called the hyperplane associated with a. In this case, every v in X has a unique representation
of the form v = Aa + b, with b € (Ra)J‘ and A € R. The next proposition shows that the linear
transformation ¢, : X — X, defined by ¢, (v) = —Aa + b is orthogonal. It is called the reflection
with respect to the hyperplane (Ra)J‘. For the sake of convenience we denote (Ra)J‘ by H,.

Proposition 2.7. Let)V be anon-degenerate subspace of X. Define the linearmapT : X = wewt - x
by T (v) = x —y,wherev =x + Yy, withxin Wandy in W Then T is an orthogonal transformation.

Lemma 2.8. Let a, b be invertible vectors such that B (a, a) = B (b, b). Then there exists a linear map ¢
such that ¢ (a) = b and ¢ is either the reflection with respect to a hyperplane or the composition of two
reflections with respect to hyperplanes.

Proof. If 3 (a, a) = B (b, b) and a, b are invertible then a 4+ b and a — b are orthogonal. This follows
from B (a + b,a — b) = B(a,a) — B (b, b).

We have B(a+b,a+b) + B(a—b,a—b) = 4B (a,a) # 0. We deduce that either a + b is
invertible, or a — b is invertible, because at least one of the summands in the above equation must be
nonzero.

If a — bis invertible then ¢,_p : ¥ — X is areflection and

1 1 1 1
0as @ = gus (3 @— D)+ @+B) == @—b)+ > @+b =b.

If a + b is invertible, then ¢q4p : X — X is a reflection and

a—>b a—i—b)

a)= —
YpPa+b (@) ¢b<ﬂa+b( 5 + 5

_ (a—b a—{-b)
=¢p 5 2
=gp(~b)=b. O

The Cartan-Dieudonné theorem states that every orthogonal transformation T on an n-dimensional
generalized scalar product space is the composition of at most n reflections with respect to hyperplanes.
In the following section we will present our proof.

The main difficulty to obtain the proof of the Cartan-Dieudonné theorem appears in the case when
T(x) — x is a nonzero isotropic vector for every nonisotropic vector x. This case leads us to consider
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Artinian spaces. We present next some basic properties of Artinian spaces that we will use in the next
section.

2.2. Artinian spaces

The simplest example of an Artinian space is the Lorentz plane R!:!. In this plane the subspace
generated by u = (1, 1) is a null space of dimension 1.

An Artinian space is a generalized scalar product space of the form RP-P for some positive integer
p. Every Artinian space & has the following properties.

(1) dim (X) = 2pis even.

(2) X contains a null subspace of dimension p.

(3) If U is a maximal null subspace of X then

(a) dim (U) = p.

(b) If T is an element of O (X) such that T (U) = U then T is a rotation, that is, det(T) = 1.

For our purposes, the main property of Artinian spaces is the following lemma [2, Proposition 247.1
and Lemma 249.2].

Lemma 2.9. Let T be an element of O(p, q) such that T(x) — x is a nonzero isotropic vector for every
nonisotropic vector x. Then

(1) p = q and 2p is a multiple of 4.
(2) T is a rotation with fixed space U, where U is a maximal null subspace and Im(T —1) = U =
Ker (T —1).

This result, combined with induction over the dimension of the space, is used in the proof of
the Cartan-Dieudonné theorem presented in [2, Theorem 254.1]. In the next section we present an
alternative proof based on an algorithm to decompose a given orthogonal transformation as product
of reflections. In Section 4.2 we present an explicit formula for calculating the matrix representations
of the reflections.

3. An alternative proof of the Cartan-Dieudonné theorem

In order to simplify the notation, from here on we write uv = B (u, v), whenever 3 is the symmetric
non-degenerate bilinear form on the space RP-9, and u and v are in RP-9. The subspace generated by
the vectors uy, ua, . . ., uy is denoted by (uy, uz, . . ., ug). Recall that, if a is a vector such that a? #0
then ¢, denotes the reflection with respect to the hyperplane H, of all vectors that are orthogonal to
a.

The next lemma may be considered as a weak version of the Cartan-Dieudonné theorem. The proof
is very similar to Uhlig’s proof of the analogous result [3, Theorem 3].

Lemma 3.1. Every orthogonal transformation on the space RP-9 can be expressed as the composition of at
most 2n reflections with respect to hyperplanes, wheren = p + q.

Proof. Let T € O (p, q). Let {wq, wo, ..., w,} be an orthogonal basis for RP-7 such that w,-2 =% 0 for
i=1,2,...,n. Define V; = (wj, Wji1, ..., wy) forj=1,2,...,n
Consider the vectors T (wq) and wy. Define the linear function ¢ : RP9 — RP-9 by
I, if T (w1) = wy,
©1 = 1%, if T (W) % wy and (T (wy) — wy)? #0,

Pw@a,, if T(wy) #wyand (T (wy) —wy)? =0,
where c; = T (wq) — wy and d; = T (wq) 4+ wy. By Lemma 2.8 it is easy to see that o1 T (wq) = wy,
and 1T (V) € Vs.
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Consider now the vectors ¢1T (w;) and w,. Define the linear function ¢, : RP9 — RP-9 by
I, lf(PlT(WZ) = Wy,
¥2 = 1P, if 1T (W2) # wa and (1T (w2) — wa)? # 0,
Pu, @y 1f 1T (W) # wyand (1T (w2) — w)* =0,

where c; = ¢1T (W) — wy and dy = ¢1T (W) + wy. We know that ¢¢1T (wy) = wy, and since
¢y, dy € Vy, we see that @91 T (wq) = wjy. Therefore we have @1 T (w;) = w; fori = 1,2, and
21T (V3) C V3.

Consider now @91 T (w3) and ws. Define the linear function ¢3 : RP°7 — RP-9 by

I if 21T (W3) = ws,
3 = 1¢c, if p201T (w3) # w3 and (21T (w3) — w3)* # 0,
PwsPdss i @21 T (W3) # w3 and (@291 T (w3) — w3)? =0,

where ¢3 = @¢1T (W3) — w3 and d3 = @291 T (w3) + ws. We know that ¢3¢ T (w3) = ws,
and since c3,ds € V3, we can show that ¢3¢, T (w;) = w; fori = 1,2, 3. Therefore we have
30201 T (wy) = wj fori = 1,2, 3,and @30201T (Vg) C V4.

We introduce the notation ®; = @r@r—1 - - - ¢1 for k > 1. Then, following the procedure used
above, we can get orthogonal transformations @1, ¢y, ..., ¢, such that ®4T (w;) = w; fori =
1,2,...,k and ®kT (Vk1+1) € Vit1.

The orthogonal transformations ¢; are defined by

I, if @, T (Wit1) = Wgt1.
Ok+1 = Py » if DT (Wit1) 7 Wi and (DT (Wi 1) — Wie1)? # 0,
Pwss Psrs  if Ok (Wir1) 7 Wir and  (OkT (Wi1) — Wi1)? = 0,

where ¢g1 = OT (Wit1) — Wit1, and diy1 = @ T (Wit1) + Wiep 1.
Therefore we have ®,T (w;) = w;fori = 1,2, ..., n,and thus ®,T = I, and then

-1 -1 -1 -1
T=0" =9 ¢ ¢, .

Since each ¢ ! s either the identity, a reflection with respect to a hyperplane, or the composition of
two reflections with respect to hyperplanes, we see that T is the composition of at most 2n reflections
with respect to hyperplanes. ]

Reviewing the ideas used in the proof of the previous lemma, we see that one way to reduce the
number of reflections needed to factor T is the following. Suppose we have found @1, ¢, ..., @, re-
flections with respect to hyperplanes, such that ®T (w;) = w;fori =1, 2, ..., £,and &yT (Vy41) <
V41 If there exists wj € {Wpq1, Wea, ..., Wy} such that 4T (wj) = wj, or &T (wj) # wj and
(4T (wj) — wj)® # 0, then we can reorder the elements to force j = £ + 1, and then, using the con-
struction of the ¢; of the previous lemma we would have that ¢ is either the identity or a reflection
with respect to a hyperplane.

Lemma 2.9 tells us under what conditions it can happen that no element of {wy41, We42, ..., Wy}
satisfies the conditions described above, and in such situation we cannot assure that ¢y 1 is the identity
or a reflection with respect to a hyperplane.

In order to get a proof of the Cartan-Dieudonné theorem, we must find an algorithm for the con-
struction of the orthogonal transformations ¢; that avoids in some way reaching a situation where the
hypothesis of Lemma 2.9 is satisfied. This can be done by introducing an additional reflection in the
way we describe next.

Let T € O(p, q) and suppose that T(x) — x is a nonzero isotropic vector for every nonisotropic x.
Then, by Lemma 2.9 we must have p = g, n = p + q is a multiple of 4, and T is a rotation, that is,
det(T) = 1.

Let y be an invertible element of RP-9 and let ¢, be the reflection with respect to the hyperplane
Hy. Define S = ¢, T. Since det(S) = —1 we see that S # I and S is not a rotation. Therefore S does not
satisfy the hypothesis of Lemma 2.9.
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Let {wy, wy, ..., w,} be an orthogonal basis for RP-9. We can reorder the elements of the basis so
that either S (wq) = wy or S (w1) — wy is an invertible vector. Then we can find ¢; that is either the
identity or a reflection with respect to a hyperplane, and satisfies ¢S (w1) = wy and ¢S (V») C V5.

Since the dimension of V; is not a multiple of 4, the orthogonal transformation ¢S restricted to V,
does not satisfy the hypothesis of Lemma 2.9. Therefore there exists j such that 2 < j < n and either
1S (wj) = wj or ¢1S (wj) — wj is an invertible vector. Reordering the basis of V5 if necessary, we can
suppose that j = 2. Then we can find ¢, that is either the identity or a reflection with respect to a
hyperplane and satisfies ¢2¢1S (w;) = w;j fori = 1, 2 and @215 (V3) C V3.

Proceeding in the same way we can get @3 and ¢4, that are either the identity or reflections, that
satisfy pa030201S (wi) = w; fori =1, 2, 3, 4, and p4¢302¢1S (V5) C V5.

Consider now the composition ®4S, where ®4 = @4¢3¢2¢1. (Recall that we defined &, =
OkPk—1 - - - @21 for k > 1). There are two possible cases:

(1) ¢y #Ifori=1,2,3,4.

In this case we have det(®4S) = —1 and hence ®4S restricted to V5 does not satisfy the
hypothesis of Lemma 2.9. Therefore we can find orthogonal transformations ¢;, forj = 5,6, 7, 8
such that ®gS (w;) = wifori =1, 2, ...,8and ®gS (Vg) C Vy. Then, for the composition ®gS
we have again the same two possible cases that we had for ®4S, but now considering the maps
pifori=5,6,7,8.

(2) ¢; = Ifor atleastonei,with1 <i < 4.

In this case dim (V5) is a multiple of 4 and it is possible that det (®4S) = 1.

If ®4S restricted to the space V5 does not satisfy the hypothesis of Lemma 2.9 then we can
find s, which is either the identity or a reflection such that ®5S (w;) = w;fori =1,2,...,5
and @55 (V) € V. Notice that, since at least one of the ¢; is the identity, for 1 < i < 4, the
number of reflections in the composition @5 is at most equal to 4.

If d4Srestricted to the space Vs satisfies the hypothesis of Lemma 2.9 then we take an invertible
vector z in V5 and form the composition ¢, ®4S. This map restricted to V5 cannot satisfy the
hypothesis of Lemma 2.9, and consequently, we can find ¢s, which is either the identity or a
reflection and satisfies g5, ®4S (w;) = wifori = 1, 2, ..., 5 and @59, 945 (Vg) < V. Since
at least one of the g; is the identity, for 1 < i < 4, the number of reflections in the composition
o5, P4 is at most equal to 5.

Applying the procedure described above we see that for each £ such that 1 < ¢ < n, we can find
reflections with respect to hyperplanes ¢1, ¢3, ..., ¢s such that ®,S (v;) = v;for 1 < i < £, where
{vi, ..., vy} is a reordering of the orthogonal basis {w1, ..., wy}, and s < £. This last inequality is
very important.

In particular, for £ = n we get ®;S = I, with s < n. We claim that the case s = n is not
possible. If s = n then det (®;) = (—1)" = 1, because n is a multiple of 4. On the other hand,
det (®;) det(S) = det(I) = 1. But we know that det(S) = —1. Therefore s = n is not possible and
we conclude thats < n.

Since S = ¢, T, we have ®5¢,T = I and therefore T is the composition of at most n reflections with
respect to hyperplanes.

We have proved the following result.

Lemma 3.2. Let T be an element of O(p, q). If T (x) — x is a nonzero isotropic vector for every nonisotropic
vector x then T is the composition of at most p + q reflections with respect to hyperplanes.

Lemma 3.3. Let T be an element of O(p, q). If there exists a basis {w1, . .., Wp14}, where all the elements
are nonisotropic, such that

T (wi) —w;
is a nonzero isotropic vector fori = 1, ..., p + q, then T is the composition of at most p + q reflections

with respect to hyperplanes.
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Proof. We can proceed as follows.

Step 1. In each step we have to deal with three possible cases. In particular, here we have:

(1) There exists a nonzero and nonisotropic element v; € RP*9 such that T (v{) — v{ = 0.

(2) There exists a nonzero and nonisotropic element v; of the basis such that T (v{) — v; # 0 and
(T (v) —v1)? # 0 (i.e. T (vq) — v is nonisotropic).

(3) For every nonzero and nonisotropic x € RP-9 we have that T (x) — x # 0 is isotropic.
In case (3), from Lemma 3.2 we obtain that T is the composition of at most p + q reflections with

respect to hyperplanes.

In cases (1) or (2), we can find ¢, which is either the identity or a reflection, that satisfies

1T (vi) = v

and also @1 T (W) = Wy, where Wy = (wy)+
Step 2. Now, for the orthogonal transformation ¢4 T restricted to the space Wy, we have
(1) There exists a nonzero and nonisotropic element v, € Wy such that ¢1T (v3) — v, = 0.
(2) There exists a nonzero and nonisotropic element v, € Wj such that ¢1T (vo) — v, # 0 is non-
isotropic.
(3) For each nonzero and nonisotropic x € RP9 we have that ¢ T (x) — x 7~ 0 is isotropic.
In case (3), we have that 91T = S and thus, from Lemma 3.2, S is the composition of at most
p + q — 1 reflections with respect to hyperplanes.
In cases (1) or (2), we can find ¢, which is either the identity or a reflection, that satisfies

21T (vi) = vi,
where i can be chosen as 1 or 2. Also, it is fulfilled that ¢ T (W) = W,, where W, = (wq, Wz)J‘.

By following these steps, we can end up with one of the two following situations:

(A) We can find an orthogonal set of nonisotropic elements {vy, vy, ..., Vp44} and a finite sequence
of linear transformations @1, ¢z, . . ., @ptq, such that:
® ¢ is either a reflection or the identity, fori = 1,2,...,p +q.

® ip—1-- 01T (vj) = v, fori=1,2,...,landl=1,2,...p+q.

® Vi1 T (W) = Wy, forl = 1,2,...p + q, where W; = (v, vy, ..., v)" fori =
1,2,...p+4q.

(B) We can find an orthogonal set of nonisotropic elements {vy, v,, ..., v} and a finite sequence of

linear transformations @1, ¢, . .., @k, where k < p + g, such that:

® ¢, is either a reflection or the identity, fori = 1,2, ..., k.

e —1---@a1T (vj) = v, fori=1,2,...,land[ = 1,2, ...k

® Vi1 20T (W) = W, forl = 1,2, ...k where W; = (v, va, ..., v)) - fori=1,2, ...k

e Consider the orthogonal transformation @@—1 - - - ¢2¢1 T, restricted to Wy. Then we have that for
every nonzero and nonisotropic x € Wj itis fulfilled that g1 - - - 21T (x) — x is nonzero and
isotropic.

In case (A), we have that

Op+qPp+q—1 201 T = 1.

Thus T is the composition of at most p + g reflections.
In case (B), we have that

Oep1—1 - 21T =S,

restricted to Wy (whose dimension is p+ q — k). From Lemma 3.2 we conclude that S is the composition
of at most p + q — k reflections.
In summary, T is the composition of at most p + q reflections. O
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Now we are ready to prove the Cartan-Dieudonné theorem.

Theorem 3.4. Let T be an element of O(p, q). Then T is the composition of at most p + q reflections with
respect to hyperplanes.

Proof. Let n = p + q and let {wy, w», ..., w,} be an orthogonal basis for R with w,-2 # 0 for
1<i<n.

If there exists an element w; of the basis such that T (wj) = wjor T (w;) # wjand (T (wj) — w;)? #
0, then, reordering the basis (keeping the notation w; for the basic elements), we can getj = 1. Thus we
canfind ¢1, whichis either the identity or areflection, that satisfies 1 T (wq) = wy,and 1T (V) C V.

If there exists an element w; € {w,, w3, ..., Wy} such that ¢;T (wj) = wjoroT (Wj) # w;j and
(1T (wj) — w;)? # 0, reordering the basis {wy, w3, ..., w;} we can assume that j = 2, and then
we can find ¢, that is either the identity or a reflection with respect to a hyperplane, that satisfies
@21 T (wy) = wifori=1,2,and g¢1T (V3) C V3.

This process can be repeated until we reach either of two possible cases. In the first case we can
find ¢;, for 1 < i < n, such that ®,T = [, and therefore T is the composition of at most n reflections
with respect to hyperplanes.

In the second case we find ¢;, for 1 < i < k, where 1 < k < n, that satisfy ®;T (w;) = w; for
1 <i =<k ®T(Vkt1) € Vi1, and &, T(wj) — wj is a nonzero isotropic vector for every k < j < n.
Applying Lemma 3.3 to the orthogonal transformation ®T, on the space Vi1, we obtain reflections
with respect to hyperplanes 7;, for 1 < i < s,withs < n—k,suchthat 7gts_q - - - Ty ®¢T is the identity
onRP-4 Sinces+k < n, we conclude that, also in this case, T is the composition of at most n reflections
with respect to hyperplanes. [

4. Clifford algebras

In this section we present some definitions and basic results about Clifford algebras associated with
a generalized scalar product space (X, B) of signature (p, q). We use the notation of [7, Ch. I]. We also
describe how the Clifford algebra structure can be used to deal with orthogonal transformations, and
in particular, with reflections with respect to hyperplanes.

Definition 4.1. Let (X, B) be a generalized scalar product space of dimension n and let A be a real
associative algebra with identity 1 such that

(C1) A contains copies of R and of & as linear subspaces.

(C2)Forallv € X we have v? = B (v, v).

(C3) A is generated as a ring by the copies of R and of X, or equivalently, as a real algebra by {1}
and X.

Then A is called a real Clifford algebra for (X, B) and it is denoted by A = C (X).

Note that (C2) links the multiplication in the algebra with the bilinear form on X.

4.1. Bases for Clifford algebras

Here we describe a basis for C (X) in terms of an orthonormal basis for X. Let (X, B) be a generalized
scalar product space of signature (p, q) and let e = {eq, ea, ..., e,} be an orthonormal basis for X.
Then, by (C2) we have

1, fori=1,2,...,p
—1, fori=p+1,p+2,...,p+4q,
and it is easy to show that

eiej —l—ejei =0, i;ﬁj,

el = Blei, e;) =

and
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1
g(vw—i-wv):B(v,w), u,veax.

Define N = {1, 2, ..., n}. Let 1, B2, . . ., Bs be distinct elements of N. Then

egep, - ep = (—1)7 eq,€a; - - €a,
where (a1, a2, . . ., as) is the permutation of (81, B2, . .., Bs) thatsatisfiesa; < o < -+ < ay,and
o is the number of transpositions of the permutation that sends (o1, a2, . .., o) to (B1, B2, - . ., Bs)-

Since ei2 = =£1,itis easy to see that, up to a change of sign, every product of basic elements, possibly
with repeated factors, can be reduced to a product of at most n factors with indices in increasing order.
This implies that every element of C (X) can be written in the form

Z)"A €1 €ay * *  Casgs
A

where the sum runs over all the subsets A = {aq, a2, ..., ap} of N (withoy < ap < --- < ) and
A4 is a real coefficient. In order to simplify the notation we define e4 = ey, ey, - - - €q,, and we put
ey = 1. Therefore the collection of elements of the form e4, where A is a subset of N, is a generating
set for C (X) and consequently, dim (C (X)) < 2".

Recall that a vector s € X is called invertible if B (s, s) # 0. This condition is equivalent to s2 =
B (s, s) # 0. Therefore, the element (1/3 (s, s)) s is the inverse of s with respect to the multiplication
in the algebra ¢ (X), and we can write s~! = s/s> = s/B (s, $).

Theorem 4.2. LetC (X) be a Clifford algebra for an n-dimensional generalized scalar product space (X, B)
with signature (p, q) and lete = {eq, ..., ey, ept1, - . ., eptq} be an orthonormal basis for (X, B). Then

(i) If nis even then dim C (X) = 2" and {es : A C N} is a basis for C (X).

(ii) If nis odd and ey ¢ R, then dimC (x) = 2" and {e4 : A C N} is a basis for C (X).

(iii) Ifnisodd and ey € R, theney = +1landp — q=1 mod (4). In this case dimC (x) = 2"!
and {e4 : A C N, #Aeven }is a basis for C (X).

Theorem 4.3. Let C (X) be a Clifford algebra for the generalized scalar product space (X, B) and let W be
a non-degenerate subspace of X. Then the subalgebra of C (X') generated by W is a Clifford algebra for W.

The proof of these results can be found in [7-9].

A result of Chevalley states that every n-dimensional generalized scalar product space (X, B) has
a Clifford algebra of dimension 2" (see [7]). If (X, B) has signature (p, q) then it is isomorphic to R”-9,
The Clifford algebra of dimension 2" of RP-? is denoted by R, .

The algebra R, 4 is a graded vector space. Let s be an integer such that 0 < s < n. Let R;,q denote
the subspace generated by {e4 : A C N, #A = s}. It has dimension (2) The elements of Rz’q are
called s-vectors. Note that

n
_ s
Ry = DR, -
s=1

The space of 0-vectors is generated by {1}, and its elements are also called scalars. The space R;’ qcan
be identified with RP-9, The space qu q is generated by {ey}. The element ey is called pseudoscalar.
Every element a € R, 4 can be expressed in the form

a= z )\.AEA, )\A e R.
ACN

and also as

n
a:Zar, areR;q.
r=0
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Definition 44. Leta = >, a;, where g, € Rg,q. Ifa. = 0forr > tanda; # 0, then we say that
the grade of the multivector a is t, and write gr(a) = t.

Notice that if A € R then gr(Aa) = gr(a). If sq, ..., s, are nonzero vectors in R”9, then
gr(s;---sy) =1 < kanddim(sy,...,sx) =L
The multiplication in the algebra R, ; can be used to represent reflections with respect to a hyper-
plane in the space RP-9 as follows. Let s be an invertible vector in RP-9. Define the map ¢ : RP-9 — RP-4
by
Qs (x) = —sxs™1,  x e RPY

In order to show that ¢s (x) is a vector in RP-4 for all x € RP-? we first compute sxs and get

1
SXS = 5 (sx +xs + (sx — xs)) s
1
=5(28(x,s)+sx—xs)s

B(x.s) +1 1,
=B(X,8)s+ —sxs — —xs°.
2 2

The last equation yields sxs = 2B (x, s) s — xs® and hence

1 2B (x, s)
—sX§ = ————5§

+x, 1
2 (1)
which is clearly a vector in RP-9,

Lemma 4.5. Let s be an invertible vector in RP-9, Then the linear map ¢s : RP9 — RP9 is an
orthogonal transformation. Furthermore, itis the reflection with respect to the hyperplane Hs = {x € RP9 :
B(x,s) =0}

Proof. For x,y € RP-9 we have

B(gs (). s ) =B (—sxs™!, —sps")

=5 ((57) () () (o)

1 -1
= ES (xy +yx)s

=B(x,Y).
Ifx € Hy we have ¢ (x) = —sxs™ ! = — (28 (,5) /52) SHX=AX.
If x = As where A is a real number then ¢ (X) = —s (As)s~' = —As = —x. Therefore ¢; is the

reflection with respect to H;. [

It is easy to verify that ¢; satisfies

(1) @5 = ;s for every nonzero real A.
2) o' = gs.
(3) If s1, S, ..., s are invertible elements of RP-9 then
P50, 05 (1) = (=D s153 - se_1sexsy sy sy sy

Using the Clifford algebra multiplication the Cartan-Dieudonné theorem reads as follows.
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Theorem 4.6. Let T be an orthogonal transformation on RP-9. Then there exist invertible elements
$1,52, ..., Sk in RP9, with k < p + q, such that

Tx) = (—1Dsysy - -sk_1skxsk_15k__11 . -52_151_1, x € RP9,

If T is an orthogonal transformation on R”'9 and there exist invertible multivectors A, B in the
Clifford algebra R, 4 such that

T(x) = +AxA"' = +BxB™!, x e RPY,

then A = AB for some real A. The proof of this result can be found in [9]. We will illustrate this fact in
the examples of the next section.

4.2. A matrix representation of ¢s

Having in mind that, in many applications, matrix representations of reflections are useful, we
introduce another algebraic expression for ¢;.

Define A = B(:Z’S) , then

s=Ax+Yy,

where y is orthogonal to x, that is

Xy = —YX.
Thus
1 1
—sxs~ = 2 x+yxOx+y),
1 2.2 2 2
=2 ((A X —y )x+2kx y),
1 B(s,x 2
:-2((((2))—y2)x+26(s,x)y). (2)
s X
This last result (2) turns out to be useful to find a matrix representation of ¢; with respect to a given
orthogonal basis B = {wy, wa, ..., Wyyq}, where wl-2 # 0fori =1,2,...,p+ q.Indeed, consider

s = 3P oy, then

p+q
s=opwi + D ow;,
i=1
i#k
B (s, W) P9 B (s, wy)
e TR Y
Wi =1 Wi
i£k
Define
p+q p+q B(S Wi)

Yk = Zaiwi = Z — Wi

i=1 i=1 w;
i#k i#k
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Using (2) to get
1 (( (B(s,wp))?
os (W) = —— ((z — Vi Jwi + 2B (s, W) yi ),
S Wk
1 (B w)?  ["E B w))?
- 572 T - ;7121 Wk+23(5, Wk)yk
;;_ék

From this result we obtain that the kth column of the matrix A; = [¢s]p is given by

25 (s, wy) Ze)
1

2B (s, wg) B(fm’iém

2 p+q W2
los woly = — | P58 — | 2 5| < (kthrow)
s ik
2B (s, wg) M
' Wict1

2B (s, wi) %

p+aq
Equivalently
_ 1\ Bs,wi) ; ;
2B (s, wj) 2u? if 1 #j,
Ay = -4 7(5(5"/2‘0))2 - piq 7(8(5"?))2 forl =j. G)
s Wi i=1 i
i#

5. Examples

Let T be the orthogonal transformation on the space R?3 represented by the matrix
(1 5 4 3 0
-5 1 3 -4 0
Tr=|4 3 1 5 0
3 4-51 0

L0 0 0 0 —1]

with respect to the canonical basis E = {e1, e3, e3, e, e5} of R%3. Then we have T (e;) — e; # 0,
(T (e;) — e,-)2 =0fori=1,2,3,4,and T (e5) — e5 = —2es. We can take c; = es.

It is easy to see that ¢, T restricted to (eq, ez, e3, e4) satisfies the conditions of Lemma 2.9. By
Lemma 2.8 and the proof of Lemma 3.1 we obtain c; = ¢, T (e1) + e; = 2e; — 5e3 + 4e3 + 3ey4
and c3 = eq. Then we have ¢¢, ¢c, ¢, T (e;) = e;, fori = 1, 5. Notice that ¢, ¢, T does not satisfy the
hypothesis of Lemma 2.9 on (eq, €3, €3, e4).

Now we have (¢c, ¢c, ¢, T (€) — e,-)2 # 0fori = 2, 3, 4. We can take

25 23
C4 = P3P, Pc; T (€2) — €3 = e Te3 — e
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Then we have @, ¢c, @, ¢, T (e;) = ejfori = 1,2, 5,and (goc4goc3<pC2<pclT (e)) — ei)2 # 0fori =3, 4.
We can take ¢s = @c, Pc39c, e, T (€3) — €3 = E}f; e3 + 264
It is easy to verify that ¢, ¢, @c; @, 0, T (€i) = ejfori =1, 2, 3,4, 5,thatis T = @, @c, e Pcy Pcs-
Let us denote by A; the matrix representation with respect to the canonical basis E of ¢, for
1 <j < 5.Using formula (3) we obtain:

(100 0 0 1 0o 0o o0 o0 [—10000]
010 0 0 o¥ 7 %o 01000
_ 7 24 _ 73 161
24 7 23 161 479
00 Lo 0-2 -1 _1, 00010
000 0 1] oo o o0 1] 0 000T1|
(-1 5 4 3 0 (1000 0]
5 -2 -10-%o0 0100 0
Ab=|-4 10 9 6 0|, A;=|{0010 0
15 11
-3 2 6 Lo 0001 0
0 0 0 0 1] 10000 —1]

A direct computation yields T = A1A2A3A4As.

Computing the Clifford product ¢y c3c3c4¢5 we obtain a linear combination of s-vectors wheres < 3.
This suggests that cjcyc3c4¢c5 may be equal to the Clifford product of 3 vectors and that T could be
factored as the product of 3 reflections. We present next another way to factor T that confirms this
conjecture.

We apply the factorization algorithm to T, but now using the orthogonal basis W =
Wy, Ws}, where

Wi =e3+e4—e5, W) =ej;+ey,ws =e;+eq+ 2e5,Wqg =e3 —egand ws = e — ey.

We obtain (T (w;) — w;)? # 0, for 1 <i < 5. Therefore we can take

{wi, wa, ws,

dy =T (w1) —wy,
a, T (Wi) —w; # 0and (¢q, T (Wi) — w,-)2 #0, fori =2,3,4,5,

da = @4, T (W2) — wa,

04,94, T (Wi) —w; # 0and (g4, 04, T (W) — Wl-)2 # 0, fori =3,4,5,

d3 = @4, ¢a, T (W3)

0 = @a;¢d,9a, T (Wi)

— ws,

—w;, fori =4,5.

and therefore T = ¢q, ¢4, Pd; -
Let B; denote the matrix representation of ¢4, with respect to the canonical basis E, fori = 1, 2, 3.
We have

[t 7 35 35 _g]
2 2 2 2
-7 3 5 _5 1
2 2 2 2
B1 = 325 —% —273 % -5, di = 7e1 — e; + 5e3 — 5e4 + 2es,
_3 5 25 _23 5
2 2 2 2
7 -1 -5 5 —1
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[ 347 104 286 208 _ 267
9 9 9 9 3
104 41 88 _64 8
9 9 9 9 3
By, = zéﬁ —% —% % —% s dy = 26e; — 8ey + 22e3 — 16e4 + Ges,
208 64 176 _ 119 16
9 9 9 9 3
26 8 _2 16 _4
L 3 3 3 3 _
43 _25 35 5 _5]
18 18 18 18 3
_2 43 35 _ 5 5
18 18 18 18 3
—| 33 _3» _xn 7 _7 - _ _ _
33 = 18 18 T 18 3| d3 5e1 + 5ey 763 +eq 665.
_> 5 7 17 1
18 18 18 18 3
50 .5 _7 1 _4
L 3 3 3 3

It is easy to verify that Tz = BBy B3, and notice that dydyd3 = 6¢1C2C3¢4Cs.
The matrix representation of T with respect to the basis W is

1 4 10 8]
32 3-3 3

31 3 4-5

— 2 1 5 4
Tw=|31-3 =3 3
54 5 1-3

45 4 -3 1

Note that this second factorization avoids the Artinian case, that is, the situation where the hypoth-
esis of Lemma 2.9 holds.

As another application of formula (3), we can find the matrix representation of each ¢g;, for i =
1, 2, 3, but now with respect to the orthogonal basis W. Using the above values of di, d> and d3,
respectively, we obtain:

1 4 10 8
372 3 3 73
310 —6 —15 12
— 2 1 10 8
G=|32 -3 -3 3 |
5 15 —10 —24 20
412 -8 —20 17
10 0 0 o0 |
010 —9 —19 17
_ 19 17
Cé - 03 -2 -3 3 5
352 323
019 —19 —332 323
323 298
(017 —17 -3 28 |
and
100 0 0
010 0 O
— 4 5
G=|00-2-%3
7 20
004 -7 2
20 34
(00 -5 -2 3
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A direct computation yields Tyy = C1C,Cs. It should be noticed that the orthogonal basis W is not
ordered according to the signature of R%3.

6. Final remarks and conclusions

The factorization of an orthogonal transformation is not unique, as we have shown in our example.
Actually, the number of reflections that factorizes an orthogonal transformation is not unique either.
Aninteresting question related to this last point is to determine the minimum number of reflections by
hyperplanes required to factorize a given orthogonal transformation. An answer to this question using
matrices has been given in [10], and it was translated to the language of orthogonal transformations
in[2, pp. 260-261].

In our examples (Section 5) we use the grade of a multivector to find the minimum number of
reflections by hyperplanes required to factorize Tr. We can formalize this procedure as follows:

Lemma 6.1. Let T be an orthogonal transformation on RP-9, Assume that there exist invertible elements
S1, ..., S in RP9 with k < p + q, such that

Tx) = (—Dsysy - -sk_1skxsk_1sk_j1 .. _52—151—1’ x € RPY,

Ifgr(sy---sg—1Sk) = t < k, then T cannot be factored into less than t reflections with respect to
hyperplanes.
Proof. Suppose that there exist s}, ..., s;, with | < t, such that

T() = (=1"s) s six(s) T L) )T xe R

We have that gr (sﬁ . -sf_ls;) < | < t. But (s’1 . -s;_lsf) = A(S1---Sk—1Sk), where A € R and

therefore gr (sq . .s;_ls;) = gr(sq - --Sk—15x) = t, which is a contradiction. [
With this result, we can state the following theorem

Theorem 6.2. Let T be an orthogonal transformation on the space RP-9. If there exist invertible elements
$1,82, ..., Sk € RP9 such that:

e T(x)=(—1)ks;-- -sk_lskxs,?ls,:_11 . -52_151_1, x € RP9,
® gr(sls vy Sk—1, Sk) = tr and
e Ker(T — I) is non-degenerate,

then T can be factored into t reflections with respect to hyperplanes and, moreover, dim (Ker (T — I))* = t.

Proof. By hypothesis T = s, - - - @5, and gr (sy, ..., Sk—1, Sk) = t. By considering the space V; =
(s1, - ,Sk), where dimVy; = t, it is easy to show that Vll C Ker (T —1I). If Ker (T —I) is non-
degenerate. Then we can find an orthogonal basis B = {wq, ..., Wi, Wjt1, ..., WH,}, wherej+1=n
and Ker (T — 1) = (wx,...,wj—_1, w;) and applying the algorithm proposed in this paper we get
@i = I, fori = 1,2,...,j. From the application of the Cartan-Dieudonné theorem to T|Vj+1, where
Vit1 = (Wjt1, ..., Wjq1), we obtain that T is the composition of at most I reflections by hyperplanes.
From Lemma 6.1 we know that t < I.

Now, suppose that there exist uq,...,u, € (Ker(T — I))J‘, such that T = ¢y, -~ @y, If
gr(uy---um) < Ithen by considering T|y;,, we can find a nonzero vector u € Vji orthogonal

to the set {uq, ... un}. But in such case u € Ker (T —I) N (Ker (T — I))J‘, which is a contradiction
since Ker (T — I) is non-degenerate. Therefore T is the composition of I reflections through hyper-
planes, that is, there exist uq, ..., ujsuch that T = ¢y, - - - ¢y, and gr (uq - - - u;) = [ and, moreover,

t =gr(sisy---sg) = gr (ugtly - - - uy) = | = dim (Ker (T — I))*. O
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It should be remarked that the previous Theorem relates the grade of a multivector with the Cartan-
Diedudonné-Scherk theorem. It remains however, to propose an algorithm capable of finding explicitly
the minimum number of reflections required to decompose a given orthogonal transformation.
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