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The present study aimed to evaluate the effect of methyl-b-cyclodextrin (MbCD) as a cholesterol loader to
change oocyte plasma membrane and increase its tolerance toward cryopreservation. The first and sec-
ond experiments were conducted to investigate if MbCD could improve nuclear and cytoplasmic matu-
ration after oocyte exposure to cold stress for 10 or 30 min, respectively. No differences (P > 0.05) in
either experiment in the metaphase II (MII) rate of oocytes exposed to MbCD and cold stress; but these
oocytes presented lower maturation rates than control groups. In the second experiment, a lower per-
centage of oocytes showed degenerated chromatin (P < 0.05) after exposure to 2 mg/mL of MbCD com-
pared to the group exposed to 0 mg/mL. However, no differences among treatments were observed in
cytoplasmic maturation. Groups exposed to cold stress demonstrated a lower (P < 0.05) capacity for
embryonic development compared to the control groups. In the third experiment immature oocytes were
exposed to MbCD and then, vitrified (cryotop). After warming, we observed that the ability to reach MII
and chromatin degeneration were altered (P < 0.05) by MbCD. The blastocysts rate (P < 0.05) on D7 was
higher in the 2 mg/mL MbCD group, but an identical finding was not observed on D8 (P > 0.05). Chroma-
tin degeneration was higher in the vitrification groups. We conclude that MbCD improved nuclear mat-
uration by reducing oocyte degeneration after cold stress or vitrification; however, more studies are
required to clarify the usefulness of MbCD use in oocyte cryopreservation.

� 2012 Elsevier Inc. Open access under the Elsevier OA license. 
Introduction

The ability to preserve the female gamete is becoming an inte-
gral part of assisted reproductive techniques (ARTs) as it increases
the availability of oocytes for use in such techniques. Successful
cryopreservation of the oocyte would allow for the preservation
of genetic resources of farm and wild animals as well as the pres-
ervation of gametes of women with premature loss of ovarian
function. However, because of their large size and marked sensitiv-
ity to cooling, the cryopreservation of oocytes is very difficult in
most mammals.

Up to now, the standard method used to cryopreserve mamma-
lian oocytes has been slow freezing, which includes slow cooling
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rates and low concentrations of cryoprotectants agents. Vitrifica-
tion, which uses rapid cooling rates and a very high concentration
of cryoprotectants to prevent the formation of ice crystals, usually
replaces slow freezing. This method has been utilized in several
species of domestic animals, such as sheep [7], horses [34], cats
[16] and cattle [21,33]. However, the overall success of the oocytes
in developing to the blastocyst stage is still very low.

Multiple attempts have been made for improving the efficiency
of oocyte vitrification by maximizing the cooling rate and minimiz-
ing the cryoprotectant concentration. One approach for achieving a
rapid cooling rate is to reduce the volume of the vitrification solu-
tion. In this regard, various methods have been proposed, initially
MDS was developed by Arav in 1992 [28], and then many other de-
vices were developed such as Open Pulled Straw (OPS) [35], cryo-
loop [13], hemi-straw [37] and cryotop [12]. Among these
methods, cryotop uses a very small amount of vitrification solution
and is reportedly more practical and efficient for cryopreserving
bovine oocytes [21,22]. Even with the advantages of the cryotop
method compared to others, the results obtained with vitrification
of bovine oocytes remain unsatisfactory [5,19,21,22,42].

The cell damage that occurs during cryopreservation is caused
by several factors, such as osmotic stress, toxicity of the
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cryoprotectants used, formation of ice crystals with consequent
damage to cellular organelles [29] and direct chilling injury
(DCI). Chilling injuries trigger the destabilization of cell mem-
branes during the thermotropic phase transition from the fluid
phase to the gel phase during the cooling process, which is consid-
ered one of the major obstacles to the success of cryopreservation
of oocytes [3,27].

Irreversible damage to membrane integrity caused by chilling
during the lipid phase transition is directly related to the quantity
of lipids present [3]. Cholesterol is a major structural lipid constit-
uent of the membrane and regulates its function. Therefore, the
cholesterol/phospholipid ratio is a vital determinant of plasma
membrane fluidity and stability during cryopreservation [10].
Membranes with high concentrations of cholesterol are more fluid
at low temperatures and consequently more resistant to damage
during cooling [40,41]. To increase membrane fluidity and perme-
ability at low temperatures, cholesterol can be added to the plasma
membrane, thereby providing an alternative method for increasing
oocyte tolerance for cryopreservation.

Cyclodextrins can act as carrier molecules for the incorporation
of cholesterol into plasma membranes [1,10,25]. Cyclodextrins are
water-soluble cyclic oligosaccharides consisting of glucose units
(a-D-glucopyranoside) joined by connections typea-1,4 that con-
tain a hydrophobic center capable of integrating lipids. Due to its
structure, free cyclodextrin can selectively deplete cholesterol
from isolated or intact membranes from a variety of cells, including
spermatozoa and oocytes [23], whereas cyclodextrins preloaded
with cholesterol deliver cholesterol to the plasma membrane.
Therefore, this simple approach can be used prior to cryopreserva-
tion to change the membrane composition and minimize mem-
brane damage.

Methyl-b-cyclodextrin (MbCD) is the most potent cyclodextrin
family member with respect to its affinity for cholesterol binding.
Moreover, it was showed that cholesterol improve bovine [1,25]
and equine [20] sperm viability after cryopreservation [23].

One study demonstrated that cholesterol carried by cyclodex-
trin entered cumulus cells and oocytes, which improved the sur-
vival of vitrified mature bovine oocytes [10]. No further studies
have investigated this simple approach to reduce oocyte cold
sensitivity.

In the present study, we used MbCD to load cholesterol from fe-
tal calf serum (FCS) and deliver it to the oocyte plasma membrane.
The purpose of this study was to investigate the effect of MbCD
exposure on the in vitro maturation rates and developmental abil-
ity of cold-stressed as well as vitrified immature bovine oocytes.
Materials and methods

Chemicals and supplies

Unless otherwise indicated, chemicals were purchased from
Sigma (St. Louis, MO, USA). Cryotop devices were purchased from
Ingámed (Maringá, PR, Brazil).
Oocyte recovery

Ovaries from crossbred cows (Bos indicus � Bos taurus) were
collected immediately after slaughter and transported to the labo-
ratory in saline solution (0.9% NaCl) supplemented with penicillin
G (100 IU/mL) and streptomycin sulfate (100 g/mL) at 35 �C.
Cumulus oocyte complexes (COCs) were aspirated from 3- to
8-mm diameter follicles with an 18-gauge needle and pooled in a
15-mL conical tube. After 10 min, COCs were recovered and
selected in holding medium consisted by HEPES-buffered TCM-
199 (GIBCO� BRL) supplemented with 10% FCS. Only COCs with
homogenous cytoplasm and at least three layers of cumulus cells
were used in the experiments.

Cholesterol-loaded methyl-b-cyclodextrin (MbCD) preparation

In a glass tube, a stock solution (SS) with 1 g of methyl-b-cyclo-
dextrin was dissolved in 2 mL of methanol and stored at �20 �C
[10]. To load cholesterol from FCS, the SS was diluted with different
concentrations (1, 2 or 3 mg) of MbCD in 1 mL of HEPES-buffered
TCM-199 (GIBCO� BRL) supplemented with 20% FCS. The solution
was incubated overnight at 38.5 �C.

Vitrification and warming

Oocyte vitrification was performed as previously described [12]
with slight modifications. The holding medium (HM), which was
used to handle oocytes during vitrification and warming, was com-
posed of HEPES-buffered TCM-199 (GIBCO� BRL) supplemented
with 20% FCS. For vitrification, groups were first washed three
times in an equilibrium solution composed of 7.5% ethylene glycol
and 7.5% dimethylsulfoxide (Me2SO) dissolved in HM for a total of
9 min. Oocytes were transferred to a vitrification solution of 15%
ethylene glycol, 15% Me2SO and 0.5 M of sucrose in HM where they
were incubated for 45–60 s. Next, the oocytes were placed into the
cryotop device in sets of 3–5 under a stereomicroscope. Before vit-
rification, most of the solution that was transferred with the oo-
cytes was removed from the device, and only a thin layer
(<0.1 ll) remained to cover the oocytes. Subsequently, the cryotop
device was immediately submerged into liquid nitrogen. Warming
was performed immediately after vitrification by immersing the
cryotop end into a drop of HM supplemented with 1 M of sucrose
for 1 min pre-warmed at 37 �C. The oocytes were transferred to
HM medium supplemented with 0.5 M of sucrose for 3 min,
respectively, and finally to the original holding medium. After-
wards, the oocytes were placed in the culture dishes to mature
or were fixed for maturational stage evaluation.

Oocyte maturation and assessment of meiotic progression

After warming, COCs were washed and transferred (groups of
25–30) to a 200 lL drop of maturation medium under silicone oil
and incubated for 22 h at 39 �C in 5% CO2 in air. The maturation
medium was TCM-199 supplemented with 10% FCS (v/v), 10 mg/
mL of FSH and antibiotics (100 IU/mL of penicillin and 50 mg/mL
of streptomycin). CCOs were distributed into 4 groups, each group
represented one maturation period. The first one was fixed imme-
diately after selection, before IVM; the second group was fixed
with 8 h of IVM; the third was fixed 22 h of IVM and the fourth
group completed IVM period and was fixed with 24 h of IVM.

For meiotic progression evaluation, oocytes were denuded and
fixed for at least 48 h with acetic alcohol (1:3). On the day of the
evaluation, these oocytes were placed on a slide, covered with a
coverslip and were stained with 1% lacmoid in 45% glacial acetic
acid. The maturational stage of each oocyte was determined using
phase contrast microscopy. Oocytes were classified as follows:
immature – did not reach metaphase II; mature – showed meta-
phase II plate; abnormal – any chromosomal aberrations (diploid,
abnormal metaphase II, multidirectional spindle, chromosomal
dispersion); degenerate – diffuse or undefined chromatin.

In vitro fertilization (IVF) and embryo culture (IVC)

Following maturation, COCs (groups of 25–30) were transferred
to a 200-lL drop of fertilization medium. For fertilization, frozen
semen from a Nelore bull previously tested in the lab for IVF was
used. Motile spermatozoa were obtained by the Percoll method
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[18] and were added to droplets containing COCs at a final concen-
tration of 1 � 106 spermatozoa mL�1. The fertilization medium was
TALP [24] supplemented with penicillamine (2 mM), hypotaurine
(1 mM), epinephrine (250 mM) and heparin (10 lg/mL�1). Sperma-
tozoa and oocytes were co-incubated for 18 h at 39 �C with 5% CO2

in air, and the day of in vitro insemination was considered as day 0.
Eighteen hours post insemination (pi), presumptive zygotes

were washed, transferred to 200-lmL drops of synthetic oviduct
fluid medium with amino acids, citrate and inositol (SOFaaci; [9]
supplemented with 5% FCS. This medium was incubated at 39 �C
with 5% CO2 in air.

Embryos were evaluated on day 2 pi for cleavage and on days 6,
7 and 8 pi for blastocyst rates.

Assessment of fertilization rate

To evaluate the fertilization rate, oocytes were removed from
culture 18 h pi, fixed with acetic acid: alcohol (1:3), and stained
with a 1% solution of lacmoid in 45% glacial acetic acid. Cells were
examined under a phase contrast microscope (Nikon Eclipse E200,
1000�) and classified as either (a) non fertilized – presence of fe-
male and absence of male chromatin; (b) fertilized – presence of
female and sperm chromatin in the cytoplasm, decondensed sperm
head, pronuclei or cleaved; (c) degenerated; or (d) abnormal.

Experimental design

Experiment 1. The effects of different MbCD concentrations on
the in vitro maturation and development of immature bovine oo-
cytes submitted to cold stress for 10 min.

In this experiment, a total of 1452 COCs were distributed into
six treatments (T) as follows: (T1) control: untreated COCs; (T2)
0 MbCD: COCs were incubated for 1 h without MbCD and exposed
to 4 �C for 10 min; (T3) 1 MbCD: COCs were incubated for 1 h in the
presence of 1 mg/mL of MbCD and exposed to 4 �C for 10 min; (T4)
2 MbCD: COCs were incubated for 1 h in the presence of 2 mg/mL
of MbCD and exposed to 4 �C for 10 min; (T5) 3 MbCD: COCs were
incubated for 1 h in the presence of 3 mg/mL of MbCD and exposed
to 4 �C for 10 min; (T6) bench control: COCs remained at room
temperature for the same amount of time as the treated groups.
Following all treatments, oocytes were transferred to maturation
medium.

After maturation, oocytes were either fixed for evaluation of nu-
clear staining or fertilized in vitro for culturing until the blastocyst
stage. For all treatments embryos were evaluated on D2, D6, D7
and D8 pi to determine cleavage and blastocyst rates.

Experiment 2. The effects of MbCD on the response of bovine
immature oocytes to longer durations of cold stress.

We found in experiment 1 that there were no differences among
the groups treated with the various concentrations of MbCD. Thus,
we decided to expose oocytes to 2 mg/mL of MbCD for longer stints
of cold stress. A total of 966 COCs were distributed into three treat-
ments as follows: (T1) control: after selection, COCs were immedi-
ately washed; (T2) 0 MbCD: COCs were incubated for 1 h without
MbCD and exposed to 4 �C for 30 min; (T3) 2 MbCD: COCs were
incubated for 1 h in the presence of 2 mg/mL of MbCD and exposed
to 4 �C for 30 min. Following all treatments, oocytes were trans-
ferred to maturation medium.

After maturation, oocytes were either fixed for evaluation of nu-
clear staining or fertilized in vitro for culturing until the blastocyst
stage. For all treatments, embryos were evaluated on D2, D6, D7
and D8 pi to determine cleavage and blastocyst rates.

Experiment 3. Developmental capacity of vitrified immature
oocytes exposed to MbCD prior to vitrification

To evaluate the effect of MbCD exposure prior to vitrification in
immature bovine oocytes, COCs were distributed into four
treatments as follows: (T1) control group: after selection, COCs
were immediately washed; (T2) vitrified exposed to MbCD: COCs
were incubated for 1 h in the presence of 2 mg/mL of MbCD, vitri-
fied and warmed; (T3) vitrified not exposed to MbCD: COCs were
incubated for 1 h without MbCD, vitrified and warmed; (T4) bench
control: COCs remained at room temperature during the time COC
from T2 and T3 were manipulated. Following all treatments, oo-
cytes were transferred to maturation medium.

After maturation, oocytes were either fixed for evaluation of nu-
clear staining or fertilized in vitro for culturing until the blastocyst
stage. For all treatments, embryos were evaluated on D2, D6, D7
and D8 pi to determine cleavage and blastocyst rates.

To evaluate fertilization rates, a group of oocytes were removed
from culture at 18 h pi, fixed, stained and examined by phase con-
trast microscopy.

Statistical analysis

Data were analyzed by Chi-square testing with a significance le-
vel of 5% (P < 0.05).
Results

Experiment 1

Table 1 shows nuclear maturation rates of bovine immature oo-
cytes exposed to different concentrations of MbCD and submitted
to cold stress for 10 min. A lower percentage (P < 0.05) of oocytes
(all groups) exposed to cold stress reached MII after 24 h of matu-
ration compared to control and bench control groups. The oocytes
that remained on the bench while the groups were submitted to
cold stress showed a similar nuclear maturation rate (P > 0.05) rel-
ative to the control group but had a higher percentage of abnormal
chromatin (P > 0.05). Although cold stress increased the percentage
of oocytes with degenerated chromatin, exposure to MbCD pro-
tected oocytes from degeneration (P > 0.05) (Table 1).

Embryo development, on D7 and D8, showed no difference
(P > 0.05) between oocytes in the control and bench control group
(Table 2). Both percentages were higher (P < 0.05) than those ob-
served for the groups exposed to cold stress and different concen-
trations of MbCD.

Experiment 2

To evaluate the protective effect of MbCD, the time of the cold
stress was increased from 10 to 30 min, after the treatment with
2 mg mL�1. Only one concentration of MbCD was used. Data on nu-
clear maturation and embryo development are presented in Tables
3 and 4. No differences (P > 0.05) in the percentages of immature
oocytes were observed among groups. However, a higher percent-
age of oocytes reached MII in the control group (P < 0.05) relative
to the treated groups. The exposure of oocytes to MbCD decreased
the percentage of oocytes that degenerated due to cold stress.
Regardless, oocytes exposed to MbCD and submitted to cold stress
for 30 min had lower (P < 0.05) cleavage and blastocyst rates than
the control group.

Experiment 3

The results are depicted in Tables 5–7. Vitrification and expo-
sure to MbCD altered the percentage of oocytes that reached MII
and the percentage of degenerated oocytes after in vitro matura-
tion (Table 5). Oocytes vitrified after exposing to 2 mg of MbCD
showed higher percentages (P < 0.05) of MII oocytes and lower
(P < 0.05) rates of degeneration compared to unexposed cells



Table 1
Effect of methyl-b-cyclodextrin (MbCD) on the nuclear maturation of bovine immature oocytes exposed to cold stress (CS) for 10 min at 4�C.

Oocyte treatment N Stages of meiosis

Immature n (%) Metaphase II n (%) Abnormal n (%) Degenerate n (%)

Control 102 12 (11.7)b 78 (76.4)a 5 (4.9)a 7 (6.8)a

0 mg/ml MbCD + CS 114 2 (1.7)a 33 (28.9)b 18 (15.7)b,c 61 (53.5)c

1 mg/ml MbCD + CS 98 7 (7.1)a,b 35 (35.7)b 23 (23.4)b,c,d 33 (33.6)b

2 mg/ml MbCD + CS 97 5 (5.1)a 37 (38.1)b 25 (25.7)c,d 30 (30.9)b

3 mg/ml MbCD + CS 92 6 (6.5)a,b 27 (29.3)b 25 (27.1)d 34 (36.9)b

Bench control 91 7 (7.6)b 58 (63.7)a 13 (14.2)b 13 (14.2)a

a,b,c,d Values with different superscripts in the same column are significantly different (P < 0.05).

Table 2
Cleavage and blastocyst rates for bovine immature oocytes exposed to different concentrations of methyl-b-cyclodextrin (MbCD) and submitted to cold stress (CS) for 10 min at
4 �C.

Oocyte treatment N Cleaved, D2 n (% ± S.D.) Blastocyst, D7 n (% ± S.D.) Blastocyst, D8 n (% ± S.D.)

Control 181 142 (78.4 ± 13.6)a 63 (34.8 ± 6.1)a 70 (38.7 ± 7.7)a

0 mg MbCD + CS 113 61 (53.9 ± 6.1)b 15 (13.3 ± 2.0)b 16 (14.2 ± 1.9)b

1 mg MbCD + CS 133 67 (50.4 ± 8.1)b 12 (9.0 ± 2.1)b,c 13 (9.8 ± 2.8)b,c

2 mg MbCD + CS 116 62 (53.4 ± 5.0)b 14 (12.1 ± 1.4)b 14 (12.1 ± 1.1)b,c

3 mg MbCD + CS 135 65 (48.1 ± 8.2)b 13 (9.6 ± 1.5)b,c 16 (11.9 ± 1.9)b,c

Bench control 126 92 (73.0 ± 2.9)a 44 (34.9 ± 3.1)a 46 (36.5 ± 3.0)a

a,b,c Values with different superscripts in the same column are significantly different (P < 0.05).

Table 3
Effect of methyl-b-cyclodextrin (MbCD) on the nuclear maturation of bovine immature oocytes exposed to cold stress (CS) for 30 min at 4 �C.

Oocyte treatment N Stages of meiosis

Immature n (%) Metaphase II n (%) Abnormal n (%) Degenerate n (%)

Control 108 18 (16.6)a 79 (73.1)a 3 (2.7)a 8 (7.4)a

0 mg/ml MbCD + CS 101 10 (9.9)a 30 (29.7)b 15 (14.8)b 46 (45.5)c

2 mg/ml MbCD + CS 103 14 (13.5)a 40 (38.8)b 21 (20.3)b 28 (27.1)b

a,b,c Values with different superscripts in the same column are significantly different (P < 0.05).

Table 4
Cleavage and blastocyst rates for bovine immature oocytes exposed to different concentrations of methyl-b-cyclodextrin (MbCD) and submitted to cold stress (CS) for 30 min at
4 �C.

Oocyte treatment N Cleaved, D2 n (% ± S.D.) Blastocysts, D7 n (% ± S.D.) Blastocyst, D8 n (% ± S.D.)

Control 226 190 (84.1 ± 10.7)a 84 (37.2 ± 4.3)a 97 (42.9 ± 4.2)a

0 mg/ml MbCD + CS 205 71 (34.6 ± 6.9)b 13 (6.3 ± 2.5)b 16 (7.8 ± 2.8)b

2 mg/ml MbCD + CS 223 74 (33.2 ± 6.8)b 20 (9.0 ± 4.1)b 20 (8.9 ± 3.7)b

a,b,c Values with different superscripts in the same column are significantly different (P < 0.05).

Table 5
Effect of MbCD on the nuclear maturation of bovine immature oocytes exposed to methyl-b-cyclodextrin (MbCD) and vitrified (Vit).

Oocyte treatment N Stages of meiosis

Immature n (%) Metaphase II n (%) Abnormal n (%) Degenerate n (%)

Control 92 2 (2.1)a 72 (78.2)a 10 (10.8)a 8 (8.6)a

0 mg/ml MbCD + Vit 78 4 (5.1)a,b 23 (29.4)c 13 (16.6)a 38 (48.7)c

2 mg/ml of MbCD + Vit 74 2 (2.7)a,b 34 (45.9)b 14 (18.9)a 24 (32.4)b

Bench control 87 8 (9.1)b 57 (65.5)a 10 (11.4)a 12 (13.7)a

a,b,c Values with different superscripts in the same column are significantly different (P < 0.05).

Table 6
Cleavage and blastocyst rates for bovine immature oocytes exposed to methyl-b-cyclodextrin (MbCD) and vitrified (Vit).

Oocyte treatment N Cleaved, D2 n (% ± S.D.) Blastocysts, D7 n (% ± S.D.) Blastocyst, D8 n (% ± S.D.)

Control 181 147 (81.2 ± 1.4)a 63 (34.8 ± 0.8)a 68 (37.5 ± 0.8)a

0 mg/ml MbCD + Vit 121 27 (22.3 ± 2.0)b 1 (0.8 ± 0.4)c 3 (2.4 ± 0.8)b

2 mg/ml MbCD + Vit 131 32 (24.4 ± 2.2)b 7 (5.3 ± 0.8)b 7 (5.3 ± 0.8)b

Bench control 183 137 (74.8 ± 2.5)a 52 (28.4 ± 1.4)a 59 (32.2 ± 1.8)a

a,b,c Values with different superscripts in the same column are significantly different (P < 0.05).
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Table 7
Fertilization rates for immature oocytes exposed to methyl-b-cyclodextrin (MbCD) and vitrified (Vit).

Oocyte treatment N Non Fertilized n (%) Fertilized n (%) Degenerated n (%) Abnormal n (%)

Control 91 14 (15.3)b 70 (76.9)a 3 (3.2)a 4 (4.3)a

0 mg/ml MbCD + Vit 88 7 (7.9)b 19 (21.5)c 45 (51.1)c 17 (19.3)b

2 mg/ml MbCD + Vit 85 1 (1.1)a 28 (32.9)c 44 (51.7c 12 (14.1)b

Bench control 95 16 (16.8)b 58 (61.0)b 16 (16.8)b 5 (5.2)a

a,b,c Values with different superscripts in the same column are significantly different (P < 0.05).
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(Table 5). The vitrification process was also detrimental to oocyte
fertilization and development in vitro (Tables 6 and 7). Regardless
of MbCD concentration, vitrified oocytes exhibited lower (P < 0.05)
cleavage and blastocyst rates than controls. Although at D8 the
blastocyst rate was similar for both groups with vitrified stress,
an increase in the blastocyst rate at D7 was observed in vitrified
oocytes that were exposed to MbCD prior to vitrification (Table 6).

When the fertilization capacity was evaluated in vitrified oo-
cytes, it was observed that the group not exposed to MbCD showed
the lowest percentage (P < 0.05) of non-fertilized oocytes at 18 h pi.
Both vitrified groups had lower rates (P < 0.05) of fertilization and
higher (P < 0.05) percentages of degenerate and abnormal chroma-
tin oocytes relative to the control groups (Table 7). Compared to
control, it was observed that the bench group presented lower
fertilization rates (P < 0.05) and higher percentages (P < 0.05) of
degenerated oocytes (Table 7).
Discussion

The main limiting factor for achieving optimal cryopreservation
of oocytes is their high sensitivity to cooling injuries. Among cellu-
lar components, the plasma membrane is usually described as one
of the most affected structures during the cryopreservation process
[3,40]. This sensitivity to cooling is determined by the membrane
phospholipid composition and membrane cholesterol: phospho-
lipid ratio [3,10,30,31,40,41]. When cholesterol is added to the cell
membrane, fluidity is more easily achieved [3], which leads to
higher resistance to cold stress. In fact, the manipulation of the
plasma membrane lipid profile by increasing the cholesterol con-
centration in sperm [1,25,26,41] and oocyte [10,30,41] membranes
has resulted in a reduction of cell damage after cryopreservation.

In the present study, we attempted to add cholesterol to the oo-
cyte plasma membrane using MbCD as a vehicle. We aimed to in-
crease the cholesterol: phospholipid rate to improve oocyte
vitrification results. For our approach, we loaded MbCD with cho-
lesterol removed from FCS by incubating it overnight in a medium
enriched with serum. After incubation, MbCD loaded with choles-
terol was added to medium containing the immature bovine oo-
cytes, which were then exposed to cold treatments and assessed
for cytoplasmic as well as nuclear viability.

In the first experiment, different concentrations of MbCD were
tested to determine if it could protect oocytes during their expo-
sure to a 4 �C cold stress for 10 min. It was very clear that this dura-
tion of exposure was sufficient to affect oocyte viability and cause a
subsequent decrease in nuclear and cytoplasmic maturation as
well as an increase in degenerated oocytes. These results were sim-
ilar to those observed by Wu et al. Wu et al. [39] who demon-
strated that storing bovine immature oocytes at 4 �C for 10 min
substantially reduced their maturation and cleavage rates. Our re-
sults also showed that short MbCD exposure did not effectively
protect oocytes against cold stress, as different concentrations
did not increase the percentage of oocytes that reached MII by
the end of the maturation period. However, it is worth mentioning
that the MbCD-treated groups displayed a reduction in oocytes
with degenerated chromatin. These results indicate that cyclodex-
trin might positively affect oocytes. Similar to nuclear maturation,
the exposure to MbCD treatments did not improve either the cleav-
age rate or blastocyst production.

To analyze whether the time of exposure to cold stress in the
first experiment was insufficient to detect the effect of MbCD, a
second experiment was designed that increased the exposure time
to cold stress from 10 to 30 min. Because no differences were ob-
served with the different concentrations of MbCD, an intermediate
concentration of 2 mg/mL was used. The amount of time of cold
stress exposure in oocytes did not seem to be the main cause of
the cold-related damage, as increasing the time did not alter the
rate of MII oocytes after IVM. Oocyte maturation was still signifi-
cantly affected, regardless of the presence of MbCD, when the tem-
perature was reduced to 4 �C even for a short period of time.
Treatment with MbCD did not protect oocytes nor improve the
maturation rates of the nucleus or cytoplasm.

Finally, we tested the effect of MbCD on oocytes prior to vitrifi-
cation. Oocytes incubated with or without cholesterol-loaded
MbCD were vitrified and subsequently matured, fertilized and cul-
tured in vitro. In this experiment, MbCD lowered the percentage of
oocytes that underwent degeneration, while a higher percentage of
oocytes reached MII stage. This beneficial effect was not observed
in our previous experiment when oocytes were exposed to 4 �C
temperature but not vitrification. It is possible that very rapid cool-
ing, such as that performed with the cryotop method, minimizes
the time spent at the critical temperature and circumvents the del-
eterious effect of cold stress. Thus, the beneficial effect of cell
membrane stabilization by MbCD could protect the oocytes’ struc-
tures, which allows them to reach metaphase II.

As expected [12,21,22,38,42], vitrification negatively affected
the developmental ability of oocytes, and no effect was observed
after the MbCD treatment in terms of cleavage and blastocyst rates.
Although Horvarth and Seidel [10] found significant differences in
cleavage and eight cell embryos when loaded MbCD was used,
these variations gradually disappeared by the blastocyst stage.

While day 8 blastocyst rates were similar among vitrified oo-
cytes, higher blastocyst rates at D7 were observed in oocytes ex-
posed to MbCD. It is well established that the speed of
development is related to embryo quality; thus, it is possible that
the quality of embryos was better. Since there was no significant
difference in D8 blastocysts rates, developmental delay indicates
a lower embryonic viability [15]. One approach to confirm the
quality of the embryos would be to perform other evaluations,
such as embryo cell counting [10], differential staining and gene
expression assays [2,7,32].

While the nuclear maturation of vitrified oocytes was improved
by MbCD, there was no change in blastocyst rate. It is difficult to
understand the full impact of this data because there is scarce
precedent in the available literature on MbCD pretreatment. How-
ever, rationales can be constructed to explain the lack of a benefi-
cial effect. One possibility is that we used a alternate approach for
loading MbCD with cholesterol by incubating it with FCS, while
previous groups used MbCD that was already loaded with choles-
terol [10]. Potentially, our FCS incubation did not effectively load
MbCD with cholesterol; thus, no cholesterol was incorporated into
the membrane. The direct isolation of cholesterol incorporation
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sites in oocytes could answer these questions. An alternative
explanation is that MbCD decreased damage to the plasma mem-
brane, possibly supported by the lower degeneration rate, but did
not prevent damage to other regions that have a higher impact on
oocyte viability.

During oocyte maturation, cytoplasmic organelles undergo vari-
ous remodeling and redistribution processes [8,36]. Vitrification has
been reported to affect some of those events. Among organelles, cor-
tical granules are seriously affected [11,21]. Normally after IVM,
cortical granules exhibit a peripheral distribution, while vitrified
oocytes display a clustered distribution. This alteration could impair
fertilization and compromise embryonic development. In addition,
studies show that cryopreservation of mouse oocytes can cause
zone hardening [14], which can also impair fertilization. To ensure
that low cleavage rates were not due to difficulties in sperm pene-
tration, we evaluated the fertilization process. The results showed
that MbCD pretreatment did not benefit vitrified oocytes compared
to vitrified oocytes without MbCD pretreatment. A majority of the
oocytes were already degenerated by the time fertilization oc-
curred. These results suggested that besides plasma membrane
other sites also important for oocyte viability can be affected by this
technique. Potential sites of damage include regions related to nu-
clear maturation and retention of the polar body [17], chromosomal
aberrations [6], multidirectional or meiotic spindle disorganization
[4,16,34], mitochondrial and cortical granules distribution, and
alterations in gene expression [2,6,7].

The results presented here suggest that more research is re-
quired to clarify whether MbCD is beneficial to the oocyte plasma
membrane as well as to determine its optimal dose and time of
exposure prior to cryopreservation. This information is vital for
optimizing the use of this procedure to improve oocyte viability
after vitrification because it can be used in association with other
substances or procedures that would protect other cell structures
from cold-related damage.

Financial support

This research was funded by CNPq, Embrapa and RAVL. CAPES
and RAVL financial supported the first and the second author,
respectively.

References

[1] E.A. Amorim, J.K. Graham, B. Spizziri, M. Meyers, C.A. Torres, Effect of
cholesterol or cholesteryl conjugates on the cryosurvival of bull sperm,
Cryobiology 58 (2009) 210–214.

[2] V.M. Anchamparuthy, A. Dhali, W.M. Lott, R.E. Pearson, F.C. Gwazdauskas,
Vitrification of bovine oocytes: implications of follicular size and sire on the
rates of embryonic development, Journal of Assisted Reproduction and
Genetics 26 (2009) 613–619.

[3] A. Arav, Y. Zeron, S.B. Leslie, E. Behboodi, G.B. Anderson, J.H. Crowe, Phase
transition temperature and chilling sensitivity of bovine oocytes, Cryobiology
33 (1996) 589–599.

[4] V. Asgari, S.M. Hosseini, S. Ostadhosseini, M. Hajian, M.H. Nasr-Esfahani, Time
dependent effect of post warming interval on microtubule organization,
meiotic status, and parthenogenetic activation of vitrified in vitro matured
sheep oocytes, Theriogenology 75 (2011) 904–910.

[5] C. Diez, P. Duque, E. Gomez, C.O. Hidalgo, C. Tamargo, A. Rodriguez, L.
Fernandez, S. de la Varga, A. Fernandez, N. Facal, M. Carbajo, Bovine oocyte
vitrification before or after meiotic arrest: effects on ultrastructure and
developmental ability, Theriogenology 64 (2005) 317–333.

[6] B. Ebrahimi, M.R. Valojerdi, P. Eftekhari-Yazdi, H. Baharvand, In vitro
maturation, apoptotic gene expression and incidence of numerical
chromosomal abnormalities following cryotop vitrification of sheep
cumulus–oocyte complexes, Journal of Assisted Reproduction and Genetics
27 (2010) 239–246.

[7] B. Ebrahimi, M.R. Valojerdi, P. Eftekhari-Yazdi, H. Baharvand, A. Farrokhi, IVM
and gene expression of sheep cumulus–oocyte complexes following different
methods of vitrification, Reproductive Biomedicine Online 20 (2010) 26–34.

[8] E.M. Ferreira, A.A. Vireque, P.R. Adona, F.V. Meirelles, R.A. Ferriani, P.A. Navarro,
Cytoplasmic maturation of bovine oocytes: structural and biochemical
modifications and acquisition of developmental competence, Theriogenology
71 (2009) 836–848.
[9] P. Holm, P.J. Booth, M.H. Schmidt, T. Greve, H. Callesen, High bovine blastocyst
development in a static in vitro production system using SOFaa medium
supplemented with sodium citrate and myo-inositol with or without serum–
proteins, Theriogenology 52 (1999) 683–700.

[10] G. Horvath, G.E. Seidel Jr., Vitrification of bovine oocytes after treatment with
cholesterol-loaded methyl-beta-cyclodextrin, Theriogenology 66 (2006)
1026–1033.

[11] P. Hyttel, G. Vajta, H. Callesen, Vitrification of bovine oocytes with the open
pulled straw method: ultrastructural consequences, Molecular Reproduction
and Development 56 (2000) 80–88.

[12] M. Kuwayama, G. Vajta, O. Kato, S.P. Leibo, Highly efficient vitrification method
for cryopreservation of human oocytes, Reproductive Biomedicine Online 11
(2005) 300–308.

[13] M. Lane, W.B. Schoolcraft, D.K. Gardner, Vitrification of mouse and human
blastocysts using a novel cryoloop container-less technique, Fertility and
Sterility 72 (1999) 1073–1078.

[14] M.G. Larman, C.B. Sheehan, D.K. Gardner, Calcium-free vitrification reduces
cryoprotectant-induced Zona pellucida hardening and increases fertilization
rates in mouse oocytes, Reproduction 131 (2006) 53–61.

[15] D. Lechniak, E. Pers-Kamczyc, P. Pawlak, Timing of the first zygotic cleavage as
a marker of developmental potential of mammalian embryos, Reproductive
Biology 8 (2008) 23–42.

[16] A.M. Luciano, S. Chigioni, V. Lodde, F. Franciosi, G.C. Luvoni, S.C. Modina, Effect
of different cryopreservation protocols on cytoskeleton and gap junction
mediated communication integrity in feline germinal vesicle stage oocytes,
Cryobiology 59 (2009) 90–95.

[17] H.S. Luna, I. Ferrari, R. Rumpf, Influence of stage of maturation of bovine
oocytes at time of vitrification on the incidence of diploid metaphase II at
completion of maturation, Animal Reproduction Science 68 (2001) 23–28.

[18] G.M. Machado, J.O. Carvalho, E.S. Filho, E.S. Caixeta, M.M. Franco, R. Rumpf,
M.A. Dode, Effect of Percoll volume, duration and force of centrifugation, on
in vitro production and sex ratio of bovine embryos, Theriogenology 71 (2009)
1289–1297.

[19] H. Men, Y. Agca, E.S. Critser, J.K. Critser, Beneficial effects of serum
supplementation during in vitro production of porcine embryos on their
ability to survive cryopreservation by open pulled straw vitrification,
Theriogenology 64 (2005) 1340–1349.

[20] A.I. Moore, E.L. Squires, J.K. Graham, Adding cholesterol to the stallion sperm
plasma membrane improves cryosurvival, Cryobiology 51 (2005) 241–249.

[21] R. Morato, D. Izquierdo, M.T. Paramio, T. Mogas, Embryo development and
structural analysis of in vitro matured bovine oocytes vitrified in flexipet
denuding pipettes, Theriogenology 70 (2008) 1536–1543.

[22] R. Morato, D. Izquierdo, M.T. Paramio, T. Mogas, Cryotops versus open-pulled
straws (OPS) as carriers for the cryopreservation of bovine oocytes: effects on
spindle and chromosome configuration and embryo development, Cryobiology
57 (2008) 137–141.

[23] Y. Nagao, Y. Ohta, H. Murakami, Y. Kato, The effects of methyl-beta-
cyclodextrin on in vitro fertilization and the subsequent development of
bovine oocytes, Zygote 18 (2010) 323–330.

[24] J.J. Parrish, A. Krogenaes, J.L. Susko-Parrish, Effect of bovine sperm separation
by either swim-up or Percoll method on success of in vitro fertilization and
early embryonic development, Theriogenology 44 (1995) 859–869.

[25] P.H. Purdy, J.K. Graham, Effect of adding cholesterol to bull sperm membranes
on sperm capacitation, the acrosome reaction, and fertility, Biology of
Reproduction 71 (2004) 522–527.

[26] P.H. Purdy, J.K. Graham, Effect of cholesterol-loaded cyclodextrin on the
cryosurvival of bull sperm, Cryobiology 48 (2004) 36–45.

[27] P.J. Quinn, I.G. White, B.R. Wirrick, The effect of dilution on the concentration
of sodium, potassium, calcium and magnesium in ram and bull spermatozoa,
Journal of Reproduction and Fertility 12 (1966) 131–138.

[28] J. Saragusty, A. Arav, Current progress in oocyte and embryo cryopreservation
by slow freezing and vitrification, Reproduction 141 (2011) 1–19.

[29] J. Saragusty, H. Gacitua, I. Rozenboim, A. Arav, Do physical forces contribute to
cryodamage?, Biotechnology and Bioengineering 104 (2009) 719–728

[30] G.E. Seidel Jr., Modifying oocytes and embryos to improve their
cryopreservation, Theriogenology 65 (2006) 228–235.

[31] G.E. Seidel Jr., Overview of sexing sperm, Theriogenology 68 (2007) 443–446.
[32] E. Siqueira Filho, E.S. Caixeta, C. Pribenszky, M. Molnar, A. Horvath, A. Harnos,

M.M. Franco, R. Rumpf, Vitrification of bovine blastocysts pretreated with
sublethal hydrostatic pressure stress: evaluation of post-thaw in vitro
development and gene expression, Reproduction, Fertility, and Development
23 (2011) 585–590.

[33] N. Sripunya, T. Somfai, Y. Inaba, T. Nagai, K. Imai, R. Parnpai, A comparison of
cryotop and solid surface vitrification methods for the cryopreservation of
in vitro matured bovine oocytes, The Journal of Reproduction and
Development 56 (2010) 176–181.

[34] T. Tharasanit, B. Colenbrander, T.A. Stout, Effect of maturation stage at
cryopreservation on post-thaw cytoskeleton quality and fertilizability of
equine oocytes, Molecular Reproduction and Development 73 (2006) 627–637.

[35] G. Vajta, P. Holm, M. Kuwayama, P.J. Booth, H. Jacobsen, T. Greve, H. Callesen,
Open pulled straw (OPS) vitrification: a new way to reduce cryoinjuries of
bovine ova and embryos, Molecular Reproduction and Development 51 (1998)
53–58.

[36] R. van den Hurk, J. Zhao, Formation of mammalian oocytes and their growth,
differentiation and maturation within ovarian follicles, Theriogenology 63
(2005) 1717–1751.



J.F.W. Sprícigo et al. / Cryobiology 65 (2012) 319–325 325
[37] P. Vanderzwalmen, G. Bertin, C. Debauche, V. Standaert, N. Bollen, E. van
Roosendaal, M. Vandervorst, R. Schoysman, N. Zech, Vitrification of human
blastocysts with the hemi-straw carrier: application of assisted hatching after
thawing, Human Reproduction 18 (2003) 1504–1511.

[38] A.D. Vieira, A. Mezzalira, D.P. Barbieri, R.C. Lehmkuhl, M.I. Rubin, G. Vajta,
Calves born after open pulled straw vitrification of immature bovine oocytes,
Cryobiology 45 (2002) 91–94.

[39] B. Wu, J. Tong, S.P. Leibo, Effects of cooling germinal vesicle-stage bovine
oocytes on meiotic spindle formation following in vitro maturation, Molecular
Reproduction and Development 54 (1999) 388–395.

[40] Y. Zeron, A. Ocheretny, O. Kedar, A. Borochov, D. Sklan, A. Arav, Seasonal
changes in bovine fertility: relation to developmental competence of oocytes,
membrane properties and fatty acid composition of follicles, Reproduction 121
(2001) 447–454.

[41] Y. Zeron, M. Tomczak, J. Crowe, A. Arav, The effect of liposomes on
thermotropic membrane phase transitions of bovine spermatozoa and
oocytes: implications for reducing chilling sensitivity, Cryobiology 45 (2002)
143–152.

[42] X.L. Zhou, A. Al Naib, D.W. Sun, P. Lonergan, Bovine oocyte vitrification using
the cryotop method: effect of cumulus cells and vitrification protocol on
survival and subsequent development, Cryobiology 61 (2010) 66–72.


	Effect of the exposure to methyl-β-cyclodextrin 
	Introduction
	Materials and methods
	Chemicals and supplies
	Oocyte recovery
	Cholesterol-loaded methyl-β-cyclodextrin (MβCD) 
	Vitrification and warming
	Oocyte maturation and assessment of meiotic progression
	In vitro fertilization (IVF) and embryo culture (IVC)
	Assessment of fertilization rate
	Experimental design
	Statistical analysis

	Results
	Experiment 1
	Experiment 2
	Experiment 3

	Discussion
	Financial support
	References


