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Abstract

For a locally compact group G, let XG be one of the following introverted subspaces of VN(G): UCB(Ĝ),
the C∗-algebra of uniformly continuous functionals on A(G); W(Ĝ), the space of weakly almost periodic
functionals on A(G); or M∗

ρ(G), the C∗-algebra generated by the left regular representation on the measure
algebra of G. We discuss the extension of homomorphisms of (reduced) Fourier–Stieltjes algebras on G and
H to cb-norm preserving, weak∗–weak∗-continuous homomorphisms of X ∗

G
into X ∗

H
, where (XG, XH ) is

one of the pairs (UCB(Ĝ),UCB(Ĥ )), (W(Ĝ),W(Ĥ )), or (M∗
ρ(G),M∗

ρ(H)). When G is amenable, these
extensions are characterized in terms of piecewise affine maps.
© 2008 Elsevier Inc. All rights reserved.
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1. Introduction

One of the last century’s most striking achievements in abstract harmonic analysis is Paul
Cohen’s characterization of the homomorphisms from a group algebra L1(G) into a measure
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algebra M(H), when G and H are locally compact abelian groups. Cohen’s solution to the
homomorphism problem more precisely (but equivalently) describes the homomorphisms from
A(Ĝ) into B(Ĥ ), the Fourier and Fourier–Stieltjes transforms of L1(G) and M(H) on the dual
groups Ĝ and Ĥ ; the description is phrased in terms of continuous piecewise affine maps from
Ĥ into Ĝ [3,28].

Eymard defined versions of A(G), the Fourier algebra of G, and B(H), the Fourier–Stieltjes
algebra of H , for any locally compact groups G and H [8] and, naturally, mathematicians have
worked to generalize Cohen’s theorem to describe the homomorphisms between these algebras.
For arbitrary (bounded) homomorphisms ϕ :A(G) → B(H), Host widely extended Cohen’s the-
orem to the situation in which G contains an abelian subgroup of finite index and H is any locally
compact group [14] (also [24], however Lefranc never published his proofs).

Z.-J. Ruan first studied A(G) as an operator space in his influential paper [27], and it has
since become clear that it is often essential to consider this operator space structure on A(G).
As but one of many examples which justify this statement, the best known generalization of the
results of Cohen and Host, due to the first-named author and Nico Spronk, asserts that when
G is amenable and H is any locally compact group, every completely bounded homomorphism
ϕ :A(G) → B(H) is associated with a piecewise affine continuous map (and conversely) [16,17].
Evidence suggests that this result is best possible.

A problem that remains open, even for abelian groups, asks for a description of all (completely
bounded) homomorphisms ϕ :B(G) → B(H). In [18], assuming that G is amenable, we were
able to describe all such homomorphisms that are associated with a continuous, piecewise affine
map α :Y ⊂ H → G. As the dual Banach space of the group C∗-algebra C∗(G), B(G) has
a weak∗-topology and, when G is amenable, we have also shown that the w∗–w∗-continuous
completely bounded homomorphisms ϕ :B(G) → B(H) are precisely those homomorphisms
associated with continuous, piecewise affine, open maps [18].

Open maps may be seen as a rarity, so this may be interpreted as a negative result. How-
ever, w∗–w∗-continuity is a very attractive property, and the purpose of this paper is to show
that for amenable groups, any homomorphism ϕ :B(G) → B(H) can be extended to a w∗–w∗-
continuous homomorphism ϕ :X∗

G → X∗
H for a variety of highly manageable and well-studied

Banach algebras X∗
G and X∗

H , which respectively contain copies of B(G) and B(H); X∗
H can

always be chosen to be B(H) itself. For arbitrary locally compact groups, we will consider
homomorphisms ϕ :Bρ(G) → Bρ(H) of reduced Fourier–Stieltjes algebras and note that G is
known to be amenable exactly when Bρ(G) = B(G).

More precisely, let XG be any of the following topologically invariant and introverted sub-
spaces of VN(G): UCB(Ĝ), the C∗-algebra of uniformly continuous functionals on A(G);
W(Ĝ), the space of weakly almost periodic functionals on A(G); or M∗

ρ(G), the C∗-algebra gen-
erated by the left regular representation on the measure algebra of G. Then, as shown by Lau [19]
and Lau and Losert [21], X∗

G is a Banach algebra containing an isometric copy of Bρ(G). Let
ϕ :Bρ(G) → Bρ(H) be any homomorphism associated with a piecewise affine map α, and let
(XG, XH ) be any of the pairs (UCB(Ĝ),UCB(Ĥ )), (W(Ĝ),W(Ĥ )), or (M∗

ρ(G),M∗
ρ(H)). In

Sections 4 and 5 we prove that ϕ has a weak∗–weak∗-continuous homomorphic extension map-
ping X ∗

G into X ∗
H (or X ∗

G into Bρ(H)) which we explicitly describe in terms of the piecewise
affine map α.

All spaces are completely contractive Banach algebras with respect to a natural operator
space structure. When G is weakly amenable (respectively amenable) in Sections 3 and 5 we
show that the embedding of Bρ(G) into X∗

G is completely bounded (completely isometric) and
we prove that our extensions of ϕ are completely bounded (cb-norm preserving). When G is
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amenable, we completely characterize the w∗–w∗-continuous, completely bounded homomor-
phisms Φ :X∗

G → X∗
H which map A(G) into Bρ(H), in terms of piecewise affine maps. The

same is accomplished for w∗–w∗-continuous homomorphisms Φ̃ :X∗
G → Bρ(H) which are com-

pletely bounded on A(G).
In Section 6, we describe those piecewise affine maps α :Y ⊂ H → G whose associated ho-

momorphisms map into Bρ(H). It seems natural to wonder which operators κ :C∗
ρ(H) → C∗

ρ(G)

between reduced group C∗-algebras, dualize to give homomorphisms κ∗ :Bρ(G) → Bρ(H) of
reduced Fourier–Stieltjes algebras. In Section 7, these operators are characterized in terms of a
certain intertwining property.

Isometric isomorphisms of UCB(Ĝ)∗ onto UCB(Ĥ )∗ and dually, of LUC(G)∗ into LUC(H)∗
where LUC(G) denotes the usual C∗-algebra of left uniformly continuous functions on G, have
been studied by Lau, Losert [21], and Ghahramani, Lau, Losert [10]. These authors, and several
others, have also studied isometric isomorphisms between a variety of second duals of Banach
algebras on locally compact groups. As well as being a natural continuation of Cohen’s article,
this paper may be seen as complementary to these other works.

2. Preliminaries

Throughout this paper, G and H are locally compact groups with Haar measure dx. The
group and measure algebras of G are L1(G) and M(G). If F(G) is any collection of continuous
functions on G, we let Fc(G) denote the set of compactly supported functions in F(G). If H is
a Hilbert space, then B(H) denotes the algebra of all bounded operators on H.

Let P(G) be the set of all continuous positive definite functions on G; functions in P(G) can
be described as coefficient functions 〈π(s)ξ |ξ 〉 (s ∈ G) where {π, H} is a (continuous, unitary)
representation of G, ξ ∈ H. The linear span, B(G), of P(G) can be identified with the dual of the
group C∗-algebra, C∗(G), the completion of L1(G) under its largest C∗-norm. With pointwise
multiplication and the dual norm, B(G) is a commutative regular semisimple Banach algebra.
The Fourier algebra, A(G), is a closed ideal in B(G), also regular and semisimple, which may
be defined as the closure of Bc(G) in B(G).

For a representation π of G, Aπ is the closed linear span in B(G) of all positive definite
coefficient functions associated to π . The w∗-closure of Aπ in B(G) is denoted Bπ and may be
identified with the dual of C∗

π = π(C∗(G)). If {ρG,L2(G)} is the left regular representation of
G, AρG

is the Fourier algebra A(G). We may use the notation ρ = ρG, and write BρG
= Bρ(G),

C∗
ρG

= C∗
ρ(G); Bρ(G) is a weak∗-closed ideal in B(G) called the reduced Fourier–Stieltjes alge-

bra of G, and C∗
ρ(G) is called the reduced group C∗-algebra of G. We have C∗

ρ(G)∗ = Bρ(G)

and A(G) can be identified with the unique predual of VN(G), the von Neumann subalge-
bra of B(L2(G)) generated by ρG. The locally compact group G is amenable if and only if
Bρ(G) = B(G) which is true exactly when C∗

ρ(G) and C∗(G) are ∗-isomorphic [26]. Refer-
ences for the Fourier algebra and other coefficient spaces are [1] and [8].

As a closed ideal in B(G), A(G) is a Banach B(G)-bimodule. Therefore VN(G) = A(G)∗ is
a dual Banach B(G)-bimodule via

〈T · φ,ψ〉 = 〈φ · T ,ψ〉 = 〈T ,ψφ〉 (
ψ ∈ A(G),φ ∈ B(G),T ∈ VN(G)

)
.

In [11], E. Granirer defined the space of uniformly continuous functionals on A(G), UCB(Ĝ), to
be the (norm-)closure in VN(G) of A(G) · VN(G). Let

UCBc(Ĝ) = {
T ∈ VN(G): supp(T ) is compact

}
,
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where a ∈ supp(T ), the support of T , if for each neighbourhood V of a there is some func-
tion φ ∈ A(G) such that supp(φ) ⊂ V and 〈T ,φ〉 �= 0 [8, Definition 4.5]. Note that if ψ ≡ 1
on a neighbourhood of supp(T ), then T = ψ · T , so UCBc(Ĝ) = Ac(G) · VN(G) ⊂ UCB(Ĝ)

(see [8, Proposition 4.8]). In the footnote to p. 37 of [11] (credited to C. Herz) it is observed
that UCBc(Ĝ) is a linear subspace of VN(G), and density of Ac(G) in A(G) gives density of
UCBc(Ĝ) in UCB(Ĝ). As well, UCB(Ĝ) is a C∗-algebra [12, Proposition 2]. If G is amenable,
UCB(Ĝ) = A(G) · VN(G) [11] (and conversely [21]). When G is abelian, UCB(Ĝ) is (isomor-
phic to) the usual C∗-algebra of complex-valued uniformly continuous functions on Ĝ, the dual
group of G.

A closed subspace XG of VN(G) is topologically invariant if XG is an A(G)-submodule of
VN(G); XG is then topologically introverted if it also satisfies the property that m ∈ X∗

G and
T ∈ XG implies that mL(T ) ∈ XG. Here mL(T ) ∈ VN(G) = A(G)∗ is defined by〈

mL(T ),ψ
〉 = 〈m,T · ψ〉 (

ψ ∈ A(G)
)
.

In this case, X∗
G is a Banach algebra with respect to its left Arens product

〈n 
 m,T 〉 = 〈
n,mL(T )

〉
, n,m ∈ X∗

G, T ∈ XG.

Topologically invariant and introverted subspaces of VN(G) were first studied by Lau [19] where
he showed, among many other things, that C∗

ρ(G), UCB(Ĝ), W(Ĝ), and AP(Ĝ)—the latter two
spaces are defined in Section 5.2—are topologically invariant and introverted. Duals of intro-
verted subspaces of VN(G) are also studied in [5,15,21–23,25], as well as many other papers.

Any subspace XG of VN(G) is an example of a concrete operator space and its dual is always
given the associated canonical dual operator space structure. In fact A(G), B(G), and UCB(Ĝ)∗
are examples of completely contractive Banach algebras; for example see [27] and [25]. Operator
space theory has been, and continues to be extremely useful in abstract harmonic analysis [29].
A reference for the general theory of operator spaces is [7].

Let E = xH0 be an open coset in H . A map α :E → G is called affine if there is a ho-
momorphism β :H0 → G and g0 ∈ G such that α(xh) = g0β(h) (h ∈ H0). One can show
that E is a coset exactly when EE−1E ⊂ E, and that α :E → G is affine if and only if
α(x1x

−1
2 x3) = α(x1)α(x2)

−1α(x3) whenever x1, x2, x3 ∈ E [16].
Let Ωo(H) denote the collection of subsets Y = E0 \ (

⋃m
1 Ek) of H such that E0 is an open

coset in H and E1, . . . ,Em are open subcosets of infinite index in E0; the smallest open coset
containing Y is then E0 and we use the notation Aff (Y ) = E0. If Y is in the ring of sets in H

generated by the open cosets in H , then a map α :Y ⊂ H → G is called piecewise affine if

(i) Y can be written as a disjoint union Y = ⋃n
i=1 Yi , with Yi ∈ Ωo(G); and

(ii) there is an affine map αi : Aff (Yi) → G such that α|Yi
= αi |Yi

(i = 1, . . . , n).

If α :Y ⊂ H → G is continuous and piecewise affine, then α induces an associated completely
bounded homomorphism jα :B(G) → B(H) defined by

jα(φ) =
{

φ ◦ α on Y,

0 off Y.

The homomorphism jα is always completely bounded, and when G is amenable any homomor-
phism ϕ :A(G) → B(H) is of the form jα for some piecewise affine, continuous map α [16,17].
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The multiplier (or strict) topology on B(G), τM , is the locally convex topology induced by the
seminorms pγ defined by pγ (φ) = ‖φγ ‖A(G) (γ ∈ A(G),φ ∈ B(G)). When G is amenable,
a homomorphism ϕ :B(G) → B(H) is of the form jα for some piecewise affine continuous map
α if and only if ϕ is completely bounded and τM–w∗-continuous on bounded subsets of B(G),
see [18]. The reader is referred to [16–18] for further details.

3. The embedding maps

In this section we provide the definitions and describe some properties of the isometric em-
bedding maps

π :Bρ(G) ↪→ UCB(Ĝ)∗ and θ : UCB(Ĝ) ↪→ Bρ(G)∗.

The maps π and θ were already defined by Lau [19] for amenable groups (where they were
denoted by Q and Π , respectively). For any locally compact group, the map π was defined by
Lau and Losert in [21], and a version of π was defined for algebras related to the generalized
Fourier algebras Ap(G) by Derighetti, Filali, and Sangani Monfared [5].

Define

θ :A(G) · VN(G) → Bρ(G)∗ :T → T̂

by

〈T̂ , φ〉 = 〈̂ψ · S,φ〉 = 〈S,φψ〉

when T = ψ · S with ψ ∈ A(G), S ∈ VN(G), and φ ∈ Bρ(G). Define

π :Bρ(G) ↪→ UCBc(Ĝ)∗ :φ → φ̂ by 〈φ̂, T 〉 = 〈φ, T̂ 〉.
We will write ιX :X ↪→ X∗∗ for the canonical embedding of a normed space into its bidual.
Most parts of the following lemma are either implicit in [21, p. 10], or are stated explicitly as in
[21, Proposition 4.2]. The fact that π is a homomorphism was established for amenable groups
in [19], and in greater generality in [5]. Regarding part (ii) of the lemma, we remark that π is the
analogue of the natural embedding of M(G) into LUC(G)∗ as defined by Wong [32], and in this
case Lau proved that the image of M(G) is precisely the topological centre of LUC(G)∗ [20].
For the convenience of the reader we have chosen to include some parts of the proof. When X is
a Banach space, we may write 〈φ,x〉X∗−X to stress that φ is being regarded as an element of X∗,
x an element of X; abbreviations, such as U∗ − U for UCB(Ĝ)∗ − UCB(Ĝ), will often be use

Lemma 3.1. The following statements hold:

(i) θ is well defined.
(ii) π is a (well-defined) isometric algebra homomorphism which extends to π :Bρ(G) ↪→

UCB(Ĝ)∗; π maps Bρ(G) into the centre of UCB(Ĝ)∗.
(iii) For φ ∈ A(G), π(φ) = ιA(φ)|UCB(Ĝ), and π(A(G)) is w∗-dense in UCB(Ĝ)∗.
(iv) For φ ∈ Bρ(G) = C∗

ρ(G)∗ and x ∈ C∗
ρ(G), 〈π(φ), x〉U∗−U = 〈φ,x〉Bρ−C∗

ρ
, i.e.

π(φ)|C∗
ρ(G) = φ.
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Proof. Suppose that ψ1,ψ2 ∈ A(G) and S1, S2 ∈ VN(G) are such that ψ1 · S1 = ψ2 · S2 in
VN(G), and let φ ∈ Bρ(G). As noted in [21, p. 10], there is a net (φi) in A(G) such that for
each i, ‖φi‖ = ‖φ‖, and φi → φ w∗ in Bρ(G). By [13, Theorem B2], ‖φiψk − φψk‖A(G) → 0
(k = 1,2), and therefore

〈 ̂ψ1 · S1, φ〉 = 〈S1, φψ1〉 = lim
i

〈S1, φiψ1〉 = lim
i

〈ψ1 · S1, φi〉 = lim
i

〈ψ2 · S2, φi〉 = 〈 ̂ψ2 · S2, φ〉.

This establishes statement (i). That π is an isometry (from (ii)), the first part of (iii), and (iv)
are respectively parts (c), (a) and (b) of [21, Proposition 4.2]. That π(A(G)) is w∗-dense in
UCB(Ĝ)∗ is thus a consequence of the Hahn–Banach theorem and Goldstine’s theorem. To see
that π is a homomorphism, let φ,ψ ∈ Bρ(G), T ∈ UCB(Ĝ). Then for ς ∈ A(G),

〈
π(ψ)L(T ), ς

〉 = 〈
π(ψ),T · ς 〉 = 〈̂T · ς,ψ〉 = 〈T ,ςψ〉 = 〈ψ · T ,ς〉.

Thus, π(ψ)L(T ) = ψ · T (recall that UCB(Ĝ) is a B(G)-module). Assuming that T = γ · S

where γ ∈ A(G) and S ∈ VN(G),

〈
π(φ) 
 π(ψ),T

〉 = 〈
π(φ),π(ψ)L(T )

〉 = 〈
π(φ),ψ · T 〉 = 〈

π(φ), (ψγ ) · S〉
= 〈S,φψγ 〉 = 〈

π(φψ), γ · S〉 = 〈
π(φψ),T

〉
.

That π maps into the centre of UCB(Ĝ)∗ is [21, Proposition 4.5(b)]. �
In fact, if Bρ(G) and π(Bρ(G))) are identified, the direct sum decomposition

UCB(Ĝ)∗ = Bρ(G) ⊕ C∗
ρ(G)⊥

holds (see [23, Lemma 5.2]). The following observation will be useful.

Lemma 3.2. The map θ extends to an isometry θ : UCB(Ĝ) ↪→ Bρ(G)∗ such that

(i) θ extends the canonical embedding ιC :C∗
ρ(G) ↪→ C∗

ρ(G)∗∗ = Bρ(G)∗, and

(ii) for T ∈ UCB(Ĝ), φ ∈ A(G), 〈θ(T ),φ〉B∗
ρ−Bρ = 〈T ,φ〉VN−A, i.e. θ(T )|A(G) = T .

Moreover, the diagrams commute:

UCB(Ĝ)∗∗ π∗
Bρ(G)∗

UCB(Ĝ)

ιU
θ

Bρ(G)∗∗ θ∗
UCB(Ĝ)∗

Bρ(G)

ιB π

Proof. The validity of the first diagram (on A(G) ·VN(G)) is a consequence of the definitions of
π and θ . It follows from this, and Lemma 3.1(iv), that θ extends ιC , and because π∗ and ιU are
contractive, so too is θ . If T = ψ · S with ψ ∈ A(G) and S ∈ VN(G), then for each γ ∈ A(G),

〈
θ(T ), γ

〉 = 〈̂ψ · S,γ 〉 = 〈S,γψ〉 = 〈ψ · S,γ 〉 = 〈T ,γ 〉.
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Hence θ(T )|A(G) = T , as claimed, and consequently ‖θ(T )‖ � ‖T ‖. Therefore, θ is an isometry.
That the second diagram commutes follows from the fact that the first one commutes. �

If γ ∈ A(G), then the map A(G) → A(G) :ψ �→ γψ is a completely bounded multiplier
of A(G) with cb multiplier norm denoted ‖γ ‖Mcb . If A(G) has an approximate identity (eλ)

which is bounded in the cb multiplier norm, then G is called weakly amenable. If for each λ,
‖eλ‖Mcb � 1, it is convenient for us to call G 1-weakly amenable. In particular, the following
proposition shows that π and θ are complete isometries when G is amenable.

As in [25], we view UCB(Ĝ) as an operator subspace of VN(G) (the canonical operator
space structure of UCB(Ĝ) as a C∗-algebra) and give UCB(Ĝ)∗ its canonical dual operator space
structure (see [7]).

Proposition 3.3. If G is a (1-)weakly amenable locally compact group, then π and θ are com-
pletely bounded (respectively complete isometries).

Proof. Let (eλ) be an approximate identity such that for each λ, ‖eλ‖Mcb � M . We begin by
showing that for each n, ‖θn‖ � M , where

θn :Mn

(
UCB(Ĝ)

) → Mn

(
Bρ(G)∗

)
: [Ti,j ] → [T̂i,j ].

Let T = [Ti,j ] ∈ Mn(UCBc(Ĝ)). Take ψi,j ∈ Ac(G) such that ψi,j ≡ 1 on a neighbourhood of
supp(Ti,j ), so Ti,j = ψi,j · Ti,j . Let φ = [φk,l] ∈ Mn(Bρ(G)) with ‖φ‖ � 1. Note that each eλ is
a cb multiplier of Bρ(G) with ‖eλ‖Mcb(Bρ(G)) � M (see, for example [31, Proposition 4.1]), so
‖[eλφk,l]‖ � M . Hence,

∥∥〈〈
θn(T ),φ

〉〉∥∥ = ∥∥[〈 ̂ψi,j · Ti,j , φk,l〉B∗
ρ−Bρ

]∥∥
= ∥∥[〈Ti,j , φk,lψi,j 〉VN−A

]∥∥
[7, (2.1.8)] = lim

λ

∥∥[〈Ti,j , eλφk,lψi,j 〉VN−A

]∥∥
= lim

λ

∥∥[〈ψi,j · Ti,j , eλφk,l〉VN−A

]∥∥
= lim

λ

∥∥[〈Ti,j , eλφk,l〉VN−A

]∥∥
� sup

{∥∥[〈Ti,j , γk,l〉VN−A

]∥∥: γ = [γk,l] ∈ Mn

(
A(G)

)
,‖γ ‖ � M

}
= M‖T ‖Mn(UCB(Ĝ)).

Therefore,

∥∥θn(T )
∥∥ = sup

{∥∥〈〈
θn(T ),φ

〉〉∥∥: φ ∈ Mn

(
Bρ(G)

)
, ‖φ‖ � 1

}
� M‖T ‖Mn(UCB(Ĝ)),

so ‖θ‖cb � M . It follows that ‖θ∗‖cb � M so Lemma 3.2 gives ‖π‖cb � M as well. Also by
Lemma 3.2, given T ∈ UCB(Ĝ), θ(T )|A(G) = T , so for T = [Ti,j ] ∈ Mn(UCB(Ĝ)), ‖θn(T )‖ �
‖T ‖Mn(UCB(Ĝ)). Hence, θ is a complete isometry when M = 1. As well, for φ ∈ Bρ(G),
π(φ)|C∗(G) = φ, and we can similarly conclude that π is a complete isometry when M = 1. �
ρ
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Recall that τM denotes the multiplier topology on Bρ(G), taken with respect to the closed
ideal A(G).

Lemma 3.4. The embedding π :Bρ(G) ↪→ UCB(Ĝ)∗ is τM–w∗-continuous on bounded subsets
of Bρ(G). If G is amenable, then π is τM–w∗-continuous on Bρ(G) = B(G).

Proof. Let (φi) be a net in Bρ(G) such that φi → φ τM . Let T = γ · S with γ ∈ A(G) and
S ∈ VN(G). Then ‖φiγ − φγ ‖A(G) → 0, so

lim
〈
π(φi) − π(φ),T

〉 = lim〈γ̂ · S,φi − φ〉 = lim〈S,φiγ − φγ 〉 = 〈S,0〉 = 0.

If G is amenable, then UCB(Ĝ) = A(G) · VN(G), so π is τM–w∗-continuous. In any case,
A(G) · VN(G) is dense in UCB(Ĝ), so provided that (φi) is bounded, we can conclude that
lim〈π(φi) − π(φ),T 〉 = 0 for T ∈ UCB(Ĝ). �

We will need to know when π is w∗–w∗-continuous. The equivalence of (i) and (iii) in the
next proposition is [5, Theorem 3.7] in the special case when p = 2.

Proposition 3.5. The following statements are equivalent:

(i) G is discrete;
(ii) π is w∗–w∗-continuous;

(iii) π is surjective.

Proof. If G is discrete, then [19, Proposition 4.5] gives UCB(Ĝ) = C∗
ρ(G) and, by Lemma 3.1,

π is the identity map. Hence, statement (ii) holds. Suppose now that π is w∗–w∗-continuous,
and let π∗ : UCB(Ĝ) → C∗

ρ(G) be its predual map. General principles and the first commuting
diagram from Lemma 3.2 yield

∥∥π∗(x)
∥∥ = ∥∥ιC∗

ρ

(
π∗(x)

)∥∥ = ∥∥π∗(ιU (x)
)∥∥ = ∥∥θ(x)

∥∥ = ‖x‖,

because θ is an isometry. Hence π∗ has closed range, and range(π∗)⊥ = kerπ = {0} because π

is injective. Hence, π∗ is a bijection, and therefore π = (π∗)∗ is also a bijection. Finally, suppose
that π is surjective. Given m ∈ UCB(Ĝ)∗ such that m|C∗

ρ(G) = 0, we can then find φ ∈ Bρ(G)

such that π(φ) = m. By Lemma 3.1, φ = π(φ)|C∗
ρ(G) = m|C∗

ρ(G) = 0, and so m = π(φ) = 0 as
well. By the Hahn–Banach separation theorem and [19, Proposition 4.5] we can conclude that
UCB(Ĝ) = C∗

ρ(G) and therefore G is discrete. �
4. The main extension

Throughout the remainder of the paper, G and H are locally compact groups, and α :Y ⊂
H → G is a fixed piecewise affine continuous map. To prove our extension theorems, we will
require that jα , the map associated with α, maps Bρ(G) into Bρ(H). That is, we will always
assume that we have

jα :Bρ(G) → Bρ(H).
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When H is amenable, Bρ(H) = B(H) and this holds trivially. In general, we characterize such
maps α in Section 6.

If we wish to stress the fact that we are considering jα as a map on A(G), we will often write
jA :A(G) → Bρ(H).

Let κα = j∗
A ◦ θH . We have

Bρ(H)∗
j∗
A

VN(G)

UCB(Ĥ )

θH κα

Lemma 4.1. If T ∈ UCBc(Ĥ ) has compact support K , then κα(T ) has compact support with
supp(κα(T )) ⊂ α(K ∩ Y). Hence, κα : UCB(Ĥ ) → UCB(Ĝ).

Proof. Let a ∈ G \ α(K ∩ Y), and let V be a relatively compact neighbourhood of a such that
V ⊂ G \α(K ∩Y). Let ψ ∈ A(G) be such that supp(ψ) ⊂ V . To show that a /∈ supp(κα(T )), we
only need to show that 〈κα(T ),ψ〉 = 0. The closed set α−1(V ) is disjoint from K , so by regular-
ity of A(H) we can choose γ ∈ A(H) such that γ ≡ 0 on α−1(V ) and γ ≡ 1 on a neighbourhood
K . Then T = γ · T and observe that (jAψ)γ ≡ 0. Hence,

〈
κα(T ),ψ

〉 = 〈T̂ , jAψ〉 = 〈̂γ · T , jAψ〉 = 〈
T , (jAψ)γ

〉 = 〈T ,0〉 = 0,

as needed. By continuity of α, α(K ∩ Y) is compact, and density of UCBc(Ĥ ) in UCB(Ĥ ) gives
κα : UCB(Ĥ ) → UCB(Ĝ). �

We now list some useful identities involving κα .

Lemma 4.2. The following identities hold:

(i) For ψ ∈ A(G) and γ · S ∈ UCB(Ĥ ), where γ ∈ A(H) and S ∈ VN(H),

〈
κα(γ · S),ψ

〉 = 〈
S, (jαψ)γ

〉
.

(ii) For T ∈ UCB(Ĥ ) and φ ∈ Bρ(G), φ · κα(T ) = κα(jα(φ) · T ).

(iii) For each h ∈ H , κα(ρH (h)) =
{

ρG(α(h)) if h ∈ Y,

0, otherwise.

Proof. Part (i) is immediate from the definition of κα . For (ii), suppose that T = γ · S where
γ ∈ A(H), S ∈ VN(H), and let ψ ∈ A(G). Using part (i), we obtain

〈
φ · κα(T ),ψ

〉 = 〈
κα(γ · S),ψφ

〉 = 〈
S, jα(ψφ)γ

〉
= 〈

S, jα(ψ)
(
jα(φ)γ

)〉 = 〈
κα

(
jα(φ)γ · S)

,ψ
〉

= 〈
κα

(
jα(φ) · T )

,ψ
〉
.
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For (iii), let h ∈ H , and choose γ ∈ A(H) such that γ (h) = 1. Then, γ · ρH (h) = ρH (h), so for
ψ ∈ A(G) we have

〈
κα

(
ρH (h)

)
,ψ

〉 = 〈
κα

(
γ · ρH (h)

)
,ψ

〉 = 〈
ρH (h), jα(ψ)γ

〉 = jα(ψ)(h).

Thus, for h ∈ Y , 〈κα(ρH (h)),ψ〉 = ψ(α(h)) = 〈ρG(α(h)),ψ〉, and if h ∈ H \ Y , then
〈κα(ρH (h)),ψ〉 = 0. �
Lemma 4.3. The diagram commutes:

Bρ(H)∗
j∗
α

Bρ(G)∗

UCB(Ĥ )

θH

κα

UCB(Ĝ)

θG

That is, j∗
α ◦ θH = θG ◦ κα , meaning that j∗

α is an extension of κα .

Proof. Let T ∈ UCBc(Ĥ ) with K = supp(T ) compact, and choose γ ∈ Ac(H) such that γ ≡ 1
on a neighbourhood of K . Then T = γ · T and K ⊂ supp(γ ), so by Lemma 4.1 supp(κα(T )) ⊂
α(supp(γ ) ∩ Y). As α(supp(γ ) ∩ Y) is compact, we can find ψ ∈ Ac(G) such that ψ ≡ 1 on a
neighbourhood of α(supp(γ ) ∩ Y) and obtain κα(T ) = ψ · κα(T ). Notice that (jAψ)γ = γ 1Y .
For φ ∈ Bρ(G), we have

〈
θG ◦ κα(T ),φ

〉 = 〈
̂ψ · κα(T ),φ

〉 = 〈
κα(γ · T ),ψφ

〉 = 〈
T , jA(ψφ)γ

〉
= 〈

T , (jAψ)(jαφ)γ
〉 = 〈

T , (jαφ)γ 1Y

〉
= 〈

T , (jαφ)γ
〉 = 〈̂γ · T , jαφ〉

= 〈
j∗
α

(
θH (T )

)
, φ

〉
,

as needed. �
For the next proof recall from [19] that for m ∈ UCB(Ĝ)∗, the map

n �→ n 
 m : UCB(Ĝ)∗ → UCB(Ĝ)∗ is w∗–w∗-continuous.

Clearly then, if m ∈ Z(UCB(Ĝ)∗), the centre of UCB(Ĝ)∗, then

n �→ m 
 n : UCB(Ĝ)∗ → UCB(Ĝ)∗ is also w∗–w∗-continuous;

that is Z(UCB(Ĝ)∗) ⊂ Zt(UCB(Ĝ)∗), the topological centre of UCB(Ĝ)∗. In fact, Lau and
Losert have shown that Z(UCB(Ĝ)∗) = Zt(UCB(Ĝ)∗) [21, Theorem 5.8].

The last statement of the next theorem may be compared with Corollary 3.2 of [17] which, in
part, states that when G is amenable, ‖jA‖cb = ‖jα‖cb.
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Theorem 4.4. The dual map κ∗
α : UCB(Ĝ)∗ → UCB(Ĥ )∗ is a w∗–w∗-continuous homomorphic

extension of jα :Bρ(G) → Bρ(H). More precisely, the diagram

UCB(Ĝ)∗
κ∗
α

UCB(Ĥ )∗

Bρ(G)

πG

jα

Bρ(H)

πH

commutes; i.e. κ∗
α ◦ πG = πH ◦ jα . If H is weakly amenable, then κα is completely bounded, and

if H is 1-weakly amenable, then ‖jA‖cb = ‖jα‖cb = ‖κα‖cb.

Proof. Using Lemmas 3.2 and 4.3, we obtain

πH ◦ jα = θ∗
H ◦ ιBρ(H) ◦ jα = θ∗

H ◦ j∗∗
α ◦ ιBρ(G)

= (
j∗
α ◦ θH

)∗ ◦ ιBρ(G) = (θG ◦ κα)∗ ◦ ιBρ(G)

= κ∗
α ◦ θ∗

G ◦ ιBρ(G)

= κ∗
α ◦ πG.

Letting m,n ∈ UCB(Ĝ)∗ we now show that κ∗
α(m
 n) = κ∗

α(m)
 κ∗
α(n). By Lemma 3.1(iii),

we can choose nets (ψi) and (γl) in A(G) such that πG(ψi) → m and πG(γl) → nw∗ in
UCB(Ĝ)∗. Using the w∗–w∗-continuity of κ∗

α , we obtain

κ∗
α(m 
 n) = lim

i
κ∗
α

(
πG(ψi) 
 n

)
(∗) = lim

i
lim

l
κ∗
α

(
πG(ψi) 
 πG(γl)

)
= lim

i
lim

l
κ∗
α ◦ πG(ψiγl) = lim

i
lim

l
πH ◦ jα(ψiγl)

= lim
i

lim
l

πH (jαψi) 
 πH (jαγl) = lim
i

lim
l

πH (jαψi) 
 κ∗
α(πGγl)

(∗) = lim
i

πH (jαψi) 
 κ∗
α(n)

= lim
i

κ∗
α(πGψi) 
 κ∗

α(n)

= κ∗
α(m) 
 κ∗

α(n),

where (∗) indicates that we have used Lemma 3.1(ii) and the remarks preceding the statement of
the theorem.

By [17, Proposition 3.1], jA is completely bounded, and when H is weakly amenable θH is
completely bounded by Proposition 3.3. Hence κα = j∗

A ◦ θH is completely bounded in this case.
If H is 1-weakly amenable, then we know that θH is a complete isometry, so

‖κα‖cb = ∥∥j∗
A ◦ θH

∥∥
cb �

∥∥j∗
A

∥∥
cb = ‖jA‖cb � ‖jα‖cb = ∥∥κ∗

α

∣∣
Bρ(G)

∥∥
cb �

∥∥κ∗
α

∥∥
cb = ‖κα‖cb,

proving the second statement of the theorem. �
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Let pH : UCB(Ĥ )∗ → C∗
ρ(H)∗ = Bρ(H) :m �→ m|C∗

ρ(H) be the restriction map. Note that by
Lemma 3.1(iv), pH ◦ πH = idBρ(H). Corollary 4.5 should be compared with [18, Corollary 5.8]
which showed that when G is amenable, jα is τM–w∗-continuous on bounded subsets of B(G) =
Bρ(G). Corollary 4.6 is supplementary to [18, Theorem 5.10].

Corollary 4.5. The map jα :Bρ(G) → Bρ(H) factors as jα = pH ◦ κ∗
α ◦ πG and is there-

fore τM–w∗-continuous on bounded subsets of Bρ(G). If G is amenable, then jα is τM–w∗-
continuous on B(G).

Proof. By Theorem 4.4, κ∗
α ◦ πG = πH ◦ jα , so pH ◦ κ∗

α ◦ πG = pH ◦ πH ◦ jα = jα . As pH and
κ∗
α are w∗–w∗-continuous, the result follows from Lemma 3.4. �

Corollary 4.6. Let G be amenable, and let φ be a mapping of B(G) into Bρ(H) which is not
identically zero. Then φ is a τM–w∗-continuous completely bounded homomorphism if and only
if there is a piecewise affine continuous map α :Y ⊂ H → G such that φ = jα .

Proof. For the forward implication, note that the w∗-topology on Bρ(H) agrees with the rela-
tive w∗ topology on Bρ(H) inherited from B(H), so φ :B(G) → B(H) is τM–w∗-continuous on
bounded subsets of B(G). By [18, Theorem 5.10], φ = jα for some continuous piecewise affine
map α. The converse follows from Corollary 4.5. �
5. Mappings between introverted spaces

5.1. The general case

Let XG be a closed subspace of UCB(Ĝ) which is topologically invariant and introverted in
VN(G). Define

IG :XG ↪→ UCB(Ĝ) :T → T ,

RG = I ∗
G : UCB(Ĝ)∗ → X∗

G :m �→ m|XG
,

EG = RG ◦ πG :Bρ(G) → X∗
G,

UCB(Ĝ)∗
RG

X∗
G

Bρ(G)

πG
EG

Remark 5.1. Observe that RG is a w∗–w∗-continuous, completely contractive, surjective algebra
homomorphism. By Lemmas 3.1 and 3.4 we hence obtain:

(i) EG is a contractive algebra homomorphism mapping Bρ(G) into the centre of X∗
G;

EG(A(G)) is w∗-dense in X∗
G; EG is τM–w∗-continuous on bounded subsets of Bρ(G),

and τM–w∗-continuous on Bρ(G) when G is amenable.
(ii) If G is weakly amenable, then EG is completely bounded.
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(iii) If XG contains C∗
ρ(G), then EG is an isometric algebra isomorphism such that

EG(φ)
∣∣
C∗

ρ(G)
= φ, φ ∈ Bρ(G).

When XG contains C∗
ρ(G) and G is 1-weakly amenable, EG is a complete isometry.

Proposition 5.2. Let XG and XH be topologically invariant and introverted subspaces of
UCB(Ĝ) and UCB(Ĥ ), respectively. Suppose that κα(XH ) ⊂ XG and let

κα :XH → XG :T �→ κα(T ).

Then

(i) κ∗
α :X∗

G → X∗
H is a w∗–w∗-continuous algebra homomorphism such that the diagram

X∗
G

κ∗
α

X∗
H

Bρ(G)

EG

jα

Bρ(H)

EH

commutes. If H is (1-)weakly amenable, then κα is completely bounded (and ‖κα‖cb =
‖κ∗

α‖cb = ‖jα‖cb).
(ii) Therefore, if C∗

ρ(G) ⊂ XG and C∗
ρ(H) ⊂ XH , then κ∗

α is a w∗–w∗-continuous extension
of jα .

Proof. Obviously, κα ◦ IH = IG ◦ κα and therefore, RH ◦ κ∗
α = κ∗

α ◦ RG. We have seen that
κ∗
α and RH are algebra homomorphisms, and RG is a surjective homomorphism, from which it

easily follows that κ∗
α is an algebra homomorphism. As well, by Theorem 4.4 we have κ∗

α ◦πG =
πH ◦ jα , so

κ∗
α ◦ EG = κ∗

α ◦ RG ◦ πG = RH ◦ κ∗
α ◦ πG = RH ◦ πH ◦ jα = EH ◦ jα.

The remaining parts of the proposition follow from Theorem 4.4 and Remark 5.1. �
We will say that XH is Bρ(H)-invariant if it is a Bρ(H)-submodule of VN(H). Let XH,c =

{T ∈ XH : supp(T ) is compact}. The next proposition shows that topological invariance often
implies Bρ(H)-invariance and that κα preserves topological introversion of Bρ(H)-invariant
subspaces of UCB(Ĥ ).

Proposition 5.3. Let XH be a topologically invariant closed subspace of UCB(Ĥ ), and let XG =
κα(XH ).

(i) If XH is Bρ(H)-invariant (and topologically introverted) in VN(H), then XG is Bρ(G)-
invariant (and topologically introverted) in VN(G).

(ii) If XH,c is dense in XH , then XH is Bρ(H)-invariant and XG,c is dense in XG. If H is
amenable, then XH,c is dense in XH .
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Proof. (i) Suppose that XH is Bρ(H) invariant and let κα(T ) ∈ XG, where T ∈ XH . For
φ ∈ Bρ(G), Lemma 4.2(ii) gives φ · κα(T ) = κα(jα(φ) · T ) which belongs to XG. Hence, XG

is Bρ(G)-invariant. Assume as well that XH is topologically introverted. Letting m ∈ X∗
G and

S ∈ XG, we must show that mL(S) ∈ XG. Let n = κ∗
α(m) where κα :XH → XG :T �→ κα(T )

and assume that S = κα(T ), T ∈ XH . Then for ψ ∈ A(G),

〈
mL(S),ψ

〉 = 〈
m,ψ · κα(T )

〉 = 〈
m,κα

(
jα(ψ) · T )〉 = 〈

n, jα(ψ) · T 〉
where we have used Lemma 4.2(ii). Let ñ ∈ UCB(Ĝ)∗ be an extension of n and choose a se-
quence (γi · Ti) in UCB(Ĥ ) with each γi ∈ A(H), Ti ∈ UCB(Ĥ ) and ‖γi · Ti − T ‖ → 0. Then

〈
mL(S),ψ

〉 = lim
i

〈̃
n, jα(ψ) · (γi · Ti)

〉 = lim
i

〈̃
nL(Ti), jα(ψ)γi

〉
(see Lemma 4.2(i)) = lim

i

〈
κα

(
γi · ñL(Ti)

)
,ψ

〉
= lim

i

〈
κα

(̃
nL(γi · Ti)

)
,ψ

〉 = 〈
κα

(̃
nL(T )

)
,ψ

〉
= 〈

κα

(
nL(T )

)
,ψ

〉
.

Hence, mL(S) = κα(nL(T )) which belongs to XG, because XH is topologically introverted.
(ii) Let T ∈ XH,c, φ ∈ Bρ(H). Taking γ ∈ A(H) such that γ ≡ 1 on a neighbourhood of

supp(T ), φ · T = φ · (γ · T ) = (φγ ) · T ∈ XH,c because XH it topologically invariant. There-
fore, if XH,c is dense in XH , then XH is Bρ(H)-invariant. In this case XG,c is dense in XG

by Lemma 4.1. When H is amenable, A(H) has a bounded approximate identity (ei) such
that each ei has compact support. For any T ∈ XH , ei · T ∈ XH,c and it is easy to see that
‖ei · T − T ‖ → 0. �
Remark 5.4. If we assume that XH is Bρ(H)-invariant and topologically introverted in UCB(Ĥ )

and XG = κα(XH ), then κ∗
α :X∗

G → X∗
H is a homomorphism by Propositions 5.2 and 5.3. In order

to properly say that this extends jα :Bρ(G) → Bρ(H), we need C∗
ρ(H) ⊂ XH and C∗

ρ(G) ⊂ XG.

If this is not the case, we can replace XH by ZH = XH +C∗
ρ(H) = {S + T : S ∈ XH T ∈ C∗

ρ(H)}
(the smallest Bρ(H)-invariant and topologically introverted subspace of UCB(Ĥ ) containing
both XH and C∗

ρ(H)) and XG by κα(ZH ) + C∗
ρ(G).

5.2. Special cases

Following R. Smith and N. Spronk [30], we will denote the operator norm closure of
ρG(M(G)) in B(L2(G)) by M∗

ρ(G). An operator T ∈ VN(G) is weakly almost periodic (almost

periodic), written T ∈ W(Ĝ) (T ∈ AP(Ĝ)), if its orbit in VN(G), {φ · T : φ ∈ A(G), ‖φ‖ � 1}
is relatively weakly compact (compact). Lau [19] has shown that W(Ĝ) and AP(Ĝ) are topolog-
ically invariant and introverted in VN(G). Moreover, AP(Ĝ) ⊂ W(Ĝ) and when G is amenable,
W(Ĝ) ⊂ UCB(Ĝ) [11, Proposition 1]; UCB(Ĝ) ⊂ W(Ĝ) if and only if G is discrete [12].

If X and Y are topologically invariant and introverted subspaces of VN(G), then it is easy to
see that the same is true of X ∩ Y . In particular, the spaces

APu(Ĝ) = AP(Ĝ) ∩ UCB(Ĝ) and Wu(Ĝ) = W(Ĝ) ∩ UCB(Ĝ)
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are topologically invariant and introverted subspaces of UCB(Ĝ). When G is amenable,
APu(Ĝ) = AP(Ĝ) and Wu(Ĝ) = W(Ĝ) by the aforementioned result of Granirer.

Theorem 2.8 of [6] shows that when G is compact, M∗
ρ(G) ⊂ W(Ĝ), and in [6, Section 8]

the authors state that the containment holds for any locally compact group. In this subsection
we will give a different proof of this general statement. We then show that if (XG,XH ) is one
of the pairs (M∗

ρ(G),M∗
ρ(H)), (Wu(Ĝ),Wu(Ĥ )), or (APu(Ĝ),APu(Ĥ )), then κα maps XH into

XG (and Proposition 5.2 applies).
We first observe that M∗

ρ(G) ⊂ VN(G), A(G) ⊂ C0(G) and

〈
ρG(μ), γ

〉
VN−A

= 〈μ,γ 〉M−C0

(
μ ∈ M(G), γ ∈ A(G)

)
. (5.1)

Indeed, if ξ, η ∈ L2(G) and γ is the coefficient function γ (·) = 〈ρG(·)ξ |η〉, then

〈
ρG(μ), γ

〉
VN−A

= 〈
ρG(μ)ξ |η〉 = ∫

G

〈
ρG(s)ξ |η〉

dμ(s) =
∫
G

γ (s) dμ(s) = 〈μ,γ 〉M−C0 .

Proposition 5.5. The C∗-algebra M∗
ρ(G) is a topologically invariant and topologically intro-

verted subspace of VN(G). Moreover, M∗
ρ(G) ⊂ Wu(Ĝ).

Proof. Let μ ∈ M(G), ψ ∈ A(G). Then for γ ∈ A(G),

〈
ψ · ρG(μ), γ

〉
VN−A

= 〈
ρG(μ), γψ

〉
VN−A

=
∫
G

γ (s)ψ(s) dμ(s) = 〈
ρG(ψ · μ),γ

〉
VN−A

,

so ψ · ρG(μ) = ρG(ψ · μ) ∈ M∗
ρ(G). This establishes topological invariance and shows that

M∗
ρ(G) ⊂ UCB(Ĝ). Let (φi) be a net in P1(G) ∩ A(G) and suppose that T ∈ VN(G) is such

that φi · ρG(μ) = ρG(φi · μ) → T σ(VN(G),A(G)). Here, P1(G) = {φ ∈ P(G): ‖φ‖ = 1}. By
Lemma 5.1 of [19], to establish topological introversion of M∗

ρ(G) it suffices to show that T ∈
M∗

ρ(G). As ‖φi · μ‖M(G) � ‖φi‖∞‖μ‖M(G) = ‖μ‖M(G), by passing to a subnet we may assume
that φi · μ → ν σ(M(G),C0(G)). For any γ ∈ A(G),

〈T ,γ 〉VN−A = lim
i

〈
ρG(φi · μ),γ

〉
VN−A

= lim
i

〈φi · μ,γ 〉M−C0 = 〈ν, γ 〉M−C0

= 〈
ρG(ν), γ

〉
VN−A

,

so T = ρG(ν) ∈ M∗
ρ(G).

By [19, Theorem 5.6], to show that M∗
ρ(G) ⊂ W(Ĝ), it suffices to show that multiplication

in M∗
ρ(G) commutes. For this, let m,n ∈ M∗

ρ(G)∗, let m̃, ñ ∈ VN(G)∗ be extensions of m and n,
and take bounded nets (φi), (ψj ) in A(G) such that φi → m̃, ψj → ñ σ (VN(G)∗,VN(G)).
Then (φi), (ψj ) are also bounded in C0(G) so there exist m′, n′ ∈ M(G)∗ such that, by passing
to subnets if necessary, φi → m′, ψj → n′σ(M(G)∗,M(G)). For μ ∈ M(G) we have

〈
m 
 n,ρG(μ)

〉 = 〈
m̃ 
 ñ, ρG(μ)

〉 = lim
i

lim
j

〈
ρG(μ),φiψj

〉
= lim lim〈μ,φiψj 〉M−C0
i j
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(∗) = lim
j

lim
i

〈μ,φiψj 〉M−C0

= lim
j

lim
i

〈μ,ψjφi〉M−C0

= 〈
n 
 m,ρG(μ)

〉
,

where at line (∗) we have used the fact the C∗-algebra C0(G) is Arens regular (see [4, Eq. (2.6.28)
and Corollary 3.2.37]. �

We should point out that any topologically invariant subspace of W(Ĝ) is automatically topo-
logically introverted by [22, Lemma 1.2]. We were unable to obtain a proof of Proposition 5.5
which made use of this fact.

Proposition 5.6. The operator κα maps M∗
ρ(H) into M∗

ρ(G).

Proof. First note that jα :A(G) → Bρ(H) is contractive with respect to the uniform norms on
A(G) and Bρ(H), so we can extend jα to a contractive mapping τα :C0(G) → LUC(H) also
described by

τα(f ) =
{

f ◦ α on Y,

0 off Y

(
f ∈ C0(G)

)
.

(We remark that the same formula defines a contractive homomorphism of LUC(G) into
LUC(H).) Let IH :M(H) → LUC(H)∗ be the isometric embedding given by

〈IH μ,f 〉 =
∫
H

f dμ
(
f ∈ LUC(H), μ ∈ M(H)

)

(see e.g. [10]) and define σα :M(H) → M∗
ρ(G) so that the diagram

LUC(H)∗
τ∗
α

M(G)

ρG

M(H)

IH

σα

M∗
ρ(G)

commutes. For μ ∈ M(H) we claim that σα(μ) = κα(ρH (μ)). Assuming that μ has compact
support K , ρH (μ) also has compact support K [8, Remarque 4.7]. Take γ ∈ A(H) such that
γ ≡ 1 on a neighbourhood of K so that ρH (μ) = γ · ρH (μ). For ψ ∈ A(G) we have

〈
σα(μ),ψ

〉
VN−A

= 〈
ρG

(
τ ∗
α

(
IH (μ)

))
,ψ

〉
VN−A

by (5.1) = 〈
τ ∗
α

(
IH (μ)

)
,ψ

〉
M−C0

=
∫

ταψ dμ =
∫

(jαψ)γ dμ
H H
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= 〈
ρH (μ), (jαψ)γ

〉
VN−A

= 〈
κα

(
γ · ρH (μ)

)
,ψ

〉
VN−A

= 〈
κα

(
ρH (μ)

)
,ψ

〉
VN−A

,

giving the claim. Thus, κα maps ρH (M(H)) into M∗
ρ(G) and therefore κα maps M∗

ρ(H) into
M∗

ρ(G). �
Remark 5.7. The map κ∗

α :M∗
ρ(G)∗ → M∗

ρ(H)∗ is of interest to us (see Theorem 5.9) and can
be described as follows.

Let m ∈ M∗
ρ(G)∗ and take (φi)i to be a net in A(G) such that πG(φi) → mw∗ in M∗

ρ(G)∗.
Then for each μ ∈ M(H),

〈
κ∗
α(m),ρH (μ)

〉 = lim
i

∫
H

jαφi dμ = lim
i

∫
Y

φi ◦ α dμ

where α :Y ⊂ H → G.

Indeed, w∗–w∗-continuity of κ∗
α and the calculation found in the proof of Proposition 5.6 give

〈
κ∗
α(m),ρH (μ)

〉 = lim
i

〈
κ∗
α

(
πG(φi)

)
, ρH (μ)

〉 = lim
i

〈
πG(φi), κα

(
ρH (μ)

)〉
= lim

i

〈
κα

(
ρH (μ)

)
, φi

〉
VN−A

= lim
i

∫
H

jαφi dμ.

Proposition 5.8. The operator κα maps Wu(Ĥ ) into Wu(Ĝ) and APu(Ĥ ) into APu(Ĝ).

Proof. It is obvious that Wu(Ĥ ) and APu(Ĥ ) are Bρ(H)-invariant, so we know from Propo-

sition 5.3 that XW = κα(Wu(Ĥ )) and XA = κα(APu(Ĥ ))) are topologically invariant and intro-
verted in VN(G). By a theorem of Lau [19, Theorem 5.6], to prove that XW is contained in W(Ĝ)

it suffices to show that multiplication in X ∗
W is separately w∗-continuous on bounded sets.

Let m ∈ X ∗
W . Suppose that (ni) is a bounded net in X ∗

W , n ∈ X ∗
W , and ni → n w∗ in X ∗

W .
Let S = κα(T ) ∈ XW where T ∈ Wu(Ĥ ). As (κ∗

α(ni)) is bounded in Wu(Ĥ )∗, and κ∗
α : X ∗

W →
Wu(Ĥ )∗ is a w∗–w∗-continuous homomorphism, Ref. [19, Theorem 5.6] gives

lim
i

〈m 
 ni, S〉 = lim
i

〈
m 
 ni, κα(T )

〉 = lim
i

〈
κ∗
α(m) 
 κ∗

α(ni), S
〉

= 〈
κ∗
α(m) 
 κ∗

α(n), S
〉 = 〈m 
 n,T 〉.

Continuity in the other variable is trivial. Hence, XW is contained in W(Ĝ). One can similarly
use [19, Theorem 5.8] to show that multiplication in X ∗

A is jointly w∗-continuous on bounded
subsets of X ∗

A; Ref. [19, Theorem 5.8] then gives XA ⊂ AP(Ĝ). �
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5.3. Summary

The next two theorems are immediate consequences of Propositions 5.2, 5.6, and 5.8. The
uniqueness statements follow from w∗-density of EG(A(G)) in X∗

G, (see Remark 5.1(i) and
Lemma 3.1(iii)).

Theorem 5.9. Let (XH ,XG) be one of the pairs (UCB(Ĥ ),UCB(Ĝ)), (M∗
ρ(H),M∗

ρ(G)), or

(Wu(Ĥ ),Wu(Ĝ)). Then κα maps XH into XG, the diagram

X∗
G

κ∗
α

X∗
H

Bρ(G)

EG

jα

Bρ(H)

EH

commutes, and κ∗
α :X∗

G → X∗
H is the (unique) w∗–w∗-continuous, homomorphic extension

of jα :Bρ(G) → Bρ(H). If H is (1-)weakly amenable, then κα is completely bounded (and
‖κα‖cb = ‖κ∗

α‖cb = ‖jα‖cb).

If XH contains C∗
ρ(H), let PH : X∗

H → Bρ(H) = C∗
ρ(H)∗ : m �→ m|C∗

ρ(H). Observe that PH

is w∗–w∗-continuous and, by Remark 5.1(iii), PH ◦ EH = idBρ(H).

Theorem 5.10. Let (XH ,XG) be one of the pairs (UCB(Ĥ ),UCB(Ĝ)), (M∗
ρ(H),M∗

ρ(G)), or

(Wu(Ĥ ),Wu(Ĝ)), and let κ̃∗
α = PH ◦ κ∗

α . Then the diagram

X∗
G

κ∗
α

κ̃∗
α

X∗
H

PH

Bρ(G)

EG

jα

Bρ(H)

commutes, and κ̃∗
α :X∗

G → Bρ(H) is the (unique) w∗–w∗-continuous, homomorphic extension
of jα :Bρ(G) → Bρ(H). If H is (1-)weakly amenable, then κα is completely bounded (and
‖̃κ∗

α‖cb = ‖jα‖cb).

Corollary 5.11. Let G be an amenable locally compact group, (XH ,XG) be one of the pairs
(UCB(Ĥ ),UCB(Ĝ)), (M∗

ρ(H),M∗
ρ(G)), or (Wu(Ĥ ),W(Ĝ)).

(i) Then every completely bounded homomorphism ϕ :A(G) → Bρ(H) extends (uniquely) to a
τM–w∗-continuous homomorphism ϕ̃ :B(G) → Bρ(H). This further extends (uniquely) to
w∗–w∗-continuous homomorphisms

Φ :X∗ → X∗ and Φ̃ :X∗ → Bρ(H).
G H G
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Moreover, there is a piecewise affine, continuous map α :Y ⊂ H → G such that

ϕ = jα, ϕ̃ = jα, Φ = κ∗
α, Φ̃ = κ̃∗

α.

If H is (1-)weakly amenable, then all extensions are completely bounded (and cb-norm
preserving).

(ii) Conversely, let Φ :X∗
G → X∗

H be a w∗–w∗-continuous homomorphism which maps A(G)

into Bρ(H) and is completely bounded on A(G). Then there is a piecewise affine, contin-
uous map α :Y ⊂ H → G such that Φ = κ∗

α ; if H is weakly amenable, Φ is completely
bounded on X∗

G.
(iii) Let Φ̃ :X∗

G → Bρ(H) be a w∗–w∗-continuous homomorphism which is completely bounded
on A(G). Then there is a piecewise affine, continuous map α :Y ⊂ H → G such that Φ̃ =
κ̃∗
α ; if H is weakly amenable, Φ̃ is completely bounded on X∗

G.

Proof. By [17, Theorem 3.7], there is a continuous piecewise affine map α :Y ⊂ H → G such
that ϕ = jα ; this extends to jα :B(G) → B(H). As A(G) has a contractive bounded approx-
imate identity, the unit ball of A(G) is τM -dense in the unit ball of B(G) (for example, see
the proof of [18, Theorem 5.6]). By [18, Theorem 5.10], jα is τM–w∗-continuous on bounded
subsets of B(G) and Bρ(H) is w∗-closed in B(H), so jα maps B(G) into Bρ(H); this gives
ϕ̃ = jα :B(G) → Bρ(H). The remaining statements follow from Corollary 4.5 and Theorems 5.9
and 5.10. �

We know from Theorems 5.10 and 5.9 that κ̃∗
α : UCB(Ĝ)∗ → Bρ(H) and κ∗

α : UCB(Ĝ)∗ →
UCB(Ĥ )∗ are the unique w∗–w∗-continuous extensions of jα between the specified spaces. We
also have the very simply described homomorphisms jα ◦ PG : UCB(Ĝ)∗ → Bρ(H) and πH ◦
jα ◦ PG : UCB(Ĝ)∗ → UCB(Ĥ )∗, however as the following example shows, these maps do not
necessarily agree with κ̃∗

α and κ∗
α and are therefore not necessarily w∗–w∗-continuous.

Example 5.12. The following diagrams do not necessarily commute:

(i) UCB(Ĝ)∗

PG

κ̃∗
α

Bρ(G)
jα

Bρ(H)

(ii) UCB(Ĝ)∗

PG

κ∗
α

UCB(Ĥ )∗

Bρ(G)
jα

Bρ(H)

πH

For (i), take G to be a non-discrete amenable locally compact group. Then ρG(eG) /∈ C∗
ρ(G) so

we can choose m ∈ UCB(Ĝ)∗ such that m|C∗
ρ(G) = 0 and m(ρG(eG)) = 1. Let α :G → G :g �→

eG, so jα :Bρ(G) → Bρ(G) :φ �→ φ(eG)1G. Then jα ◦ PG(m) = 0, however κ̃∗
α(m) = PG ◦

κ∗
α(m) �= 0. To see this, let f ∈ L1(G) be such that

∫
G

f = 1 and take (φi) to be a net in A(G)

such that πG(φi) → mw∗ in UCB(Ĝ)∗. Then ρG(f ) ∈ C∗
ρ(G) and w∗–w∗-continuity of κ̃∗

α gives

〈̃
κ∗
α(m),ρG(f )

〉 = lim
i

〈
PG ◦ κ∗

α ◦ πG(φi), ρG(f )
〉 = lim

i

〈
jα(φi), ρG(f )

〉
Bρ−C∗

ρ

= lim
i

φi(eG)

∫
f = lim

i

〈
πG(φi), ρG(eG)

〉 = 〈
m,ρG(eG)

〉 = 1.
G
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To see that diagram (i) does not necessarily commute, take G to be any non-discrete group and
let α :G → G be the identity isomorphism. Then jα = idBρ(G) :Bρ(G) → Bρ(G) has w∗–w∗-
continuous homomorphic extension idUCB(Ĝ)∗ : UCB(Ĝ)∗ → UCB(Ĝ)∗. As κ∗

α is the unique map
with this property, κ∗

α = idUCB(Ĝ)∗ which is surjective. However, we know from Proposition 3.5
that πG is not surjective, so κ∗

α �= πG ◦ jα ◦ PG.

6. Homomorphisms of reduced Fourier–Stieltjes algebras

Throughout this paper we have assumed that the induced homomorphism jα maps Bρ(G) into
Bρ(H). In this section we characterize, in terms of α, when this is the case.

Recall first that if π and σ are unitary representations of G, then π is weakly contained in σ

(π � σ ) if, given any ε > 0, any compact subset K of G, and any positive definite function φ

associated with π , there is a finite sum, ψ , of positive definite functions associated with σ such
that |φ(x) − ψ(x)| < ε (x ∈ K). We will use the fact that π � σ if and only if Bπ ⊂ Bσ [1,
Proposition 3.1]. For much more about weak containment see [2] and [9]. As well, we recall that
the idempotents in B(G) are precisely the characteristic functions 1Z of sets Z in the open coset
ring of G [14]. For an element x ∈ G, lx, rx :B(G) → B(G) denote the left and right translation
operators.

In the following theorem, α :Y ⊂ H → G is a continuous piecewise affine map, with Y written
as a disjoint union Y = ⋃n

i=1 Yi , Yi ∈ Ωo(G), and αi :Ei → G an affine map on Ei = Aff (Yi)

such that α|Yi
= αi |Yi

(i = 1, . . . , n). For each i, Hi is the subgroup Hi = E−1
i Ei of H and

βi :Hi → G is the homomorphism given by βi(h) = α(yi)
−1α(yih) (h ∈ Hi, yi ∈ Yi ). By taking

π = ωG and π = ρG, the theorem respectively describes when jα maps B(G) and Bρ(G) into
Bρ(H).

Theorem 6.1. Let π be a continuous unitary representation of G. Then jα maps Bπ into Bρ(H)

if and only if for each i = 1, . . . , n, the representation π ◦ βi of Hi is weakly contained in ρHi
,

the left regular representation of Hi . In particular, if each Hi is amenable, then jα maps B(G)

into Bρ(H).

Proof. First note that if Hi is amenable, then for any continuous unitary representation σi of Hi ,
σi � ρHi

by the weak containment property of amenable groups [2, Appendix G]. Hence, the
second statement follows from the first statement of the theorem.

Suppose that for each i, π ◦ βi � ρHi
. By [8, Theorem 2.20] and [1, Proposition 3.1],

jβi
(Bπ) ⊂ Bπ◦βi

⊂ BρHi
= Bρ(Hi). The expansion map si :B(Hi) → B(H) :φ �→ φ◦ is w∗–w∗-

continuous (see [18, Lemma 2.2]) and by [8, Proposition 3.21], si maps A(Hi) into A(H); hence
si maps Bρ(Hi) into Bρ(H). It follows that jαi

= l
y−1
i

◦ si ◦jβi
◦ lα(yi ) maps Bπ (which is transla-

tion invariant) into Bρ(H) and therefore, because Bρ(H) is an ideal in B(H), jα = ∑n
i=1 χi ◦ jαi

maps Bπ into Bρ(H) as well; here χiφ = φ1Yi
(φ ∈ Bρ(H)).

Conversely, suppose that jα maps Bπ into Bρ(H). Then for each i, χi ◦ jα = jα′
i

maps Bπ

into Bρ(H) where α′
i = α|Yi

= αi |Yi
. Suppose for now that we can show that jαi

also maps
Bπ into Bρ(H). The restriction map ri of B(H) into B(Hi) is w∗–w∗-continuous and maps
A(H) into A(Hi) so it also maps Bρ(H) into Bρ(Hi) (see, for example [18, Lemma 2.2] and
[8, Proposition 3.21]). Therefore jβi

= ri ◦ lyi
◦ jαi

◦ lα(yi )
−1 maps Bπ into Bρ(Hi), and hence

maps Aπ into Bρ(Hi). That is, jβ (Aπ) = Aπ◦β ⊂ Bρ(Hi), using [1, Proposition 2.10], and

i i
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therefore Bπ◦βi
, the weak∗-closure of Aπ◦βi

, is also contained in Bρ(Hi). Hence, π ◦ βi � ρHi
,

i = 1, . . . , n.
We now fix i, let Z = Yi , E = Aff (Yi), γ = αi , and γ ′ = α′

i = γ |Z . Assuming that jγ ′ maps
Bπ into Bρ(H), we now complete the proof by showing that jγ also maps Bπ into Bρ(H). By
[16, Lemma 4.5], we can choose a finite subset F = {p1, . . . , pm} of E−1E such that E = ZF .
Let

Z1 = Zp1, Zk = Zpk\
k−1⋃
l=1

Zpl for k = 2,3, . . . ,m.

Then each Zk is in the open coset ring of H and E is the disjoint union E = ⋃m
k=1 Zk . Therefore,

jγ φ =
m∑

k=1

(jγ φ) · 1Zk
(φ ∈ Bπ). (6.1)

Let xk, zk ∈ E be such that pk = x−1
k zk , qk = γ (xk)

−1γ (zk), and let z ∈ Zk . Then z = ypk for
some y ∈ Z ⊂ E, so

jγ φ(z) = φ
(
γ
(
yx−1

k zk

)) = φ
(
γ ′(y)γ (xk)

−1γ (zk)
) = jγ ′(rqk

φ)(y) = r
p−1

k

(
jγ ′(rqk

φ)
)
(z).

We are assuming that jγ ′ maps Bπ into Bρ(H), so jγ φ · 1Zk
= r

p−1
k

(jγ ′(rqk
φ)) · 1Zk

∈ Bρ(H),

for φ ∈ Bπ . That jγ maps Bπ into Bρ(H) now follows from (6.1). �
7. Weak∗–weak∗-continuous homomorphisms X∗

G → X∗
H

In this final section, XG and XH are, respectively, subspaces of UCB(Ĝ) and UCB(Ĥ ) which
are topologically invariant and introverted in VN(G) and VN(H). It seems natural to wonder
when a map κ :XH → XG dualizes to give a homomorphism j :X∗

G → X∗
H . In this section we

describe such maps as those which intertwine various module actions.
We let AG = X∗

G, AH = X∗
H . The dual AG-module action on A∗

G is denoted by

〈m.M,n〉 = 〈M,n 
 m〉 and 〈M.m,n〉 = 〈M,m 
 n〉 (
M ∈ A∗

G, m,n ∈ AG

)
.

As before XG is also a Banach A(G)-submodule of VN(G), and is a Bρ(G)-submodule of
VN(G) when XG is Bρ(G)-invariant (see Section 5.1); we continue to denote these module
operations by φ · T = T ·φ for φ ∈ Bρ(G) and T ∈ XG. Defining EG = RG ◦πG :Bρ(G) → X∗

G

as in Section 5.1 we will slightly abuse notation and write φ̂ = EGφ(= φ̂|XG
). The map φ �→ φ̂ is

an isometric embedding (completely isometric if G is 1-weakly amenable) when C∗
ρ(G) ⊂ XG;

see Remark 5.1.

Lemma 7.1. For φ ∈ A(G) and T ∈ XG ↪→ X∗∗
G = A∗

G, φ̂.T = φ · T = T · φ = T .φ̂. When XG is
Bρ(G)-invariant the statement holds for φ ∈ Bρ(G).

Proof. Assume that XG is Bρ(G)-invariant, let T ∈ XG, φ ∈ Bρ(G). For m ∈ AG,

〈φ̂.T ,m〉 = 〈T ,m 
 φ̂〉 = 〈
m, φ̂L(T )

〉 = 〈m,φ · T 〉 = 〈φ · T ,m〉
as needed. �
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Let

κ :XH → XG, j = κ∗ :AG → AH .

The following proposition describes when j is a homomorphism.

Proposition 7.2. The map j :AG → AH is a homomorphism if and only if

κ(T ) · φ = κ∗∗(T .j (φ̂)
) (

T ∈ XH , φ ∈ A(G)
)
. (7.1)

Proof. Suppose that κ satisfies (7.1) and let m,n ∈ AG. Then for T ∈ XH and φ ∈ A(G),

〈
nL

(
κ(T )

)
, φ

〉
VN−A

= 〈
n,κ(T ) · φ〉

X∗
G−XG

= 〈
κ(T ) · φ,n

〉
A∗

G−AG

= 〈
κ∗∗(T .j (φ̂)

)
, n

〉
A∗

G−AG
= 〈

T .j (φ̂), j (n)
〉
A∗

H −AH

= 〈
j (φ̂) 
 j (n), T

〉
X∗

H −XH
= 〈

φ̂, κ
(
j (n)L(T )

)〉
X∗

G−XG

= 〈
κ
(
j (n)L(T )

)
, φ

〉
V N−A

.

Therefore,〈
j (m 
 n),T

〉 = 〈
m 
 n,κ(T )

〉 = 〈
m,nL

(
κ(T )

)〉 = 〈
m,κ

(
j (n)L(T )

)〉 = 〈
j (m) 
 j (n), T

〉
.

Conversely, suppose that j is a homomorphism. Then〈
m,κ

(
j (n)L(T )

)〉 = 〈
j (m) 
 j (n), T

〉 = 〈
j (m 
 n),T

〉 = 〈
m,nL

(
κ(T )

)〉
,

so nL(κ(T )) = κ(j (n)L(T )) (n ∈ AG). Hence,

〈
κ(T ) · φ,n

〉
A∗

G−AG
= 〈

nL

(
κ(T )

)
, φ

〉
VN−A

= 〈
κ
(
j (n)L(T )

)
, φ

〉
VN−A

= 〈
κ∗∗(T .j (φ̂)

)
, n

〉
A∗

G−AG
,

where we have used parts of the first calculation found in this proof. �
Further to the hypotheses of the last proposition, suppose that XH is Bρ(H)-invariant and that

j (A(G)) ⊂ Bρ(H) (identifying Bρ(H) with EH (Bρ(H))). Under these hypotheses, Lemma 7.1
and Proposition 7.2 give the following corollary.

Corollary 7.3. j = κ∗ :AG → AH is a homomorphism if and only if

κ(T ) · φ = κ
(
T · j (φ)

) (
T ∈ XH , φ ∈ A(G)

)
.

For φ ∈ Bρ(G) and f ∈ L1(G), φ ·ρG(f ) = ρG(φf ), so C∗
ρ(G) is Bρ(G)-invariant. Also note

that the module action agrees with the dual action of Bρ(G) on C∗
ρ(G) ↪→ C∗

ρ(G)∗∗ = Bρ(G)∗,
and that EG :Bρ(G) ↪→ C∗

ρ(G)∗ = Bρ(G) is the identity map in this case. The next corollary
says that the dual map j = κ∗ of κ :C∗

ρ(H) → C∗
ρ(G) is a homomorphism if and only if, for

each φ ∈ A(G), κ is intertwining with respect to the module actions by j (φ) and φ.
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Corollary 7.4. Let κ :C∗
ρ(H) → C∗

ρ(G), j = κ∗ :Bρ(G) → Bρ(H), and consider the following
statements:

(i) j is a homomorphism;
(ii) for any T ∈ C∗

ρ(H) and φ ∈ A(G), κ(T ) · φ = κ(T · j (φ));
(iii) there is a continuous piecewise affine open map α :Y ⊂ H → G such that

〈
φ,κ

(
ρH (f )

)〉 = ∫
Y

φ
(
α(s)

)
f (s) ds

(
φ ∈ Bρ(G), f ∈ L1(H)

)
.

Then (i) ⇔ (ii) and (i) ⇔ (ii) ⇔ (iii) when G is amenable and κ is completely bounded.

Proof. The first statement is immediate from Corollary 7.3; the second statement is a conse-
quence of [18, Theorem 5.11]. �
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