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Abstract

In this paper we discuss some recent results on two di�erent types of growth of Lie algebras
that lead to some combinatorial problems. First, we study the growth of �nitely generated Lie
algebras (Sections 1–4). This problem leads to a study of generalized partitions. Recently the
author has suggested a series of q-dimensions of algebras Dimq; q∈N which includes, as �rst
terms, dimensions of vector spaces, Gelfand–Kirillov dimensions, and superdimensions. These
dimensions enabled us to describe the change of a growth in transition from a Lie algebra to its
universal enveloping algebra. In fact, this is a result on some generalized partitions. In this paper
we give some results on asymptotics for those generalized partitions. As a main application,
we obtain an asymptotical result for the growth of free polynilpotent �nitely generated Lie
algebras. As a corollary, we specify the asymptotic growth of lower central series ranks for
free polynilpotent �nitely generated groups. We essentially use Hilbert–Poincar�e series and some
facts on growth of complex functions which are analytic in the unit circle. By growth of such
functions we mean their growth when the variable tends to 1. Also we discuss for all levels
q=2; 3; : : : what numbers �¿ 0 can be a q-dimension of some Lie (associative) algebra. Second,
we discuss a ‘codimension growth’ for varieties of Lie algebras (Sections 5 and 6). It is useful
to consider some exponential generating functions called complexity functions. Those functions
are entire functions of a complex variable provided the varieties of Lie algebras are nontrivial.
We compute the complexity functions for some varieties. The growth of a complexity function
for an arbitrary polynilpotent variety is evaluated. Here we need to study the connection between
the growth of a fast increasing entire function and the behavior of its Taylor coe�cients. As
a result we obtain a result for the asymptotics of the codimension growth of a polynilpotent
variety of Lie algebras. Also we obtain an upper bound for a growth of an arbitrary nontrivial
variety of Lie algebras. c© 2000 Elsevier Science B.V. All rights reserved.

R�esum�e

Dans ce travail nous traitons quelques r�esultats r�ecents portant sur deux types di��erents de
croissance pour les alg�ebres de Lie, qui nous conduisent �a des probl�emes combinatoires.
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Dans un premier temps, nous �etudions la croissance des alg�ebres de Lie �niment engendr�ees (Sec-
tions 1–4). Ce prob�eme nous am�ene �a �etudier les partitions g�en�eralis�ees. R�ecemment l’auteur
avait propos�e une s�erie de q-dimensions des alg�ebres Dimq; q∈N, qui contient comme premiers
termes des dimensions d’espaces vectoriels, les dimensions de Gelfand–Kirillov et les superdi-
mensions. Ces dimensions nous ont permis de d�ecrire le changement de croissance quand on
passe d’une alg�ebre de Lie �a son alg�ebre enveloppante universelle. Dans le travail pr�esent nous
proposons une asymtotique plus pr�ecise pour les partitions g�en�eralis�ees. Comme application ma-
jeure nous obtenons une asymptotique pour la croissance des alg�ebres de Lie polynilpotentes
libres et �niment engendr�ees. Comme corollaire nous sp�eci�ons une croissance asymptotique
des rangs de la s�erie contrale descendante pour les groupes polynilpotents libres et �niment
engendr�es. On utilise �essentiellement les s�eries de Hilbert–Poincar�e et quelques �enonc�es sur la
croissance des fonctions analytiques dans le disque unit�e. La croissance d’une telle fonction
s’entend comme croissance quand la variable tend vers 1. En plus, nous discutons pour tous les
niveaux q = 2; 3; : : : quels sont les nombres �¿ 0 qui peuvent apparaître comme q-dimension
d’une alg�ebre de Lie (associative). Dans un deuxi�eme temps, nous �etudions la “croissance en
codimension” pour les vari�et�es d’alg�ebres de Lie (Sections 5 and 6). Il convient de regarder
quelques fonctions g�en�eratrices exponentielles, ici appell�es fonctions de complexit�e. Ces fonc-
tions sont des fonctions enti�eres d’une variable complexe pourvu que la vari�et�e ne soit pas
triviale. On calcule la fonction de complexit�e de plusieurs vari�et�es et on �evalue la croissance
de la fonction de complexit�e pour une vari�et�e polynilpotente quelconque. Pour cela, on a be-
soin d’�etudier la relation entre la croissance d’une fonction enti�ere rapidement croissante et le
comportement de ses co�e�cients de Taylor. On en d�eduit une asymptotique pour la croissance
en codimension d’une vari�et�e polynilpotente d’alg�ebres de Lie. En plus on obtient une borne
sup�erieure pour la croissance d’une vari�et�e nontriviale d’alg�ebres de Lie quelconque. c© 2000
Elsevier Science B.V. All rights reserved.

1. Growth of �nitely generated Lie algebras and series of dimensions

Let A be a Lie (associative) algebra over a �eld K , generated by a �nite set X .
Denote by A(X;n) subspace spanned by all monomials in X of length not exceeding n.
Denote

A(n) = A(X; n) = dimKA(X;n); �A(n) = A(n)− A(n− 1);

where dimK stands for the dimension of a vector space over K . If A is an asso-
ciative algebra with unit then we consider that this unit belongs to A(X;n); n¿0,
and A(0) = �A(0) = 1. On functions f :N → R+, where R+ = {�∈R | �¿ 0}, we
consider a partial order f(n)

a
6 g(n) i� there exists N ¿ 0, such that f(n)6g(n);

n¿N .
The growth less than any exponent is called subexponential. If it is also greater

than any polynomial growth, then it is called intermediate. For study of such growths
the following series of dimensions has been suggested [20,22]. Denote by
iteration

ln(1)n= ln n; ln(q+1)n= ln(ln(q)n); q= 1; 2; : : :
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Consider a series of functions �q
�(n); q = 1; 2; 3; : : : of a natural argument with the

parameter �∈R+:
�1�(n) = �;

�2�(n) = n�;

�3�(n) = exp(n
�=(�+1));

�q
�(n) = exp

(
n

(ln(q−3)n)1=�

)
; q= 4; 5; : : : :

(1)

Suppose that f(n) is any positive valued function of a natural argument. We de�ne
the (upper) dimension of level q; q= 1; 2; 3; : : : and the lower dimension of level q by

Dimqf(n) = inf{�∈R |f(n) a≤�q
�(n)};

Dimqf(n) = sup{�∈R |f(n) a
¿�q

�(n)}:
Suppose that A is a �nitely generated algebra with A(n) as above. We de�ne the

q-dimension (lower q-dimension), q= 1; 2; 3; : : : of A by

DimqA=DimqA(n); DimqA=DimqA(n):

q-dimensions do not depend on a generating set X . Remark that 1-dimension coincides
with the dimension of a vector space A over K . Dimensions of level 2 are exactly the
upper and lower Gelfand–Kirillov dimensions [8]. Dimensions of level 3 correspond
to the superdimensions of [5] up to normalization (see [22]). Dimensions of levels
q = 4; 5; : : : correspond to growths which are subexponential but are greater than any
function exp(n�); �¡ 1. Such growths were not known and has not been studied
until [20].

Theorem 1.1 (Petrogradsky [20,22]). Let L be a �nitely generated Lie algebra with
DimqL = �¿ 0; q = 1; 2; : : :. Also for q¿3 suppose that DimqL = � and for q = 2
suppose that Dim2�L(n) = �− 1; �¿1. Then

Dimq+1U (L) = Dimq+1U (L) = �:

In fact, this is a result on generalized partitions. If we have a sequence {bn ∈N0 | n=
1; 2; : : :}; N0 =N∪{0}, then we can obtain another sequence {an ∈N0 | n=0; 1; 2; : : :}:

∞∏
n=1

1
(1− tn)bn

=
∞∑
n=0

antn: (2)

If bn=1; n∈N, then an= �(n) is the number of partitions of n. In a general case we
obtain generalized partitions. We can illustrate their meaning by the following. an is a
number of the Young diagrams with rows of length m marked by bm colors, the order
of colors being nonessential; m∈N. In other words, an is the number of partitions

n= �1 + �1 + · · ·+ �s; �1¿�2¿ · · ·¿ls; �i ∈N;
where all numbers �i equal to m are painted into bm colors, m = 1; : : : ; n; where the
order of equal numbers of di�erent colors in our partitions we consider nonessential.
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An importance for us of this relation (2) is explained by the following fact. If we
take a �nitely generated Lie algebra L and consider its universal enveloping algebra
as generated by the same set, then two sequences bn = �L(n); n = 1; 2; : : : and an =
�U (L)(n); n= 0; 1; 2; : : : do satisfy (2) [31,33].
Let f(n) be a function of a natural argument, we will compare it with our etalon

functions (e.g. (1)). Suppose that �(n) is a function of a natural argument, which is
continuous and increasing with respect to the parameter . Let the number c∈R be
�xed. Then we introduce a notation:

f(n) ∼c �c(n)⇔ inf{ | f(n) a
6 �(n)}= c:

Now, Theorem 1.1 and some other results of [22] can be reformulated in other way.

Theorem 1.2. Suppose that two sequences {bn ∈N0 | n = 1; 2; : : :} and {an ∈N0 | n =
0; 1; 2; : : :} satisfy (2).
1. If bn = �2�−1+o(1)(n) = n�−1+o(1); then an = �3�+o(1)(n) = exp(n

�=(�+1)+o(1)).

2. If bn = �q
�+o(1)(n); q¿3; then an = �q+1

�+o(1)(n).

3. If bn ∼� �q
�(n); q¿3; then an ∼� �q+1

� (n).

In other words, we move upwards on the staircase (1).
If L is a Lie algebra then by iteration the lower central series is de�ned L1=L; Li+1=

[L; Li]; i = 1; 2; : : :. Now L is called nilpotent of class s i� Ls+1 = {0}; Ls 6= {0}. All
Lie algebras nilpotent of class s form the variety Ns. Recall that L is polynilpotent
with tuple (sq; : : : ; s2; s1) i� there exists a chain of ideals

0 = Lq+1⊂Lq ⊂ · · ·⊂L2⊂L1 = L

with Li=Li+1 ∈Nsi . All polynilpotent Lie algebras with �xed tuple form a variety de-
noted by Nsq : : :Ns2Ns1 . If M is a variety of Lie algebras then by F(M ; k) we denote
its free algebra of rank k (this is an algebra generated by k elements x1; : : : ; xk and such
that for all H ∈M and any y1; : : : ; yk ∈H there exists a homomorphism � : F → H
with �(xi) = yi; i = 1; : : : ; k). In the case sq = · · · = s1 = 1 one has the variety Aq of
solvable Lie algebras of length q. For the theory of varieties see monograph [2].

Theorem 1.3 (Petrogradsky [22]). Let L=F(Nsq : : :Ns2Ns1 ; k); q¿2 be the free poly-
nilpotent Lie algebra of rank k; k¿2. Then

DimqL=DimqL= s2 dimKF(Ns1 ; k):

Recall that for a graded algebra A =
⊕∞

n=0 An a Hilbert–Poincar�e series is de�ned
as H(A; t) =

∑∞
n=0 dimKAn tn. It is interesting when a Hilbert–Poincar�e series is the

rational function.

Corollary 1.1 (Petrogradsky [22]). The Hilbert–Poincar�e series for L=F(Nsq : : :Ns1 ; k)
is rational i� q62.
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We would like to mention one interesting result. Let Wn be the Witt algebra and
Wn=var(Wn) be the variety de�ned by all identical relations of this algebra. Asymptotic
formulae from [18] in terms of q-dimensions imply the following theorem.

Theorem 1.4 (Molev [18]). Suppose that L = F(Wn; k); k¿n + 1. Then Dim3L =
Dim3L= n.

The following hypothesis is an analogue of Theorem 5.3.

Conjecture 1. Suppose that L is a �nitely generated Lie algebra satisfying nontrivial
identity of degree d. Then (1) DimqL¡∞ for some q∈N. (2) We can take q= d.

2. Generalized partitions and growth of polynilpotent Lie algebras and groups

Let us �x some notations. By �(x) and �(x) we denote the zeta and gamma functions;
 k(n) is the dimension of elements of degree n in a free Lie algebra with k generators.
Now we obtain more precise asymptotic than those in Theorem 1.2.

Theorem 2.1 (Petrogradsky [26]). Suppose that two sequences {bn ∈N0 | n= 1; 2; : : :}
and {an ∈N0 | n=0; 1; 2; : : :} satisfy (2). Suppose that bn has one asymptotic; then an

has other asymptotic as below:

1: bn = (� + o(1)) n�−1; �¿1; an = exp((�+ o(1)) n�=(�+1));

2a: bn ∼� exp(� n�=(�+1)); an ∼� exp
(
�

n
(ln n)1=�

)
;

2b: bn = exp((� + o(1)) n�=(�+1)); an = exp
(
(� + o(1))

n
(ln n)1=�

)
;

3a: bn ∼� exp
(
�

n

(ln(s)n)1=�

)
; s¿1; an ∼� exp

(
�

n

(ln(s+1)n)1=�

)
;

3b: bn = exp
(
(� + o(1))

n

(ln(s)n)1=�

)
; s¿1;

an = exp
(
(� + o(1))

n

(ln(s+1)n)1=�

)
;

where the constants are �=(1+1=�)(��(�+1)�(�+1))1=(�+1); �= � (�=(�+1))1+1=�.

Remark. Assertion 1, as well as assertion 1 of Theorem 1.2, are versions of known
asymptotics [1,4]; but in [1] exact asymptotics for an are given, provided that on
bn stronger assumptions are imposed. The virtue of the present approach is that our
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arguments are elementary. To the best of our knowledge, assertions 2a, 2b, 3a, 3b were
not known.

Let us consider an application of this result to so called r-fold partitions of n [10] 1

A double partition (2-fold partition) of n is a representation of n as a double sum

n= �1 + · · ·+ �k ;
�1 = �11 + · · ·+ �1m1 ;
...
�k = �k1 + · · ·+ �kmk ;

where �i; �ij are positive integers; and the order of �1; : : : ; �k and �i1; : : : ; �imi ; i =
1; : : : ; k is disregarded. By iteration of this process, i.e. decomposing �ij further we can
obtain r-fold partitions, let us denote this number by �(r; n). We have �(1; n)=�(n) the
number of ordinary partitions, and, by de�nition, we consider that �(0; n) = 1; n∈N.
The following recursive relation holds [10]

1 +
∞∑
n=1

�(r; n)tn =
∞∏
m=1

1
(1− tm)�(r−1;m)

; r¿1:

By applying above theorem we obtain an asymptotic

Corollary 2.1.

�(r; n) = exp
((

�2
6
+ o(1)

)
n

ln(r−1)n

)
; r¿2:

For r=2 much more precise asymptotic is given in [10], but for r¿3 this result is
new.
Theorem 2.1 enables us to obtain asymptotics for growth of free polynilpotent Lie

algebras and groups (Table 1).

Theorem 2.2 (Petrogradsky [23,26]). Let V=Nsq · · ·Ns1 ; q¿2 be a polynilpotent va-
riety of Lie algebras. Suppose that L = F(V ; k) is its free algebra of rank k; freely
generated by X = {x1; : : : ; xk}. Then there exists an in�nitesimal such that

L(X; n) =




A+ o(1)
N !

nN ; q= 2;

exp
(
(C + o(1)) nN=(N+1)) ; q= 3;

exp
(
(B1=N + o(1))

n

(ln(q−3)n)1=N

)
; q¿4;

1 The author is grateful to V. Liskovets for this reference.
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Table 1
Asymptotics for polynilpotent varieties of Lie algebras

A�ne algebras of rank k Codimension growth

Variety Growth function Generating function Growth function Complexity function
M F(M ; k)(n) Hk (M ; z) cn(M) C(M ; z)

Polynilpotent varieties

Na dim F(Na; k)
∑a

i=1
 k (i)zi 0 =

a∑
i=1

zi

i

NbNa
A
N !n

N A
(1−z)N

bn=a(n!)
a−1
a exp( ba z

a)

N = b dim F(Na; k) A = 1
b

(
k−1∏a

q=2
q k (q)

)b

NcNbNa exp(Cn
N

N+1 ) exp
(

B
(1−z)N

)
n!·� n

(ln n)n=a
exp(2)( ba z

a)

N = b dim F(Na; k) B = cA�(N + 1) � = ( ba )
1=a

C = (1 + 1
N )(BN )

1
1+N

Nsq · · ·Ns1 exp
(

n·B1=N
(ln(q−3) n)1=N

)
exp(q−2)

(
B

(1−z)N

)
n!·� n

(ln(q−2) n)n=s1
exp(q−1)( s2s1 z

s1 )

q¿4 N = s2 dim F(Ns1 ; k) B = s3A�(N + 1) � = ( s2s1 )
1=s1

where the constants are as follows:

N = s2 dimK F(Ns1 ; k); A=
1
s2

(
k − 1∏s1
q=2 q

 k (q)

)s2

; B= s3A�(N + 1);

C =
(
1 +

1
N

)
(BN )1=(1+N ):

Remark. In Theorem 1.3 q-dimensions do not depend on the choice of the generating
set. But here the constants are valid only for the standard generating set X .

Suppose that we have a group G, denote by n(G); n = 1; 2; : : : terms of the lower
central series. Then we can construct in a standard way a Lie algebra [13]:

LK (G) =
∞⊕
n=1

(n(G)=n+1(G))⊗Z K:

If G was a free polynilpotent group, then LK (G) is the free polynilpotent Lie algebra
of the same rank and with the same tuple [30]. This allows us to derive the following.

Corollary 2.2 (Petrogradsky [26]). Let G=G(Nsq : : :Ns1 ; k); q¿2 be the free polynil-
potent group of rank k. Let n(G); n = 1; 2; : : : ; be the terms of the lower central
series.



344 V.M. Petrogradsky /Discrete Mathematics 217 (2000) 337–351

1. Suppose that bn = rank n(G)=n+1(G). Then

bn =




A+ o(1)
(N − 1)! n

N−1; q= 2;

exp((C + o(1)) nN=N+1); q= 3;

exp
(
(B1=N + o(1))

n

(ln(q−3)n)1=N

)
; q¿4;

where the constants N; A; B; C are the same as in Theorem 2:2.
2. Suppose that K is the �eld of any characteristic; � is the augmentation ideal in

K[G]; and an=dimK �n=�n+1; n=0; 1; 2; : : :. Then {an | n=0; 1; 2; : : :} do not depend
on K and

an =



exp
(
(C + o(1)) nN=(N+1)) ; q= 2;

exp
(
(B1=N + o(1))

n

(ln(q−3)n)1=N

)
; q¿3;

where N; A; B; C are computed as in Theorem 2:2 (in case q= 2 we take s3 = 1).

M.I. Kargapolov raised the problem 2.18 in [11] to describe the lower central series
ranks for a free polynilpotent �nitely generated group. Exact recursive formulae were
given in [6]. But those formulae do not give any idea about the character of the growth
of these ranks. We suggest another answer to this problem by specifying the asymptotic
behavior of these ranks. Also, Theorem 2.2 and Corollary 2.2 may be viewed as an
analogue of the Witt formula for free Lie algebras and groups. Let us recall this
formula. Suppose that L =

⊕∞
n=1 Ln is a free Lie algebra of rank k and G is a free

group of rank k, then the lower central series factors n(G)=n+1(G) are free abelian
groups and their ranks are equal to

rank n(G)=n+1(G) = dimKLn =  k(n) =
1
n

∑
a|n

ka�
(n
a

)
≈ kn

n
:

In [26] we study two kinds of p-central series for polynilpotent groups. These series
are important instruments in the recent positive solution of the Restricted Burnside
problem by Zelmanov [35]. First, we consider lower exponent p-central series

G = G1⊃G2⊃ · · · ; G1 = G; Gi+1 = (Gi; G) · Gp
i ; i∈N;

L̃(G) =
∞⊕
i=1

Gi=Gi+1; b̃n = dimFpGn=Gn+1:

the associated Lie ring L̃(G) turns out a Lie algebra over the �eld Fp of residues
modulo p. The asymptotic of b̃n di�ers to that of bn=rank n(G)=n+1(G) in the above
corollary only for q= 2, namely the degree of a polynomial increases by one.
Second, we consider lower p-central series due to Brauer, Jennings and Zassenhaus

[13]:

G = D1;p ⊃D2;p ⊃ · · · ; Dn;p = Dn;p(G) =
∏

mpj¿n

(m(G))p
j
; n∈N:
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The associated Lie ring is a Lie p-algebra over Fp (see, e.g. [19]); also let as consider
corresponding Hilbert–Poincar�e series:

LFp(G) =
∞⊕
n=1

Dn;p=Dn+1;p;

H(LFp(G); t) =
∞∑
n=1

dn tn; dn = dimFp(Dn;p=Dn+1;p); n∈N:

Here also minor changes in asymptotics happen only for q = 2. In this case we have
an interesting example of polynomially growing coe�cients dn whereas the respective
Hilbert–Poincar�e function H(LFp(G); t) is not rational.

3. Hilbert–Poincar�e series for some Lie algebras

An important step in our considerations is a study of a behaviour of a Hilbert–
Poincar�e function H(F(V ; k); t) while t → 1 − 0, where V is a free polynilpotent
variety.
Suppose that coe�cients of one series  (t)=

∑∞
n=0 antn are obtained from coe�cients

of another series �(t)=
∑∞

n=1 bntn by relation (2); in this case we write  (t)=E(�(t)).

Lemma 3.1. E(�(t)) = exp(
∑∞

m=1(1=m)�(t
m)).

In terms of E we can �nd the Hilbert–Poincar�e series of a free solvable Lie algebra.

Lemma 3.2 (Petrogradsky [26]). Let L=F(Aq; k) be the free solvable Lie algebra of
rank k. De�ne recursively functions h0(t) = kt; hi+1(t) = 1 + (hi(t)− 1)E(hi(t)); i =
1; 2; : : :. Then

H(L; t) = h0(t) + · · ·+ hq−1(t):

For some cases we can compute Hilbert–Poincar�e series explicitly.

Lemma 3.3 (Petrogradsky [22]). Let L = F(NcA; k). Denote by �(n) the M�obius
function. Then

H(L; t) = kt +
c∑

m=1

1
m

∑
a|m

�
(m
a

)(
1 +

ktm=a − 1
(1− tm=a)k

)a
;

In case of an arbitrary polynilpotent variety V we can only evaluate the growth of
H(F(V ; k); t) while t → 1− 0.
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Theorem 3.1 (Petrogradsky [26]). Let V =Nsq · · ·Ns1 ; q¿2 be the polynilpotent va-
riety. Suppose that L= F(V ; k) is its free algebra of rank k. Then

lim
t→1−0

(1− t)NH(L; t) = A; q= 2;

lim
t→1−0

(1− t)N ln(q−2) (H(L; t)) = s3�(N + 1)A; q¿3;

where N; A are the same as in Theorem 2:2.

Suppose that f(z)=
∑∞

n=0 anzn is a series that converges for all z ∈C; |z|¡ 1. Denote
Mf(r) = max|z|=r|f(z)|, for all 06r ¡ 1. We prove some facts, similar to Theorem
6.4 below, on connection between a growth of coe�cients an and a growth of the
function Mf(r), while r → 1 − 0; where f(t) behaves as the Hilbert–Poincar�e series
in Theorem 3.1. This is one of steps in proofs of Theorems 2.2 and 2.1.

4. Lie and associative algebras with nonintegeral q-dimensions

By Theorem 1.3, q-dimensions for free polynilpotent Lie algebras are integers. For
Gelfand–Kirillov dimension and superdimension of associative algebras the following
facts are known.

Theorem 4.1 (Borho and Kraft [5]). For any �∈ [2;+∞) there exists a two-generated
associative algebra A with Dim2 A=Dim2 A= �.

Also the Gelfand–Kirillov dimension may equal 1 and 0 (latter are �nite-dimensional
algebras over the �eld); and there is a trivial gap: Dim2 A 6∈ (0; 1). It is more interesting
that there is another gap:

Theorem 4.2 (Bergman [12]). Gelfand–Kirillov dimension of an associative algebra
does not belong to the interval (1; 2).

Theorem 4.3 (Borho and Kraft [5]). For any �∈ (0; 1] there exists a two-generated
associative algebra A with Dim3 A= �.

So, the Gelfand–Kirillov dimension of associative algebras can take the values
0; 1; [2;∞]. It is interesting that for Jordan algebras we have the same picture [14,15].
For q-dimensions of Lie algebras we have the following.

Theorem 4.4 (Petrogradsky [24]). For levels q = 2; 3 : : : and any �∈ [1;+∞) there
exists a two-generated Lie algebra H ∈Aq−2NsA; s= d�e with Dimq L=Dimq L= �;
where d�e for �∈R denotes the least integer greater or equal than �.
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Remark. In the case q=2 it is interesting that, unlike associative algebras, Lie algebras
have no gap (1; 2). As for higher levels q=3; 4; : : : ; we have an open problem whether
for all �∈ (0; 1) there exist Lie algebras with Dimq L=Dimq L= �.

Corollary 4.1 (Petrogradsky [24]). For levels q= 1; 2; 3; : : : there exist �nitely gener-
ated associative algebras A with the following nonzero �nite q-dimensions:

DIMq A=Dimq A∈




N; q= 1;

1; [2;+∞) q= 2;

(0;+∞) q= 3;

[1;+∞) q= 4; 5; : : : :

Remark. For high levels q=4; 5; : : : we also have intervals �∈ (0; 1) for further study.

Lemma 4.1 (Petrogradsky [24]). Let L∈A2 be an arbitrary �nitely generated
metabelian Lie algebra. Then Dim2 L=Dim2 L is an integer.

5. Asymptotics for codimension growth

Let V be a variety of Lie algebras and F(V ; X ) be its free algebra freely generated by
a countable set X = {xi | i∈N}. Let Pn(V)⊂F(V ; X ) be a subspace of all multilinear
elements in {x1; : : : ; xn} and consider its dimension cn(M) = dimK Pn(V): It is not
di�cult to see that for another distinct elements xi1 ; : : : ; xin ∈X we obtain the same
number. The sequence cn(V); n = 1; 2; : : : is called codimension growth and is an
important characteristic of a variety. In case of associative algebras the basic fact is as
follows:

Theorem 5.1 (Regev [28]). Let V be a variety of associative algebras with a non-
trivial identical relation of degree d. Then cn(V)6Cn; n∈N; where C = (d− 1)2:

Codimension growths of Lie varieties not exceeding exponential growth have been
studied extensively, see review [16]. Unlike associative case, the growth of a rather
small variety AN 2 is overexponential [34]. So, we have a vast area of overexponential
growths for Lie algebras, which stretches between the exponent and the factorial. In
order to explore this area we consider a series of functions of a natural argument
	q

�(n); q= 2; 3; : : : with a real parameter �:

	q
�(n) =



(n!)(�−1)=�; �¿ 1; q= 2;

n!

(ln(q−2) n)n=�
; �¿ 0; q= 3; 4 : : :

(3)
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More �ne scale is formed by a series of functions with two real parameters �; �:

	q
�;�(n) =



(n!)(�−1)=��n=�; �¿1; �¿ 0; q= 2;

n! · (�=�)n=�
(ln(q−2) n)n=�

; �¿ 0; �¿ 0; q= 3; 4 : : :
(4)

The following is the more precise asymptotic than that in [21].

Theorem 5.2 (Petrogradsky [25]). Let V=Nsq · · ·Ns1 ; q¿2 be a polynilpotent variety
of Lie algebras. Then

cn(V) =	q
s1 ;s2+o(1)(n) =



(n!)(s1−1)=s1 (s2 + o(1))n=s1 ; q= 2;

n!

(ln(q−2) n)n=s1

(
s2 + o(1)

s1

)n=s1
; q= 3; 4 : : :

In [21] the result was obtained by direct evaluations of some sums of coe�cients.
But in Theorem 5.2 another important instrument is the complexity function of a variety
(see below). By the following result we see that the scale, suggested above, is rather
complete:

Theorem 5.3 (Petrogradsky [25]). Let V be a variety of Lie algebras satisfying some
nontrivial identity of degree m¿ 3. Then there exists in�nitesimal (depending only
on m); such that

cn(V)6
n!

(ln(m−3) n)n
(1 + o(1))n:

Remark. For a codimension growth not exceeding exponent it is typical to use
the Young diagrams [16]. But even for V = AN 2 by Theorem 5.2 we have cn(V) =√
n!(1 + o(1))n. It is easy to see that for an irreducible representation � of the sym-

metric group Sn one has dimK �¡
√
n!; also the number of irreducible representations

is rather small:

�(n) ≈ 1

4n
√
3
exp(�

√
2n=3):

So, from the dimension viewpoint, Sn-module Pn(V) may contain all irreducible Sn-
modules. Thus, for Lie algebras we need other technique, than the Young diagrams.

6. Complexity functions for some varieties

Recall that for a free Lie algebra one has cn(F) = (n− 1)!. For an arbitrary variety
V the complexity function is de�ned as follows:

C(V ; z) =
∞∑
n=1

cn(V)
n!

zn; z ∈C:



V.M. Petrogradsky /Discrete Mathematics 217 (2000) 337–351 349

Complexity functions were introduced by Yu.P. Razmyslow in a wider context of
varieties of Lie pairs [29]. An upper bound for the codimension growth of an arbitrary
variety of Lie algebras is formulated in a nice way:

Theorem 6.1 (Razmyslow [29]). Suppose that V is a nontrivial variety of Lie alge-
bras. Then C(V ; z) is an entire function of a complex variable.

For some varieties it is possible to compute the complexity function explicitly.

Lemma 6.1 (Petrogradsky [21]). For the variety of solvable Lie algebras one
has C(Aq; z)=�0(z)+ · · ·+�q−1(z); where �0(z)= z; �i+1 =1+(�i(z)− 1) exp(�i(z));
i = 0; 1; 2; : : : :

Lemma 6.2 (Petrogradsky [21]). C(NcA; z) = z +
∑c

i=1(1=i)(1 + exp(z)(z − 1))i.

We write f(n) ≈ g(n) i� limn→∞f(n)=g(n) = 1. Complexity functions are useful
for computations of the codimension growth. For example.

Corollary 6.1. cn(NcA) ≈ cn−c−1nc.

An important tool in our study is the following fact [9,21,25,29].

Lemma 6.3. Suppose that L = F(V ; X ) is a free algebra for some variety of Lie
algebras. Then for its universal enveloping algebra it is possible to de�ne a complexity
function; moreover C(U (L); z) = exp(C(L; z)).

It is interesting to �nd an analogue of Lemma 6.1 for polynilpotent varieties. In this
case we can only prove the following.

Theorem 6.2 (Petrogradsky [25]). Let V=Nsq · · ·Ns1 ; q¿2 be a polynilpotent variety
and f(z) = C(V ; z). Then

lim
r→∞

ln(q−1)Mf(r)
rs1

=
s2
s1

:

To make use of this fact we need some facts about entire functions. Let f(z) be
an entire function. Denote Mf(r) = max|z|=r|f(z)|. Then the order and type (for the
known order) are de�ned as [7]:

ordf = lim
r→∞

ln lnMf(r)
ln r

; typf = lim
r→∞

lnMf(r)
r�

:

The following is a classical result.
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Theorem 6.3 (Evgrafov [7, Section 3.2.3]). Let f(z) =
∑∞

n=0 anzn be an entire
function of order � and type �. Then

lim
n→∞ n1=� n

√
|an|= (�e�)1=�:

By analogy we can de�ne the order and type of a level q; q∈N, as

ordq f = lim
r→∞

ln(q+1)Mf(r)
ln r

; typq f = lim
r→∞

ln(q)Mf(r)
r�

:

In these notations Theorem 6.2 implies

Corollary 6.2. Let V =Nsq · · ·Ns1 ; q¿2; be a polynilpotent Lie variety and f(z) =
C(V ; z) be its complexity function. Then ordq−1f(z) = s1; typq−1f(z) = s2=s1:

In particular, we see that for the polynilpotent variety with q¿ 2 the complexity
function has an in�nite ordinary order. To study such functions we prove an analogue
of Theorem 6.3.

Theorem 6.4 (Petrogradsky [25]). Suppose that f(z) =
∑∞

n=0 anzn is an entire func-
tion. Then for any �xed numbers q∈N; q¿3; �¿ 0 one has

lim
r→∞

ln(q−1)Mf(r)
r�

= lim
n→∞ ln

(q−2) n |an|�=n:

We use this result along with Theorem 6.2 to prove Theorem 5.2.
Further study of complexity functions of Lie varieties see in [27].
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