Some families of strongly clean rings

Xiande Yang *, Yiqiang Zhou

Department of Mathematics and Statistics, Memorial University of Newfoundland, St. John’s, Canada NL A1C 5S7

Received 10 May 2006; accepted 14 March 2007
Available online 7 April 2007
Submitted by H. Schneider

Abstract

A ring R with identity is called strongly clean if every element of R is the sum of an idempotent and a unit that commute with each other. For a commutative local ring R and for an arbitrary integer n ≥ 2, the paper deals with the question whether the strongly clean property of \(M_n(R[[x]]) \), \(M_n\left(R\left(\frac{x}{(x^2)}\right)\right) \), and \(M_n(RC_2) \) follows from the strongly clean property of \(M_n(R) \). This is ‘Yes’ if n = 2 by a known result.

© 2007 Elsevier Inc. All rights reserved.

AMS classification: Primary 16U99, 16S50; Secondary 16S34, 16U60

Keywords: Strongly clean ring; Matrix ring; Commutative local ring

1. Introduction

Throughout the paper, R is an associative ring with identity. A ring R is called clean if every element of R is the sum of an idempotent and a unit [15], and R is called strongly clean if every element of R is the sum of an idempotent and a unit that commute with each other [16]. Strongly clean rings include local rings and strongly \(\pi \)-regular rings (see [2]), where a ring R is strongly \(\pi \)-regular if for every \(a \in R \), the chain \(aR \supseteq a^2R \supseteq \cdots \) terminates (or equivalently, for every \(a \in R \) the chain \(Ra \supseteq Ra^2 \supseteq \cdots \) terminates by [8]).

By [10], a ring R is clean if and only if the \(n \times n \) matrix ring \(M_n(R) \) is clean for all \(n \geq 1 \). It was a question in [16] whether the matrix ring over a strongly clean ring is again strongly clean. The answer is ‘No’ by [18] where it was shown that for the localization \(\mathbb{Z}_{(2)} \) of \(\mathbb{Z} \) at (2), \(M_2(\mathbb{Z}_{(2)}) \)

* Corresponding author.
E-mail addresses: xiande@math.mun.ca (X. Yang), zhou@math.mun.ca (Y. Zhou).

0024-3795/S - see front matter © 2007 Elsevier Inc. All rights reserved.
doi:10.1016/j.laa.2007.03.012
is not strongly clean. This fact motivated the authors of [3,5,6] to consider the question: when is the matrix ring over a strongly clean ring still strongly clean? Among others, the following results are observed in [5,6]:

(1) For any prime \(p \), \(M_2(\hat{\mathbb{Z}}_p) \) is strongly clean but \(M_2(\mathbb{Z}_p) \) is not strongly clean where \(\hat{\mathbb{Z}}_p \) is the ring of \(p \)-adic integers and \(\mathbb{Z}_p \) is the localization of \(\mathbb{Z} \) at the prime ideal \((p) \).

(2) For any commutative local ring \(R \), \(M_2(R) \) is strongly clean if and only if \(M_2(R[[x]]) \) is strongly clean if and only if \(M_2(RC_2) \) is strongly clean.

More recently, the authors of [3] have proved that for a commutative local ring \(R \), \(M_n(R) \) is strongly clean if and only if every monic polynomial of degree \(n \) in \(R[x] \) has a so called ‘SRC’ factorization. Generally, if \(M_2(R) \) has a ring property \((P) \), one may think that \(M_n(R) \) also has the property \((P) \). However, by [3, Example 20], there is a commutative local ring \(R \) such that \(M_2(R) \) is strongly clean but \(M_3(R) \) is not. Hence, it is a new and interesting question whether \(M_n(R[[x]]) \), \(M_n\left(\frac{R[x]}{(x^n)}\right) \), and \(M_n(RC_2) \) are all necessarily strongly clean whenever \(M_n(R) \) is strongly clean for any \(n \geq 2 \). This is the main topic of the paper. Some other strongly clean matrix rings are also identified. For example, if \(R \) is a right duo strongly \(\pi \)-regular ring, then \(M_n((RG)[[x]]) \) and \(M_n\left(\frac{(RG)[x]}{(x^n)}\right) \) are strongly clean for all \(n, k \geq 1 \) and all locally finite groups \(G \).

As usual, we use \(U(R) \) and \(J(R) \) to denote the group of units and the Jacobson radical of \(R \) respectively. We write \(\mathbb{Z} \) for the integers, \(\mathbb{Z}_n \) for the integers modulo \(n \), \(\mathbb{N} \) for the positive integers, and \(C_n \) for the cyclic group of order \(n \). The group ring of a group \(G \) over a ring \(R \) is denoted \(RG \).

2. Matrix rings over commutative local rings

Let \(n \geq 2 \) and let \(R \) be a commutative local ring such that \(M_n(R) \) is strongly clean. It is proved that both \(M_n(R[[x]]) \) and \(M_n\left(\frac{R[x]}{(x^n)}\right) \) are strongly clean and that \(M_n(RC_2) \) is strongly clean when \(2 \in U(R) \) or \(2 = 0 \) in \(R \). The unsettled situation is when \(0 \neq 2 \in J(R) \). All the proofs rely on a result of [3], quoted as Lemma 2.2, below.

For a field \(F \), the monic greatest common divisor of polynomials \(h(t) \) and \(g(t) \) in \(F[t] \) is denoted \(\gcd(h(t), g(t)) \). For a ring homomorphism \(\theta : R \rightarrow S \), we define \(\theta' : R[x] \rightarrow S[x] \) by \(\theta'(\sum r_i x^i) = \sum \theta(r_i) x^i \). We let \(\eta_R : R \rightarrow R/J(R) \) be the natural ring homomorphism, i.e., \(\eta_R(r) = \bar{r} = r + J(R) \).

Definition 2.1 [3]. Let \(R \) be a commutative local ring. A factorization \(h(t) = h_0(t)h_1(t) \) in \(R[t] \) of a monic polynomial \(h(t) \) is said to be an SRC factorization if \(h_0(0), h_1(1) \in U(R) \) and \(\overline{h_0(t)}, \overline{h_1(t)} \) are co-prime in the PID \(\overline{R}[t](=R/J(R)[t]) \). The ring \(R \) is an \(n \)-SRC ring if every monic polynomial of degree \(n \) in \(R[t] \) has an SRC factorization.

Lemma 2.2 [3, Theorem 12]. Let \(R \) be a commutative local ring. Then \(R \) is an \(n \)-SRC ring if and only if \(M_n(R) \) is strongly clean.

Lemma 2.3. Let \(\theta : R \rightarrow S \) be a ring epimorphism. If \(R \) is an \(n \)-SRC ring, then \(S \) is an \(n \)-SRC ring.
Proof. The ring S is commutative local since R is an n-SRC ring. The following diagram is commutative where $\theta : R/J(R) \rightarrow S/J(S)$, $r + J(R) \mapsto \theta(r) + J(S)$, is an isomorphism:

$$
\begin{array}{ccc}
R & \xrightarrow{\theta} & S \\
\eta_R \downarrow & & \downarrow \eta_S \\
R/J(R) & \xrightarrow{\bar{\theta}} & S/J(S).
\end{array}
$$

It induces the commutative diagram with $\bar{\theta}'$ an isomorphism:

$$
\begin{array}{ccc}
R[t] & \xrightarrow{\theta'} & S[t] \\
\eta'_R \downarrow & & \downarrow \eta'_S \\
R/J(R)[t] & \xrightarrow{\bar{\theta}'} & S/J(S)[t].
\end{array}
$$

Let $h'(t) \in S[t]$ be a monic polynomial of degree n. Then there exists a monic polynomial $h(t) \in R[t]$ of degree n such that $\theta'(h(t)) = h'(t)$. Since R is an n-SRC ring, there exists an SRC factorization $h(t) = h_0(t)h_1(t)$ in $R[t]$. Let $\theta'(h_i(t)) = h_i'(t)$, $i = 0, 1$. Then $h'(t) = h_0'(t)h_1'(t)$ with $h_i'(t) = \theta'(h_i(t)) \in U(S)$. By the commutativity of the second diagram, $\bar{\theta}' \eta'_R(h_i(t)) = \eta'_S(h_i'(t))$ for $i = 0, 1$. Because $\bar{\theta}'$ is an isomorphism and $\gcd(\eta'_R(h_0(t)), \eta'_R(h_1(t))) = 1$, we get $\gcd(\eta'_S(h_0'(t)), \eta'_S(h_1'(t))) = 1$. So $\theta'(t) = h_0'(t)h_1'(t)$ is an SRC factorization in $S[t]$. Hence S is an n-SRC ring. □

For a ring epimorphism $\theta : R \rightarrow S$, S being an n-SRC does not imply that R is an n-SRC. For example, let $\theta : \mathbb{Z}(p) \rightarrow \mathbb{Z}_p$ be the natural ring epimorphism. Then $\mathbb{M}_n(\mathbb{Z}(p))$ is not strongly clean for any $n > 1$ by [5, Corollary 1.9]. So $\mathbb{Z}(p)$ is not an n-SRC ring by Lemma 2.2, but \mathbb{Z}_p is certainly an n-SRC.

Let R be a commutative ring. For $f(x) = a_0 + a_1x + \cdots + a_nx^n$ and $g(x) = b_0 + b_1x + \cdots + b_mx^m$ in $R[x]$, the $(n + m) \times (n + m)$ determinant

$$
\mathfrak{R}(f, g) = \begin{vmatrix}
a_n & a_{n-1} & \cdots & a_0 & \cdots & a_0 \\
a_n & a_{n-1} & \cdots & a_0 & \cdots & a_0 \\
\vdots & \ddots & \ddots & \ddots & \ddots & \ddots \\
b_m & b_{m-1} & \cdots & b_0 & \cdots & b_0 \\
b_m & b_{m-1} & \cdots & b_0 & \cdots & b_0 \\
\vdots & \ddots & \ddots & \ddots & \ddots & \ddots \\
b_m & b_{m-1} & \cdots & b_0 & \cdots & b_0
\end{vmatrix}
\begin{array}{c}
m \\
\end{array}
\begin{array}{c}
n \\
\end{array}
$$

is called the resultant of $f(x)$ and $g(x)$ (see [4] or [12]).

Lemma 2.4 [4, Lemma 2, p. 321]. Let E be an algebraically closed field. Let $f(x) = a_0 + a_1x + \cdots + a_nx^n(a^n \neq 0)$, and $g(x) = b_0 + b_1x + \cdots + b_mx^m(b_m \neq 0)$ be two polynomials in $E[x]$ such that $f(\alpha_i) = 0$ and $g(\beta_j) = 0$ where α_i and $\beta_j \in E$ for $i = 1, 2, \ldots, n$ and $j = 1, 2, \ldots, m$. Then $\mathfrak{R}(f, g) = a_0^n\mathfrak{R}(\alpha_1, \alpha_2, \ldots, \alpha_n) = b_m^n\mathfrak{R}(\beta_1, \beta_2, \ldots, \beta_m)$.

Lemma 2.5. Let R be a commutative local ring, $\eta_R : R \rightarrow \frac{R}{J(R)}$ be the natural ring homomorphism, $A = (r_{ij}) \in \mathbb{M}_n(R)$, and $\overline{A} = (\overline{r}_{ij}) \in \mathbb{M}_n\left(\frac{R}{J(R)}\right)$. Then det $A \in U(R)$ if and only if det $\overline{A} \neq 0$.

Proof. This is [12, I.D.8, p. 26]. □

Theorem 2.6. Let R be a commutative local ring and let $n \geq 1$. Then R is an n-SRC ring if and only if so is $R[[x]]$.

Proof. “\Rightarrow”. Clearly $R[[x]]$ is a commutative local ring with $J(R[[x]]) = J(R) + xR[[x]]$. Define $\theta : R[[x]] \rightarrow R$ by $\theta(\sum_{i \geq 0} r_i x^i) = r_0$, and $\overline{\theta} : \frac{R[[x]]}{J(R[[x]])} \rightarrow \frac{R}{J(R)}$ by $\overline{\theta}(r + J(R[[x]])) = \theta(r + J(R)) = r + J(R)$, $r \in R$. Then θ is an epimorphism, $\overline{\theta}$ is an isomorphism, and the following diagram is commutative:

$$
\begin{array}{ccc}
R[[x]] & \xrightarrow{\theta} & R \\
\eta_{R[[x]]} & & \eta_R \\
\frac{R[[x]]}{J(R[[x]])} & \xrightarrow{\overline{\theta}} & \frac{R}{J(R)}.
\end{array}
$$

And it induces the commutative diagram

$$
\begin{array}{ccc}
R[[x]][t] & \xrightarrow{\theta'} & R[t] \\
\eta'_{R[[x]]} & & \eta_R' \\
\frac{R[[x]]}{J(R[[x]])}[t] & \xrightarrow{\overline{\theta}'} & \frac{R}{J(R)}[t]
\end{array}
$$

with $\overline{\theta}'$ an isomorphism. Let $h(t) = t^n + \sum_{i=0}^{n-1} f_i t^i \in R[[x]][t]$ with $f_i = \sum_{j \geq 0} r_{ij} x^j \in R[[x]]$.

Case I. If $h(0) \in U(R[[x]])$, then let $h_0(t) = h(t)$, $h_1(t) = 1$; and if $h(1) \in U(R[[x]])$, then let $h_0(t) = 1$, $h_1(t) = h(t)$. In either case, $h(t)$ has a trivial SRC factorization in $R[[x]][t]$.

Case II. If $h(0) = f_0 \in J(R[[x]])$ and $h(1) = 1 + \sum_{i=0}^{n-1} f_i \in J(R[[x]])$, then $r_{00} \in J(R)$ and $1 + \sum_{i=0}^{n-1} r_{i0} t^i$, $h'(0) = r_{00} \in J(R)$, and $h'(1) = 1 + \sum_{i=0}^{n-1} r_{i0} \in J(R)$. Since R is n-SRC, there exist $h'_0(t) = t^k + \sum_{i=0}^{k-1} a_{0i} t^i$ and $h'_1(t) = t^{n-k} + \sum_{i=0}^{n-k-1} b_{0i} t^i$ in $R[t]$ such that $h'_0(0) \in U(R)$, $h'_1(1) \in U(R)$, $\gcd(\eta'_R(b'_0(t)), \eta'_R(h'_1(t))) = 1$, and $h'(t) = h'_0(t) h'_1(t)$. Let $h_0(t) = t^k + \sum_{i=0}^{k-1} A_i t^i \in R[[x]][t]$ with $A_i = \sum_{j \geq 0} a_{ij} x^j$, and $h_1(t) = t^{n-k} + \sum_{i=0}^{n-k-1} B_i t^i \in R[[x]][t]$ with $B_i = \sum_{j \geq 0} b_{ij} x^j$.

We next prove that there exist A_i, $B_j \in R[[x]]$ ($i = 0, \ldots, k-1$ and $j = 0, \ldots, n-k-1$) such that $h(t) = h_0(t) h_1(t)$. We notice that

$$
h(t) = h_0(t) h_1(t)
\Leftrightarrow t^n + \sum_{i=0}^{n-1} r_{i0} t^i + \sum_{i=0}^{\infty} r_{ij} t^i x^j
\Leftrightarrow t^k + \sum_{i=0}^{k-1} a_{0i} t^i + \sum_{i=0}^{\infty} a_{ij} t^i x^j
\times t^{n-k} + \sum_{i=0}^{n-k-1} b_{0i} t^i + \sum_{i=0}^{\infty} b_{ij} t^i x^j
\Leftrightarrow \text{the conditions (P}_0\text{) and (P}_m\text{) hold for all m } \in \mathbb{N},$$
\[(P_0): \left(t^k + \sum_{i=0}^{k-1} a_i t^i \right) \left(t^{n-k} + \sum_{i=0}^{n-k-1} b_i t^i \right) = t^n + \sum_{i=0}^{n-1} r_i t^i, \]

\[(P_m): \left(t^k + \sum_{i=0}^{k-1} a_i t^i \right) \left(\sum_{i=0}^{n-k-1} b_{im} t^i \right) + \sum_{j=1}^{m-1} \left(\sum_{i=0}^{k-1} a_{ij} t^i \right) \left(\sum_{i=0}^{n-k-1} b_{i,m-j} t^i \right) = \sum_{i=0}^{n-1} r_{im} t^i. \]

Notice that by the choice of \(h_0(t) \) and \(h_1(t) \), \((P_0) \) holds for suitable \(a_{i0} \) (0 \(\leq i \leq k-1 \)) and \(b_{i0} \) (0 \(\leq i \leq n-k-1 \)). Assume that for \(s \geq 1 \), there exist \(a_{ij} \) (0 \(\leq i \leq k-1 \), 0 \(\leq j \leq s-1 \)) and \(b_{ij} \) (0 \(\leq i \leq n-k-1 \), 0 \(\leq j \leq s-1 \)) in \(R \) such that \((P_m) \) hold for all \(m = 0, 1, \ldots, s-1 \). We next show that there exist \(a_{is} \) (0 \(\leq i \leq k-1 \)) and \(b_{js} \) (0 \(\leq j \leq n-k-1 \)) in \(R \) such that \((P_s) \) holds. Note that \((P_s) \) is equivalent to

\[(*) \quad \left(t^k + \sum_{i=0}^{k-1} a_i t^i \right) \left(\sum_{i=0}^{n-k-1} b_{is} t^i \right) + \sum_{j=1}^{s-1} \left(\sum_{i=0}^{k-1} a_{ij} t^i \right) \left(\sum_{i=0}^{n-k-1} b_{i,s-j} t^i \right) = \sum_{i=0}^{n-1} r_{is} t^i, \]

where all \(r_{is} \) are known elements of \(R \). Thus \((*) \) is equivalent to:

\[(**) \quad \begin{align*}
&b_{n-k-1,s} + a_{k-1,s} = r'_{n-1,s}, \\
&a_{k-1,0} b_{n-k-1,s} + b_{n-k-2,s} + b_{n-k-1,0} a_{k-1,s} + a_{k-2,s} = r'_{n-2,s}, \\
&\vdots \\
&a_{00} b_{1s} + a_{10} b_{0s} + b_{10} a_{0s} + b_{00} a_{1s} = r'_{1s}, \\
&a_{00} b_{0s} + b_{00} a_{0s} = r'_{0s}.
\end{align*} \]

As a linear system in variables \(a_{is} \) (0 \(\leq i \leq k-1 \)) and \(b_{js} \) (0 \(\leq j \leq n-k-1 \)), the matrix form of \((**) \) is \(A X = B \) where

\[
A^T = \begin{pmatrix}
1 & b_{n-k-1,0} & \cdots & \cdots & b_{00} \\
1 & b_{n-k-1,0} & \cdots & \cdots & b_{00} \\
\vdots & \ddots & \ddots & \ddots & \ddots \\
1 & a_{k-1,0} & \cdots & \cdots & a_{00} \\
1 & a_{k-1,0} & \cdots & \cdots & a_{00} \\
\vdots & \ddots & \ddots & \ddots & \ddots \\
1 & a_{k-1,0} & \cdots & \cdots & a_{00}
\end{pmatrix},
\]

\[
X^T = \begin{pmatrix}
a_{k-1,s} & a_{k-2,s} & \cdots & a_{0s} & b_{n-k-1,s} & b_{n-k-2,s} & \cdots & b_{0s}
\end{pmatrix}.
\]
A commutative local ring is called Henselian if \(R[x] \) satisfies Hensel’s lemma [1,13], i.e., for any monic polynomial \(f(x) \in R[x] \), if \(\overline{f}(x) = \overline{g}(x)\overline{h}(x) \) with \(\overline{g}(x), \overline{h}(x) \in \frac{R}{\mathfrak{m}(R)}[x] \) monic and coprime, then there exist monic polynomials \(g(x) \) and \(h(x) \) in \(R[x] \) such that \(f(x) = g(x)h(x) \), \(\overline{f'(x)} = \overline{g'(x)} = \overline{h'(x)} \). Hence matrix rings over Henselian rings are strongly clean.

Example 2.8. If \(R \) is Henselian and \(m, s, n_1, \ldots, n_s \in \mathbb{N} \), then \(\mathbb{M}_n(R[[x_1, x_2, \ldots, x_s]]) \) are strongly clean. The conclusion holds, in particular, for \(R \) any complete local ring such as a field or \(\mathbb{Z}_p \), for any prime \(p \).
It was proved in [6] that for a commutative local ring R, $\mathbb{M}_2(R)$ is strongly clean if and only if so is $\mathbb{M}_2(RC_2)$. Next, we extend this result from 2 to an arbitrary positive integer n. The methods used here depend on the fact that the group is cyclic of order two. Let $n \geq 2$ be an integer and let G be a cyclic group of order greater than two. It is unknown when $\mathbb{M}_n(RG)$ is strongly clean (even if R is a commutative local ring).

Theorem 2.9. Let R be a commutative local ring with $2 \in U(R)$ or $\text{char } R = 2$. Then $\mathbb{M}_n(R)$ is strongly clean if and only if so is $\mathbb{M}_n(RC_2)$.

Proof. “\Leftarrow” holds because $\mathbb{M}_n(R)$ is an image of $\mathbb{M}_n(RC_2)$.

“\Rightarrow”. If $2 \in U(R)$, then $RC_2 \cong R \times R$ by [5, Lemma 11]. So we have $\mathbb{M}_n(RC_2) \cong \mathbb{M}_n(R) \oplus \mathbb{M}_n(R)$ is strongly clean.

Now assume that $\text{char } R = 2$. Then RC_2 is commutative local. We can assume $n \geq 2$. Write $C_2 = \{1, g\}$ and let $f(x) = x^n + \sum_{i=0}^{n-1}(r_i + r'_i)g x^i \in (RC_2)[x]$ such that $f(0) = r_0 + r'_0g \in J(RC_2)$ and $f(1) = 1 + \sum_{i=0}^{n-1}(r_i + r'_i)g \in J(RC_2)$. Let $\omega : RC_2 \to R$, $a + bg \mapsto a + b$, be the augmentation map. As in the proof of Theorem 2.6, we have two commutative diagrams with $\bar{\omega}$ and $\bar{\omega}'$ isomorphisms:

$$
\begin{array}{ccc}
RC_2 & \xrightarrow{\omega} & R \\
\eta_{RC_2} \downarrow & & \downarrow \eta_R \\
\frac{RC_2}{J(RC_2)} & \xrightarrow{\bar{\omega}} & \frac{R}{J(R)}, \\
\end{array}
$$

$$
\begin{array}{ccc}
RC_2[x] & \xrightarrow{\omega'} & R[x] \\
\eta'_{RC_2} \downarrow & & \downarrow \eta'_R \\
\frac{RC_2}{J(RC_2)}[x] & \xrightarrow{\bar{\omega}'} & \frac{R}{J(R)}[x]. \\
\end{array}
$$

Since $\mathbb{M}_n(R)$ is strongly clean, $f'(x) := \omega'(f(x)) = x^n + \sum_{i=0}^{n-1}(r_i + r'_i)x^i$ has a non-trivial SRC factorization $f'(x) = f'_0(x)f'_1(x)$ in $R[x]$. Write $f'_0(x) = a_0 + a_1x + \cdots + a_{m-1}x^{m-1} + x^m$ and $f'_1(x) = b_0 + b_1x + \cdots + b_{n-m-1}x^{n-m-1} + x^{n-m}$ where $1 \leq m < n$. Next we show that there exist $y_i, z_i \in R$ ($i = 0, \ldots, m - 1, j = 0, \ldots, n - m - 1$) such that

$$
\begin{align*}
f_0(x) &= x^m + \sum_{i=0}^{m-1}[y_i + (a_i - y_i)g]x^i, \\
f_1(x) &= x^{n-m} + \sum_{i=0}^{n-m-1}[z_i + (b_i - z_i)g]x^i, \\
f(x) &= f_0(x)f_1(x). \\
\end{align*}
$$

(2.2)

The equality $f(x) = f_0(x)f_1(x)$ is equivalent to

$$
\begin{align*}
x^n + \sum_{i=0}^{n-1}r_ix^i &= \left(x^m + \sum_{i=0}^{m-1}y_ix^i\right)\left(x^{n-m} + \sum_{i=0}^{n-m-1}z_ix^i\right) \\
&\quad + \left[\sum_{i=0}^{m-1}(a_i - y_i)x^i\right]\left[\sum_{i=0}^{n-m-1}(b_i - z_i)x^i\right], \\
&= \left[x^m + \sum_{i=0}^{m-1}y_ix^i\right]\left[x^{n-m} + \sum_{i=0}^{n-m-1}z_ix^i\right]. \\
\end{align*}
$$

(2.3)
\[
\sum_{i=0}^{n-1} r'_i x^i = \left(x^m + \sum_{i=0}^{m-1} y_i x^i \right) \left[\sum_{i=0}^{n-m-1} (b_i - z_i) x^i \right] \\
+ \left(x^{n-m} + \sum_{i=0}^{m-1} z_i x^i \right) \left[\sum_{i=0}^{m-1} (a_i - y_i) x^i \right].
\]

Clearly, the second equality of (2.3) follows from \(f'(x) = f'_0(x) f'_1(x) \) and from the first equality of (2.3). So it suffices to show that there exist \(y_i, z_j \in R \) \((i = 0, \ldots, m - 1, j = 0, \ldots, n - m - 1)\) that make the first equality of (2.3) hold. The first equality of (2.3) is equivalent to

\[
\begin{align*}
\sum y_0 z_0 + (a_0 - y_0)(b_0 - z_0) &= r_0, \\
y_0 z_1 + y_1 z_0 + (a_0 - y_0)(b_1 - z_1) + (a_1 - y_1)(b_0 - z_0) &= r_1, \\
& \vdots \\
y_m - 2 + y_{m-1} z_{m-1} + z_{m-2} + (a_{m-1} - y_{m-1})(b_{n-1} - z_{m-1}) &= r_{n-2}, \\
y_{m-1} + z_{m-1} &= r_{n-1},
\end{align*}
\]

which, since \(\text{char}(R) = 2 \), is equivalent to

\[
\begin{align*}
c_0 &:= r_0 + a_0 b_0 = a_0 z_0 + b_0 y_0, \\
c_1 &:= r_1 + a_0 b_1 + a_1 b_0 = a_1 z_0 + a_0 z_1 + b_1 y_0 + b_0 y_1, \\
& \vdots \\
c_{n-2} &:= r_{n-2} + a_{m-1} b_{n-1} = z_{m-2} + a_{m-1} z_{m-1}, \\
& + y_{m-2} + b_{n-1} y_{m-1}, \\
c_{n-1} &:= r_{n-1} = z_{n-1} + y_{m-1}.
\end{align*}
\]

As a linear system in variables \(y_i \) \((i = 0, \ldots, m - 1)\) and \(z_i \) \((i = 0, \ldots, n - m - 1)\), the matrix form of (2.4) is

\[\begin{bmatrix}
1 \\
1 \\
1 \\
1 \\
1
\end{bmatrix}
\begin{bmatrix}
\begin{array}{ccccccc}
b_{n-1} & \cdots & \cdots & b_1 & b_0 \\
b_{n-1} & \cdots & \cdots & b_1 & b_0 \\
\vdots & & & \vdots & & & \vdots \\
1 & b_{n-1} & \cdots & \cdots & b_1 & b_0 \\
a_{m-1} & \cdots & \cdots & a_1 & a_0 \\
a_{m-1} & \cdots & \cdots & a_1 & a_0 \\
\vdots & & & \vdots & & & \vdots \\
a_{m-1} & \cdots & \cdots & a_1 & a_0 \\
1 & a_{m-1} & \cdots & \cdots & a_1 & a_0
\end{array}
\end{bmatrix}
\begin{bmatrix}
y_{m-1} \\
y_{m-2} \\
y_0 \\
z_{m-1} \\
z_{m-2} \\
z_0
\end{bmatrix}
=
\begin{bmatrix}
c_{n-1} \\
c_{n-2} \\
c_{0}
\end{bmatrix}.
\]

An argument similar to the proof of Theorem 2.6 shows that \(A \) is invertible. So \(AX = C \) is solvable. This shows the existence of the \(y_i \) and \(z_j \) such that \(f'(x) = f'_0(x) f'_1(x) \). Hence \(\mathbb{M}_n(R C_2) \) is strongly clean. \(\square \)

Proposition 2.10. Let \(R \) be a commutative local ring with \(0 \neq 2 \in J(R) \) and let \(\mathbb{M}_3(R) \) be strongly clean. If for any \(m, n \in R \) and \(u \in U(R) \), \(4x^3 - 2mx^2 + ux + n = 0 \) is solvable in \(R \), then \(\mathbb{M}_3(R C_2) \) is strongly clean.
Proof. The two diagrams in the proof of Theorem 2.9 are still valid. Let \(f(x) = (r_0 + r_0'g) + (r_1 + r_1'g)x + (r_2 + r_2'g)x^2 + x^3 \in (RC_2)[x] \) with \(f(0) = r_0 + r_0'g \in J(RC_2) \) and \(f(1) = (r_0 + r_0'g) + (r_1 + r_1'g) + (r_2 + r_2'g) + 1 \in J(RC_2) \). Then \(f'(x) = \omega'(f(x)) = (r_0 + r_0'g) + (r_1 + r_1')x + (r_2 + r_2')x^2 + x^3 \in R[x] \) with \(f'(0) = r_0 + r_0' \in J(R) \) and with \(f'(1) = (r_0 + r_0') + (r_1 + r_1') + (r_2 + r_2') + 1 \in J(R) \). Since \(\mathbb{M}_3(R) \) is strongly clean, \(f'(x) \) has a non-trivial SRC-factorization \(f'(x) = f'_0(x)f'_1(x) \) in \(R[x] \). We can assume that \(\{f'_0(x), f'_1(x)\} = \{a_0 + x, b_0 + b_1x + x^2\} \). Then

\[
\begin{align*}
 r_0 + r_0' &= a_0b_0, \\
 r_1 + r_1' &= a_0b_1 + b_0, \\
 r_2 + r_2' &= a_0 + b_0.
\end{align*}
\]

(2.5)

Next we show that there exist \(y_0, z_0, z_1 \in R \) such that \(f(x) = f_0(x)f_1(x) \) and \(f'_i(x) = \omega'(f_i(x)) \) (for \(i = 0, 1 \)), where

\[
\{f_0(x), f_1(x)\} = \left\{ [y_0 + (a_0 - y_0)g] + x, [z_0 + (b_0 - z_0)g] + [z_1 + (b_1 - z_1)g]x + x^2 \right\}.
\]

The condition \(f(x) = f_0(x)f_1(x) \) is equivalent to

\[
\begin{align*}
 r_0 &= y_0z_0 + (a_0 - y_0)(b_0 - z_0), \\
 r_1 &= y_0z_1 + (a_0 - y_0)(b_1 - z_1) + z_0, \\
 r_2 &= z_1 + y_0, \\
 r'_0 &= z_0(a_0 - y_0) + y_0(b_0 - z_0), \\
 r'_1 &= z_1(a_0 - y_0) + y_0(b_1 - z_1) + b_0 + z_0, \\
 r'_2 &= b_1 - z_1 + a_0 - y_0.
\end{align*}
\]

(2.6)

Since the first three equalities of (2.6) plus (2.5) clearly imply the last three equalities of (2.6), it suffices to show that there exist \(y_0, z_0, z_1 \in R \) such that the first three equalities of (2.6) hold true. Rewrite the first three equations of (2.6) as

\[
\begin{align*}
 2y_0z_0 - b_0y_0 - a_0z_0 &= r_0 - a_0b_0, \\
 2y_0z_1 - b_1y_0 + z_0 - a_0z_1 &= r_1 - a_0b_1, \\
 z_1 &= r_2 - y_0.
\end{align*}
\]

(2.7)

Clearly (2.7) is equivalent to

\[
\begin{align*}
 4y_0^2 - 2mz_0^2 + uy_0 + n &= 0, \\
 z_0 &= 2y_0^2 - (2r_2 - b_1 + a_0)y_0 + a_0(r_2 - b_1) + r_1, \\
 z_1 &= r_2 - y_0.
\end{align*}
\]

(2.8)

where \(m = (2r_2 + 2a_0 - b_1), u = (4a_0r_2 - 2a_0b_1 + 2r_1 - b_0 - a_0b_1 + a_0^2), \) and \(n = -a_0^2r_2 + a_0^2b_1 - a_0r_1 + a_0b_0 - r_0 \). As in (last part of) the proof of Theorem 2.6, \(b_0 - a_0b_1 + a_0^2 = \Re(f'_0(x), f'_1(x)) \in U(R) \). So \(u \in U(R) \). By hypothesis, the first equation of (2.8) is solvable for \(y_0 \) in \(R \). Hence (2.8) is solvable for \(y_0, z_0 \) and \(z_1 \) in \(R \). So \(\mathbb{M}_3(RC_2) \) is strongly clean. \(\square \)

Corollary 2.11. If \(R \) is Noetherian Henselian, then \(\mathbb{M}_3(RC_2), \mathbb{M}_3((RC_2)[x]) \), and \(\mathbb{M}_3 \left(\frac{(RC_2)[x]}{(x^2)} \right) \) are strongly clean.

Proof. We first show that \(\mathbb{M}_3(RC_2) \) is strongly clean. By Theorem 2.9 and Proposition 2.10, it suffices to show that for any \(m, n \in R \) and \(u \in U(R) \), \(h(x) = 4x^3 - 2mx^2 + ux + n \) has a root in \(R \). Let \(h'_1(x) = x + \frac{u}{4} \) and \(h'_0(x) = u \). Then \(\eta'_R(h(x)) = \eta'_R(h'_0(x))\eta'_R(h'_1(x)) \). By Hensel's Lemma [9, Theorem 7.18], there exist \(h_1(x) = x + s_3 \) and \(h_0(x) \) in \(R[x] \) such that
Let \(R \) be a ring whose prime factor rings are Artinian. Then every finite extension of \(R \) is strongly \(\pi \)-regular.

Note that, by [17], there exists a strongly \(\pi \)-regular ring \(R \) such that \(\mathbb{M}_{2}(R) \) is not strongly \(\pi \)-regular. A ring \(R \) is called right duo if every right ideal is an ideal.

Corollary 3.2. Let \(R \) be a ring whose prime factor rings are Artinian, \(G \) be a locally finite group, and \(n, k \geq 1 \). Then \(\mathbb{M}_{n}(RG) \) is strongly \(\pi \)-regular, and \(\mathbb{M}_{n}((RG)[[x]]) \) and \(\mathbb{M}_{n}((RG)[[x]]) \) are strongly clean. The conclusion holds, in particular, for \(R \) right duo and strongly \(\pi \)-regular.

Proof. Without loss of generality, we may assume that \(G \) is a finite group. Then \(\mathbb{M}_{n}(RG) \) is a finite extension of \(RG \) and \(RG \) is a finite extension of \(R \). Thus, it follows from Theorem 3.1 that \(\mathbb{M}_{n}(RG) \) is strongly \(\pi \)-regular. Moreover, \(\mathbb{M}_{n}((RG)[[x]]) \cong \mathbb{M}_{n}(RG)[[x]] \) is strongly clean by [7, Corollary 2], and \(\mathbb{M}_{n}((RG)[[x]]) \cong \mathbb{M}_{n}(RG) \) is strongly clean by [7, Corollary 4].

If \(R \) is right duo and strongly \(\pi \)-regular, then every prime factor ring of \(R \) is again right duo strongly \(\pi \)-regular, so it must be a strongly \(\pi \)-regular domain. Hence it is a field. □

Acknowledgments

The authors thank the referee for some valuable suggestions. The first author thanks Drs. A. Diesl and T. Torsey for several helpful communications regarding this work. The research was supported by NSERC Grant OGP0194196.

References

\[\eta_{R}'(h_{1}(x)) = \eta_{R}'(h_{1}'(x)), \eta_{R}'(h_{0}(x)) = \eta_{R}'(h_{0}'(x)), \text{ and } h(x) = h_{1}(x)h_{0}(x). \] So \(h(x) \) has a solution \(x = -s_{3} \in R \). Hence \(\mathbb{M}_{3}(RC_{2}) \) is strongly clean. If \(2 \in U(R) \), then \(RC_{2} \cong R \times R \), so \(\mathbb{M}_{3}((RC_{2})[[x]]) \cong \mathbb{M}_{3}(R[[x]]) \times \mathbb{M}_{3}(R[[x]]) \) is strongly clean by Theorem 2.7. If \(2 \in J(R) \), then \(RC_{2} \) is again commutative local by [14], so \(\mathbb{M}_{3}((RC_{2})[[x]]) \) is strongly clean by Theorem 2.7. Thus, \(\mathbb{M}_{3}((RC_{2})[[x]]) \) is strongly clean in either case. Hence \(\mathbb{M}_{3}((RC_{2})[[x]]) \) is strongly clean because it is an image of \(\mathbb{M}_{3}((RC_{2})[[x]]) \). □

For a commutative local ring \(R \) with \(0 \neq 2 \in J(R) \) and for \(n > 2 \), we have been unable to answer if \(\mathbb{M}_{n}(R) \) being strongly clean implies that \(\mathbb{M}_{n}(RC_{2}) \) is strongly clean.

3. Some other matrix rings

Since every strongly \(\pi \)-regular ring is strongly clean, another interesting approach would be to determine the strongly \(\pi \)-regular rings \(R \) for which the matrix rings over \(R \) are strongly clean. Let \(S \) be a ring and \(R \) be a subring of \(S \) such that they share the same identity. The ring \(S \) is called a finite extension of \(R \) if \(S \), as an \(R \)-module, is generated by a finite set \(X \) of generators.

Theorem 3.1 [11]. Let \(R \) be a ring whose prime factor rings are Artinian. Then every finite extension of \(R \) is strongly \(\pi \)-regular.