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SUMMARY

The nutritional status of an organism can greatly
impact the function andbehavior of stemandprogen-
itor cells [1]. However, the regulatory circuits that
inform these cells about the dietary environment
remain to be elucidated. Newly hatched C. elegans
larvae (L1s) halt development in ‘‘L1 arrest’’ or ‘‘L1
diapause’’ until ample food is encountered and trig-
gers stemandprogenitor cells toexit fromquiescence
[2]. The insulin/insulin-likegrowth factor signaling (IIS)
pathway plays a key role in this reactivation [3, 4],
but its site(s) of action have not been elucidated
nor have the nutrient molecule(s) that stimulate the
pathwaybeen identified. By tissue-specificallymodu-
lating the activity of its components, we demonstrate
that the IISpathwayacts in thehypodermis to regulate
nutrition-responsive reactivation of neural andmeso-
dermal progenitor cells. We identify ethanol, a likely
component of the natural Caenorhabditis habitat,
and amino acids as nutrients that synergistically
reactivate somatic progenitor cells and upregulate
expression of insulin-like genes in starved L1 larvae.
The hypodermis likely senses the availability of amino
acids because forced activation of the amino-acid-
responsiveRag-TORC1 (target of rapamycin complex
1) pathway in this tissue can also release somatic
progenitor cell quiescence in the presence of ethanol.
Finally, there appears to be crosstalk between the IIS
and Rag-TORC1 pathways because constitutive acti-
vation of the IIS pathway requires Rag to promote re-
activation. This work demonstrates that ethanol and
amino acids act as dietary cues via the IIS and Rag-
TORC1 pathways in the hypodermis to coordinately
control progenitor cell behavior.

RESULTS AND DISCUSSION

Ethanol Supplementation Is Required for Reactivating
Quiescent Somatic Progenitor Cells in daf-18 anddaf-16

Mutants
De-repression of the IIS pathway through loss of its negative reg-

ulators daf-18/PTEN and daf-16/FOXO (Figure S1A) releases
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germline stem cells and somatic progenitor cells, respectively,

from quiescence during L1 diapause [3, 4]. These findings imply

that the IIS pathway is sufficient to promote reactivation. How-

ever, C. elegans media typically contain cholesterol added

from an ethanol stock, and prior studies used nutritionally defi-

cient media containing ethanol (M9 containing 0.08% [v/v]

ethanol [3] and S basal [4]) to induce L1 arrest. Because ethanol

can be incorporated into fatty acids and amino acids during L1

diapause [5], we assessed the effects of ethanol on the failure

of daf-18 and daf-16 mutants to maintain quiescence. daf-18-

null mutants also failed to arrest germline proliferation when an-

imals were cultured for 2 days in M9 lacking ethanol (72.6% ±

13.2% [average ± SD] animals have greater than two germ cells;

n = 403), indicating that ethanol supplementation is not required

for the exit from germline quiescence. We next tested whether

ethanol alters the behavior of somatic cells, focusing on P neuro-

blasts and theMmesoblast, progenitor cells that initiate postem-

bryonic development during the L1 stage in fed animals [6]. P cell

reactivation begins with a ventral migration, whereas M initiates

with cell division, which is easily monitored using a Phlh-8::gfp

reporter [7] (Figure 1A). Wild-type animals cultured in M9 plus

ethanol maintained developmental arrest of both P and M cells

for at least 1 week. In contrast, P and M cells were reactivated

in daf-18 and daf-16 mutants cultured in these conditions (Fig-

ures 1B–1E), similar to results obtained with animals hatched in

S basal media [4] (Figures S1B and S1C). InM9 or S basal lacking

ethanol (and cholesterol), daf-18 and daf-16 mutant larvae

underwent progressive tissue degeneration, and this, as well

as the lethality associated with loss of daf-18 (Figure S1D),

restricted analysis to the behavior of the M mesoblast in daf-16

mutants. M failed to divide in daf-16 mutants cultured for

7 days in either M9 (0%; n = 500) or S basal (Figure S1C) lacking

supplementation. Furthermore, cholesterol is not a key trigger

of release from quiescence, because when daf-18 and daf-16

mutants were cultured in S basal from which cholesterol, but

not ethanol, had been omitted, both P and M blast cells became

reactivated at a frequency similar to that of L1s cultured in

complete S basal (Figures S1B and S1C).

Supplementation of M9 with glucose, an alternative carbon

and energy source, was also insufficient to reactivate P and M

cells in wild-type animals. Although glucose suppressed the

lethality of daf-18 and daf-16 mutants at least as well as ethanol

(Figure S1E), it triggered P cell migration in a much smaller per-

centage of animals (Figure 1C). Glucose was also less effective

in triggering M division in daf-18 mutants (Figure 1E). These

observations argue that ethanol does not promote blast cell
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Figure 1. Effects of Ethanol and Glucose on Reactivation of Quiescent P and M Blast Cells

(A) Schematic of early L1 behaviors of P neuroblasts and the M mesoblast. The nuclei of P neuroblasts and the M mesoblast are shown in pink and green,

respectively. Adapted from [8].

(B) Micrographs of wild-type, daf-18(e1375), and daf-16(mu86) mutant L1 larvae showing neurons (black arrows) and P neuroblasts (white arrowheads) in the

ventral nerve cord after 7, 3, and 5 days of L1 starvation, respectively, inM9 plus 0.08% (v/v) ethanol. Times reported as ‘‘X days of L1 starvation’’ indicate that the

animals were hatched and cultured in the indicatedmedium for X days following embryo isolation by alkali/bleach treatment (see the Experimental Procedures). In

wild-type animals, P cells suspend the ventral migration program and remain on the lateral surface, out of view. Reactivated P cells in daf-18(ok480) L1 larvae

apparently divide right after arriving at the ventral midline. Thus, a daf-18(e1375) animal is used here to show the migrated but undivided P cells. The scale bars

represent 5 mm.

(C) P cell reactivation after 7 days of L1 starvation in M9 plus 0.08% (v/v) ethanol or 5% (w/v) glucose. daf-18 and daf-16mutant animals used here and in (D) and

(E) contain ayIs6, an integrated array including Phlh-8::gfp, which programs nuclear localization of GFP in theM lineage [7]. Data here and in (E) are represented by

mean + SEM. *p < 0.01 for Student’s t test.

(D)Micrographs showing theM cell and its descendantsmarked by Phlh-8::gfp (arrows) in animals after 7 days of L1 starvation inM9 plus 0.08% (v/v) ethanol. The

scale bars represent 20 mm.

(E) Effects of ethanol and glucose on M cell reactivation after 7 days of L1 starvation. *p < 0.001 for Student’s t test.

See also Figure S1.
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Figure 2. IIS Pathway Activity in the Hypo-

dermis Reactivates P and M Blast Cells

(A) Effects of tissue-specific daf-18 expression on

P cell reactivation in daf-18(ok480) mutants.

Transgenic daf-18(ok480) L1 larvae were scored

for P cell reactivation after 7 days of starvation in

M9 containing 0.08% (v/v) ethanol. dpy-7, rgef-1,

myo-3, and ges-1 promoters were used to drive

daf-18 expression specific to hypodermis, neu-

rons, body wall muscle, and intestine, respec-

tively. Data are represented by mean + SEM.

Animals transformed with only the co-injection

marker Pstr-1::gfp served as a negative control.

Native indicates daf-18 expressed from its

endogenous promoter (see the Supplemental

Experimental Procedures). *p < 0.01 for Student’s

t test.

(B–D) Effect of constitutively active AKT-1

expression on progenitor cell quiescence. A

constitutively active form of AKT-1 was generated

by adding the avian Src myristoylation sequence

to the AKT-1 N terminus (Myr-akt-1) as was done

for mouse AKT, targeting the protein to the mem-

brane and resulting in its activation [9]. Pdpy-7::gfp

was used for negative controls. Transgenic L1

larvae were scored for the presence (+) or absence

(�) of blast cell reactivation and molting after

5 days of starvation in M9 containing 0.08% (v/v)

ethanol. (B) dpy-7, rgef-1, and pgp-1 promoters

were used to drive Myr-akt-1 expression in the

hypodermis, neurons, or intestine, respectively.

Data are presented as the mean. (C) Effect of hy-

podermal Myr-akt-1 expression on reactivation of

P and M blast cells scored in the same individuals.

Phlh-8::gfp was present to allow visualization of

theM lineage. Data are presented asmean + SEM.

(D) Micrographs of starved L1 animals expressing

Phlh-8::gfp and either Pdpy-7::gfp (control, upper

panels) or Pdpy-7::Myr-akt-1::gfp (lower panels) in

the hypodermis. White arrows indicate the M cell

(upper right) or its descendants (lower right). Black

arrow (bottom left) indicates L1 cuticle in the pro-

cess of being shed. The scale bars represent

20 mm.

(E and F) daf-2 activity in the hypodermis controls

initiation of L1 development. daf-2(e979); Phlh-

8::gfp animals with or without an extrachromosomal array that expresses Pdpy-7::daf-2(+)::venus in the hypodermis and Ppgp-1::mCherry in the intestine were

cultured at 25.5�C forR48 hr after egg-laying. DAF-2(+)::VENUSwas not visible in most animals with mCherry expression, probably due to low expression levels.

The daf-2a isoform was used to provide wild-type daf-2 activity [10]. (E) Percentage of animals with (+mCherry; n = 56) or without (�mCherry; n = 43) the daf-2(+)

array that arrested in the L1 stage. All animals scored as ‘‘L1 arrest’’ lacked reactivation of P andM and failed tomolt (judged by the presence of L1-specific cuticle

containing alae). (F) Micrographs showing that hypodermal daf-2(+) expression restoresM reactivation. The L1 larva (topworm) lacks the daf-2(+)::venus array (no

intestinal mCherry expression) and has an undivided M cell (arrow). In contrast, the bottom worm contains the daf-2(+) array (mCherry+), has molted to the L2

stage, and has a pair of migrating sex myoblasts (arrowheads). The scale bars represent 50 mm.

See also Figure S2.
reactivation simply by supporting survival of daf-18 and daf-16

mutants; rather, they suggest that metabolite(s) derived from

ethanol and glucose act synergistically with activation of the

IIS pathway to stimulate the release of P and M cells from

quiescence.

Hypodermal Activation of the IIS Pathway Reactivates
Somatic Progenitor Cells, but Not Germline Stem Cells
An important unanswered question is which cell(s) or tissue(s)

require IIS pathway components to properly control stem and

progenitor cell quiescence. To address this issue, we expressed
Current Biology 25, 12
daf-18(+) from tissue-specific promoters and scored for restored

P cell quiescence in daf-18mutants. daf-18 expression driven by

its native promoter or the hypodermal-specific dpy-7 promoter

effectively rescued the P cell reactivation defect (Figure 2A).

In contrast, neuronal and intestinal expression resulted in a

reduced ability to rescue, and muscle expression had no signif-

icant effect.

To confirm that the hypodermis plays a key role in the control

of P cell reactivation, we forced hypodermal activation of the IIS

pathway by modulating AKT-1, a kinase that inhibits DAF-16/

FOXO downstream of DAF-2, the worm insulin receptor (IR)
41–1248, May 4, 2015 ª2015 Elsevier Ltd All rights reserved 1243



(Figure S1A). A constitutively active form of AKT-1 expressed as

a gfp fusion (Myr-akt-1::gfp; see Figure 2 legend) from the dpy-7

promoter efficiently triggered P cell migration in wild-type ani-

mals in an ethanol-dependentmanner (Figure 2B). In contrast, in-

testinal or neuronal expression ofMyr-akt-1::gfp had little, if any,

effect on quiescence. Hypodermal Myr-akt-1::gfp expression

also triggered M cell division and execution of the L1 molt in

some animals (Figures 2B–2D). However, there was not com-

plete release from diapause in these animals. The germline

stem cells, Z2 and Z3, and the somatic gonad progenitors, Z1

and Z4, remained quiescent even in animals that had molted

into L2-stage larvae (n = 46).

P Cell Activation of AKT-1 Is Incapable of Promoting
Reactivation
The dpy-7 promoter used is active in the main body hypodermis

(hyp7), P cells of the ventral hypodermis, and small hypodermal

syncytia of the head and tail, indicating that IIS pathway activity

in one ormore of these cell types likely regulates the decision be-

tween L1 quiescence and initiation of blast cell development.

Among the animals expressing Myr-akt-1::gfp from the dpy-7

promoter were two animals that retained the array in P cells on

one side of the animal, but not the other. In these animals, only

the P cells on the side that retained the array migrated (Fig-

ure S2A), raising the possibility that Myr-akt-1 activity in P cells

might cell autonomously contribute to neuroblast reactivation.

However, both P andM cells remained quiescent in nearly all an-

imals expressing Myr-akt-1::gfp in at least 10 of 12 P cells, but

not other hypodermal cells, from a hlh-3::pes-10 hybrid promoter

[8] (P cells, 93.9%, n = 33; M cells, 100%, n = 30; Figure S2B),

and none of these animals was observed to molt. These results

suggest that both P and M cells require IIS pathway activation

in hypodermal cells outside of the P lineage for their exit from

quiescence, and they imply that the hypodermis communicates

with P neuroblasts via an IIS-independent pathway.

Hypodermal daf-2 Activity Controls Reactivation of
P and M
Because receptor tyrosine kinases other than the insulin recep-

tor can also antagonize DAF-18/PTEN and activate akt kinases, it

was important to test whether daf-2/IR is required to regulate

progenitor cell reactivation. Inactivation of DAF-2/IR as well

as impaired secretion of insulin-like peptides causes L1 stage

developmental arrest even under replete conditions [4, 11, 12].

However, the developmental status of stem and progenitor cells

in these arrested animals has not been reported. To test directly

whether DAF-2/IR is required for reactivation, we hatched wild-

type and daf-2(e979ts) embryos at the nonpermissive tempera-

ture (25.5�C) and cultured them for 48 hr in the presence of

food (see the Experimental Procedures). All wild-type animals

(n = 107) grew into L4 larvae or fertile young adults with functional

vulvae and apparently normal locomotion, reflecting normal P

cell and germline development. In contrast, daf-2 mutants ar-

rested as L1s, with quiescent P, Z1/Z4, and Z2/Z3 cells (n =

117). In addition, all daf-2(e979); Phlh-8::gfp animals examined

failed to activate M cell division when grown in replete conditions

(n = 43). These observations indicate that IIS pathway activity is

necessary to reactivate P, M, and Z1/Z4 progenitor cells as well

as germline stem cells.
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We next asked whether hypodermal activity of daf-2 promotes

P and M cell reactivation, using the dpy-7 promoter to express

daf-2(+)::venus in daf-2(e979); Phlh-8::gfp animals. When these

animals were hatched and cultured for 48 hr in the presence of

food at 25.5�C, more than half of the transgenic animals grew

beyond the L1 stage (Figure 2E). The animals ranged in stage

from L2 to adult and had multiple M cell descendants and vulval

development (if mid-L3 stage or later), indicating that M and P

progenitor cells exited from quiescence (Figure 2F; data not

shown). Thus, activity of the IIS pathway in the hypodermis plays

an instructive role in reactivating P and M cells.

Cell-Autonomous Activation of M Cell Division Does Not
Trigger P Cell Migration
M reactivation is not solely controlled by IIS pathway activity in

the hypodermis. Expression of Myr-akt-1::mcherry in M cell-

autonomously initiated its division, and this was significantly

enhanced by the presence of ethanol (Figures S2C and S2D).

This result is in contrast to Myr-akt-1 expression in P and sug-

gests that regulation of M and P differs. However, M expression

of Myr-akt-1 failed to activate P cell migration, division of Z1/Z4

and Z2/Z3, or molting (0%; n = 111), suggesting that IIS activity

can control M cell quiescence in both cell-autonomous and non-

autonomous manners but that M cell activation of the pathway is

insufficient to release other cells from L1 arrest.

Ethanol and Amino Acids Are Sufficient to Reactivate
Somatic Progenitor Cells
One downstream target of the IIS pathway in mammals is

mTORC1, a protein complex whose characteristic components

are the serine/threonine kinase mTOR (mammalian or mecha-

nistic TOR) and its cofactor Raptor [13]. In addition to being insu-

lin and IGF-1 responsive, the kinase activity of mTORC1 is also

stimulated by amino acids via Rag GTPases [13] (Figure S1A).

mTOR, Raptor, and Rag orthologs are present in C. elegans,

prompting us to test whether amino acids contribute to the

release of stem and progenitor cell quiescence.

Wild-type L1 larvae were hatched and cultured in M9 contain-

ing ethanol, amino acids, or both, and several lineages were

examined for initiation of development. Ethanol alone triggered

division of stem-cell-like hypodermal blast cells known as

seam cells (63% ± 3%; n > 100), but other lineages including

P, M, Z1/Z4, and Z2/Z3 remained developmentally arrested (Fig-

ure 3A). Supplementation with amino acids alone was even less

effective and failed to initiate postembryonic development in

any lineage examined. However, when wild-type animals were

cultured in M9 containing ethanol plus amino acids, the P, M,

and Z1/Z4 lineages were released from developmental arrest

in most animals and the majority molted to become L2 larvae

(Figures 3A and 3B). Consistently, lin-4 miRNA, which accumu-

lates in the mid-to-late L1 stage of fed animals [14], was also

dramatically upregulated by these nutrients (Figure 3C). Z2/Z3

rarely became reactivated in the presence of ethanol and amino

acids, possibly reflecting the requirement for another nutrient

(Figures 3A and 3B).

Interestingly, the combinations of events observed in individual

animals (Figure 3B) suggest that release from developmental ar-

rest occurs in a strict order: P, M, molting and Z1/Z4, and finally,

Z2/Z3, because the latter events were usually accompanied by
All rights reserved
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Figure 3. Ethanol and Amino Acids Can

Activate Multiple L1 Developmental Events

(A and B) The percent of larvae that have initiated

reactivation of the indicated stem and progenitor

cells or molting are shown. Data are presented by

mean ± SEM. (A) Wild-type animals were hatched

and cultured for 1 week in M9 alone or containing

the indicated supplements (see the Experimental

Procedures) and scored for the noted events.

EtOH, ethanol; AA, amino acids. (B) Animals

transgenic for Phlh-8::gfp were hatched and

cultured for 1 week in M9 plus EtOH and amino

acids and then scored for initiation of the indicated

events. The combinations of events observed are

indicated underneath the percentage of animals

having those combinations. For example, P cells

had migrated in 81% of the animals, and of these,

67% also had a divided M cell.

(C) Relative abundance of lin-4 miRNA after

7 days of L1 starvation in indicated media was

determined using a TaqMan microRNA assay

(Life Technologies) with the small nucleolar

RNA sn2841 as an internal control. Although

variability in the magnitude of lin-4 miRNA

expression was observed between biological

replicates, the increase seen in EtOH plus AAs

was always >2,000-fold. Data are presented as

mean ± SD.

(D) ins genes whose expression was induced in

newly hatched L1 larvae cultured in M9 plus EtOH

and/or AA are shown. Total RNA was prepared

from wild-type animals after 4 days of L1 starva-

tion in the indicated conditions. The y axis of each

graph indicates the relative abundance of tran-

script levels determined by qRT-PCR using three

independent biological samples indicated by the

circle, triangle, and square (see the Experimental

Procedures), with a horizontal bar to indicate the

mean. Because the y axis differs between graphs,

a dotted line is included in each to indicate 2-fold.

*The mean expression in test culture relative to M9

alone is more than 2-fold higher, and p < 0.05 for a paired t test. Note that the mean expression of ins-4 and ins-33 in animals cultured in ethanol plus amino acids

relative to M9 alone was always more than 2-fold higher but was not judged to be statistically significant due to the deviation.

See also Figure S3.
the former. Similarly, reactivation of P, M, andmolting apparently

also occurs in this order in animals expressing Myr-akt-1::gfp in

the hypodermis (Figure 2C; data not shown). These observations

suggest the existence of amechanism that regulates the order of

stem and progenitor cell activation.

Ethanol and Amino Acids Can Activate Expression of
Insulin-like Peptides
To release somatic lineages fromquiescence, ethanol and amino

acids act, at least in part, by altering the expression of insulin-like

peptide genes. Either ethanol or amino acids alone was sufficient

to increase daf-28, ins-5, ins-12, ins-16, ins-24, ins-26, ins-30,

and ins-36 message levels in starved L1s, whereas in contrast,

ins-4, ins-11, ins-25, ins-28, ins-29, and ins-33 were additively

or synergistically induced by these components (Figures 3D

and S3). Strikingly, five ins genes induced by the combination

of amino acids and ethanol (daf-28, ins-4, ins-5, ins-26, and

ins-33) are also induced when L1s feed on E. coli [15], and two

(daf-28 and ins-4) can triggerM cell division when overexpressed

under nutritionally poor conditions [16], further supporting the
Current Biology 25, 12
notion that ethanol and amino acids reactivate progenitor cells

at least partly via the IIS pathway.

Amino Acid Signaling in the Hypodermis Reactivates
both P and M Blast Cells
The observation that both amino acids and hypodermal activa-

tion of the IIS pathway have similar effects on reactivation of

somatic progenitor cells in the presence of ethanol suggests

that the hypodermis plays a direct role in sensing amino acids.

To test this hypothesis, we focused on two GTPases, Rag, which

mediates amino acid signaling that converges on the IIS pathway

via mTORC1, and Rheb, which relays the activation of the IIS

pathway to mTORC1 (Figure S1A) [13].

Rag GTPases can be divided into two subfamilies, one con-

taining orthologs of mammalian RagA and RagB and the other

composed of RagC and RagD orthologs, and are known to act

as obligate heterodimers, consisting of one member of each

subfamily [13]. Cell culture studies suggest that constitutively

active forms of RagA/B and Rheb remain GTP-bound, whereas

activated RagC/D proteins are restricted to GDP-bound
41–1248, May 4, 2015 ª2015 Elsevier Ltd All rights reserved 1245
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Figure 4. Hypodermal Activation of Rag

Genes Reactivates Quiescent P and M Blast

Cells

(A) Effects of tissue-specific expression of

constitutively active forms of rag and rheb genes

(raga-1GTP, ragc-1GDP, and rheb-1GTP) on P cell

reactivation after 5-day L1 starvation. The super-

scriptWT indicates awild-type version of the gene.

A transgenic line carrying both Pdpy-7::gfp and

Pdpy-7::mCherry was used as a control. dpy-7,

rgef-1, and pgp-1 promoters were used to drive

rheb-1, raga-1, and ragc-1 expression in the

hypodermis, neurons, and intestine, respectively.

Data here and in (C)–(E) are represented by

mean ± SEM.

(B) Hypodermal activation of Rag genes can re-

activate the M cell. Pdpy-7::mCherry serves as a

control and does not reactivateM,which ismarked

by Phlh-8::gfp (arrow, upper panel). In contrast, M

has divided in an animal expressing constitutively

activated raga-1 and ragc-1 as mCherry fusions

from the dpy-7 promoter (arrows, bottom panel)

but has not divided in siblings lacking these

fusions. Photographs and data were taken after

5 days of L1 starvation. The scale bars represent

20 mm.

(C) Quantification of P and M blast cell reactivation

(+) or its absence (�) in animals expressing the

indicated transgenes in the hypodermis.

(D) P cell reactivation caused by constitutively

active Rag genes is dependent on let-363/TOR

and daf-15/RAPTOR. Animals transgenic for

hypodermally expressed raga-1GTP and ragc-1GDP

were grown on bacteria expressing dsRNA for let-

363 or daf-15, or carrying an empty L4440 vector

(‘‘mock’’), and their F2 embryos were used for the

phenotypic analysis (see the Experimental Pro-

cedures). *p < 0.01 for Student’s t test.

(E) Ectopic reactivation of P and M cells in daf-18(ok480) and daf-16(mu86) animals is suppressed by loss-of-function mutations of the Rag genes. Phenotypes

were scored after 7 days of L1 starvation. All strains carried Phlh-8::gfp.

(F) Model for the nutrient-dependent reactivation of P and M blast cells. Ethanol and amino acids upregulate expression of a subset of ins genes, resulting in

activation of the IIS pathway in the hypodermis. Amino acids also likely activate the RAGA-1/RAGC-1 complex in the hypodermis. Stimulation of both the IIS

pathway and Rag might lead to full activation of TORC1, similar to observations in mammalian studies [19]. Hypodermal activation of the IIS and Rag-TORC1

pathways eventually signals to P andM blast cells to trigger their exit from developmental quiescence.mir-235 acts in the hypodermis to suppress reactivation of

P andM blast cells, partly through its target nhr-91 [8]. Expression ofmir-235 is upregulated partly by daf-16 and downregulated by feeding via daf-2, suggesting

that mir-235 acts downstream of the IIS pathway. However, whether TORC1 is also involved in regulation of mir-235 and nhr-91 remains to be investigated.

Reactivation of P neuroblasts almost always precedes that of the M cell, implying a temporal order to these processes and perhaps communication from P to M.

akt-1 activity within P cells may contribute to their reactivation, concomitant with its activation in the hypodermis surrounding these progenitor cells (Figure S2A).

BecauseMyr-akt-1 can reactivateM cell autonomously (Figures S2C and S2D), insulin-like ligandsmay also directly stimulate this blast cell. Dashed lines indicate

proposed interactions.
conformations. Expression of these activated proteins can over-

come the inhibition of mTORC1 activity caused by amino acid

starvation [17–19]. C. elegans has one member of each subfam-

ily, raga-1 [20] and ragc-1 [21], and a single Rheb homolog,

rheb-1 [22]. We tested whether activated versions of these pro-

teins could substitute for amino acids and reactivate blast cells in

L1 larvae hatched and cultured in M9 plus ethanol. When ex-

pressed together in the hypodermis, RAGA-1GTP, RAGC-1GDP,

and RHEB-1GTP triggered P cell migration, whereas their

neuronal or intestinal expression did not (Figure 4A). When

assayed singly, only RAGA-1GTP significantly stimulated P cell

development. Activated Rag was required to release P cells

from quiescence, because the P cells failed tomigrate in animals

expressing wild-type Rag transgenes.
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P cell migration in animals expressing RAGA-1GTP and

RAGC-1GDP in the hypodermis was significantly suppressed by

RNAi against either let-363/TOR or daf-15/RAPTOR (Figure 4D),

suggesting that TORC1 acts downstream of the Rag genes to

control this process. Because mammalian Rag proteins directly

activate mTORC1 in response to extracellular amino acids [19],

the C. elegans hypodermis might directly monitor amino acids

levels in the body fluids to control progenitor cell reactivation.

Hypodermal expression of the activated Rag genes also

caused M cell division (Figures 4B and 4C), and all animals

with a divided M cell contained migrated P cells, as was

observed for Myr-akt-1 expression. Neither Z2/Z3 nor Z1/Z4

exited from quiescence when the three activated GTPases

were co-expressed in the hypodermis, intestine, or neurons
All rights reserved



(0%; n > 100 animals), supporting the idea that quiescence of

reproductive organ progenitors (the germline and somatic

gonad) is regulated in a manner distinct from that of P and M

blast cells. Expression of the activated Rag genes in M failed

to release P, M, Z1/Z4, and Z2/Z3 from quiescence (one of 107

animals had a dividedM cell), further supporting a role for the hy-

podermis in amino acid sensing.

mTORC1 is hyperactivated in PTEN-deficient mouse cells [23].

Thus, in daf-18/PTEN mutant worms, activation of let-363/TOR

maycontribute to failure to inhibit reactivation of somatic progen-

itor cells during L1 diapause, as observed for germline stem cells

[21]. Consistentwith this idea,mutation of either raga-1 or ragc-1,

whose mammalian orthologs are essential for full activation of

mTORC1 [18, 19], suppressed the reactivation of P and M blast

cells in starved daf-18 mutants (Figure 4E). C. elegans daf-16/

FOXO negatively regulates daf-15/RAPTOR [24], raising the pos-

sibility that activation of TORC1 may also contribute to the so-

matic defects of daf-16 mutant animals. Indeed, loss of the Rag

genes completely suppressed the failure to maintain P and M

blast cell quiescence in daf-16 mutants (Figure 4E).

Our study reveals that amino acids and IIS pathway activation

promote release of somatic progenitor cell quiescence via

TORC1 activity (Figure 4F). A key finding is that the hypodermis

plays a central role in mediating both signaling from insulin-like

ligands and sensing of amino acids to regulate nutrient-respon-

sive quiescence in P and M blast cells. Recent work has also

implicated the intestine as an important tissue in control of

diapause release; monomethyl branched fatty acids promote

postembryonic development via TORC1 activity in this tissue

[25–27]. Because both the hypodermis and intestine accumulate

lipid droplets [28], fatty acid and lipidmetabolismmight be tightly

associated with regulation of progenitor cell quiescence by the

IIS and TORC1 pathways. Thus, it will be important in future

studies to investigate the relationship between the hypodermis

and intestine in monitoring the dietary environments. In mam-

mals, the growth-promoting role of the IIS pathway has long

been known [29], but whether and how this pathway affects

the behavioral changes in stem and progenitor cells in response

to dietary conditions remain to be investigated. Given that many

components of the IIS pathway are conserved between

C. elegans and mammals [30], further dissection of L1 diapause

release in the nematode should help guide our understanding of

nutritional regulation of mammalian stem and progenitor cell

behaviors.

EXPERIMENTAL PROCEDURES

Assessing Viability and Progression of L1 Development

Sterile embryos were prepared as described [21] and incubated in 10ml sterile

M9 containing 0.08% (v/v) ethanol, 5% (w/v) glucose, and/or 13 amino acids

as indicated at 20�Cwith 30 rpm rotation. Larvae were continuously cultured in

the same media and assessed for survival or initiation of L1 developmental

events. The 53 amino acid stock solution contained 1.179 g L-arginine HCl,

0.283 g L-histidine, 1.283 g L-lysine$HCl, 0.184 g L-tryptophan, 0.389 g

L-methionine, 0.717 g L-threonine, 1.439 g L-leucine, 0.861 g L-isoleucine,

1.020 g L-valine, and 0.623 g L-phenylalanine per 100 ml dH2O. The amino

acid ratios were based on C. elegans Maintenance Medium [31], but the con-

centrations were doubled to achieve robust induction of L1 development.

Viability was assessed as described [21].

For experiments using temperature-sensitive daf-2(e979), wild-type or

daf-2 mutant embryos were obtained by growing L4 hermaphrodites
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into adults on seeded NGM plates at 25.5�C for 24 hr. Embryos were

transferred to a fresh plate, maintained at 25.5�C, and scored 24 hr later.

A significant percentage (53.7%; n = 201) of daf-2(e979) embryos failed to

hatch as previously described [11]. Hatched L1 larvae were transferred

onto a fresh plate and scored for L1 arrest 48 hr later. All arrested L1s

examined had unmigrated P cells (n = 117). For rescue experiments (Figures

2E and 2F), daf-2 mutant L4 hermaphrodites carrying the daf-2(+) array

were placed on seeded NGM plates and cultured at 25.5�C. After 24 hr,

the resulting adults were removed, and their hatched progeny were scored

48 hr later.

Real-Time qPCR Analysis

Starved L1 larvae were prepared frommultiple 10-cm plates as described [21],

mixed together, and divided equally for culture in each buffer condition. Total

RNA was prepared after vortexing worms with acid-washed glass beads

(425–600 mm; Sigma) in RNAiso plus as directed (Takara).

For quantitation of relative abundance of ins transcripts, cDNA was

synthesized using a High-Capacity cDNA Reverse Transcription Kit (Applied

Biosystems). Real-time qPCR was performed using a sybr Fast qPCR Kit

(KapaBiosystems) on a StepOnePlus Real-Time PCR System (Applied Bio-

systems), according to the manufacturer’s instructions except that the total

reaction volume was reduced to 10 ml. Each reaction contained cDNAs

derived from approximately 30 ng total RNA. Relative transcript levels were

determined by the comparative Ct method using act-1 as an endogenous

control. Relative abundance of lin-4 was determined by the relative standard

curve method according to the manufacturer’s ‘‘Guide to Performing Relative

Quantitation of Gene Expression Using Real-Time Quantitative PCR’’ (Applied

Biosystems).

Statistical Analysis

Statistical analyses were carried out usingMicrosoft Excel software. All exper-

iments were repeated at least three times, and R35 animals were scored per

sample in each experiment unless otherwise indicated.

RNAi Experiments

RNAi was conducted by feeding [32], except that the plates contained a 43

peptone concentration. For preparation of L1 larvae, 25 gravid young

YB1639 adults were placed on a 10-cm RNAi plate seeded with HT115

E. coli harboring the L4440 vector (control) or vectors targeting let-363

or daf-15 [21]. After about 4 days, gravid F1 progeny were treated by the

Alkali/bleach method to prepare sterilized F2 animals for phenotypic

analysis.
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