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Abstract

In this paper, some left-symmetric algebras are constructed from linear functions. They include a
kind of simple left-symmetric algebras and some examples appearing in mathematical physics. Their
complete classification is also given, which shows that they can be regarded as generalization of
certain two-dimensional left-symmetric algebras.
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1. Introduction

A left-symmetric algebra is an algebra whose associator is left-symmetrid: et a
vector space over a fiellwith a bilinear productx, y) — xy. A is called a left-symmetric
algebra if for anyy, y, z € A, the associator

(-x! y! Z)Z(xy)Z—x(yZ) (11)
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is symmetric inx, y, that is,
(x,y,2)=(y,x,z) orequivalently (xy)z —x(yz) = (yx)z — y(x2). (1.2)

Left-symmetric algebras are a class of non-associative algebras arising from the study of
convex homogenous cones, affine manifolds and affine structures on Lie groups [13,19,22].
Moreover, they have very close relations with many problems in mathematical physics. For
example, they appear as an underlying structure of those Lie algebras that possess a phase
space ([15-18], thus they form a natural category from the point of view of classical and
guantum mechanics) and there is a close relation between them and classical Yang—Baxter
equation [9,10,12].

However, due to the non-associativity, there is not a suitable representation theory of
left-symmetric algebras. It is also known that the definition identity (1.2) of left-symmetric
algebras involves the quadric forms of structure constants, which is not linear in gen-
eral [13]. Hence it is quite difficult to study them. Therefore, one of the most important
problems is how to construct interesting left-symmetric algebras. One way is to construct
them through some well-known algebras and algebraic structures. This can be regarded as
a kind of “realization theory.” For example, there is a study of realization of Novikov
algebras (they are left-symmetric algebras with commuting right multiplications) from
commutative associative algebras and Lie algebras in [3-5]. Another way is to try to reduce
the “non-linearity” in certain sense. Combining these two ways, a natural and simple way
is to construct left-symmetric algebras from linear functions, which is the main content of
this paper.

On the other hand, there are many examples of left-symmetric algebras appearing in
mathematical physics ([6,11,12,21], etc.). For exampleVldte a vector space over the
complex fieldC with the ordinary scalar produ¢f) anda be a fixed vector iV, then

uxv=w,vya+ u,a)v, Yu,veV, (1.3)

defines a left-symmetric algebra an which gives the integrable (generalized) Burgers
equation [20,21]

Uy=Usxx+2U * Uy + (U (U xU)) — (U xU) = U). (1.4)

However, such examples are often scattemad independent in different references of
mathematical physics. And in most of the cases, there is neither a good mathematical mo-
tivation nor a further study. In this paper, our construction not only has a natural motivation
from the point of view of mathematics, but also can be regarded as a kind of generalization
of the examples given by Eq. (1.3). Moreover, a systematic study is given.

The algebras that we consider in this paper are of finite dimension anc€CoVére pa-
per is organized as follows. In Section 2, we construct left-symmetric algebras from linear
functions. In Section 3, we give their classification. In Section 4, we discuss some proper-
ties of these left-symmetric algebras and certain application in mathematical physics.



C. Bai/ Journal of Algebra 281 (2004) 651-665 653

2. Constructing left-symmetric algebrasfrom linear functions

Let A be a vector space in dimensianIn general, we assume>> 2. Just as said in
the introduction, motivated by the study of algebraic structure itself and some equations
in integrable systems, it is natural to consider the left-symmetric algebras satisfying the
following conditions: for any two vectors, y in A, the produck * y is still in the subspace
spanned by, y, that is, any two vectors make up a subalgebra ihus, it is natural to
assume

xxy= fi(x,y)x + f2(x,y)y, Vx,yeA, (2.1)

where f1, f2: A x A — C are two functions. In generalfy and f> are not necessarily
linear. However, if they are not linear functions, they cannot be decided by their values at a
basis ofA. Hence the problem turns to be more q@ivated, even more complicated than
the study of the algebra itself.

Therefore, we can assume thatand f> are linear functions. Since the algebra prod-
uct = is bilinear, for f1 # 0, f1 depends on only, that is, f1 is not a linear function
depending onx. Otherwise, for any. € C, we have

(Ax) %y = frOx, )Ax + f20x, )y = A2 f1(x, Y)x + Afa(x, y)y
=A(f1(x. Y)x + f2(x, y)y). (2.2)

Hencefi(x, y) =0,Vx, y € A, which is a contradiction. Similarlyf> depends on only.
Thus, we can sefi(x, y) = f(»), f2(x,y) = g(x), where f,g: A — C are two linear
functions.

Proposition 2.1. Let A be a vector space in dimensian> 2. Let f,g: A — C be two
linear functions. Then the product

xxy=f(y)x+g)y, Vx,yeA (2.3)

defines a left-symmetric algebra if and onlyfi= 0 or g = 0. Moreover, whenf = 0 or
g = 0, the above equation defines an associative algebra.

Proof. For anyx, y, z € A, the associator

x,y,)=(*y)*z—x*%x(y*2)
=fOM(f@x+g@)z) + ) (f @y +g(z) — F@(f(3)x +gx)y)
—gM(f@)x +g(x)z)
=f(Mg)z—g() f(2)x.

Hence(x, y, z) = (y, x, z) if and only if for anyy, z € A, g(y) f(z) =0, thatis,f =0 or
g =0. Moreover, whery =0 org =0, (x, y, z) = 0. Thus the proposition holds.cO
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Let L, R, denote the left and right multiplication, respectively, i.£,(y) = xy,
R, (y)=yx,Vx,yeA.

Corollary 2.2. With the conditions in above proposition, we have

(1) If f =0, g #0, then there exists a bassy, ..., e,} in A such thatL., =1Id, L., =
0,i =2,...,n,whereld is the identity transformation.

(2) If g=0, f #0, then there exists a basféy, ..., e,} in A such thatk,, =1d, R,, =0,
i=2,...,n.

(3) If f =g =0, thenA is a trivial algebra, that is, all products are zero.

Proof. For any linear functiory : A — C, if g # 0, due to the linearity o§ and the direct
sum of vector spaces

A=Kerg®g(A)=Kerg®C,

there exists a basi{g1, ..., e,} in A such thatg(e1) #0, g(e;) =0,i =2, ..., n. Further-
more, we can normalize by g(e1) = 1. Hence (1) and (2) follows. (3) is obvioust

Remark 1. There is a natural matrix representatiof above associative algebras [8]. Let
{E;;} be the canonical basis gf(n), that is, E;; is an x n matrix with 1 atith row and

jth column and zero at other places. Then the algebra in above case (1) (respectively (2))
is an associative subalgebraglfn) (under the ordinary matrix product) with = Ey;
(respectively; = E;1).

It is well known that the commutator of a left-symmetric algebray] = xy — yx
defines a (sub-adjacent) Lie algebra ([13,19], etc.).

Corollary 2.3. The sub-adjacent Lie algebras of the associative algebras defined by equa-
tion (2.3)with g =0, f #0, or f =0, g # 0 are isomorphic to the followin@-step
solvable Lie algebra

A=(e,i=1,....n|[er.eil=e;, i=2,...,n, other products are zejo (2.4)

Proof. For case (1) in Corollary 2.2, the conclusion is obvious. For case (2) in Corol-
lary 2.2, we only need a linear transformation by lettingbe —e1 ande; still be ¢;
(i=2,...,n), which the conclusion follows. O

Remark 2. The above conclusion also can be obtained from Eq. (2.3) directly. That is, the
Lie algebra given byx, y] = (f — g)(x)y — (f — g)(y)x is isomorphic to the Lie algebra
given by Eq. (2.4) forg # f. In fact, this algebra can be regarded as a (unique!) non-
abelian Lie algebra constructed from linear functions: it is easy to show that the product
[x,y]= f(x)y + g(y)x defines a Lie algebra if and only jff(x) = —g(x), Vx € A.
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Due to the above discussion, in order to get non-associative left-symmetric algebras, we
need to extend the above construction. A simple extension of Eq. (2.3) is to add a fixed
vectorc # 0 as follows:

xxy=fx)y+gyx+h(x,y, Vx,y€eA, (2.5)

whereh : A x A — Cis anon-zero bilinear function. The above Eq. (2.5) can be understood
that for any two vectors, y, the three vectors, y, c make up a subalgebra i Moreover,
if 1 is symmetric, then its sub-adjacent Lie ddge is isomorphic to the Lie algebra given
by Eq. (2.4) (f # g) or the abelian Lie algebrg(= g).

For a further study, we give a lemma on linear functions at first.

Lemma 2.4. Let A be a vector space in dimensiarn> 2. Let f, g: A — C be two linear
functions andz: A x A — C be a symmetric bilinear function.

(1) Ifforanyx,ye A, f(x)g(y) = f(y)g(x),thenf =0,0org=0,0r f #0, g #0and
there existsx € C, o # 0 such thatf (x) = ag(x), Vx € A.

(2) Ifforanyx,y,z€ A, f(x)h(y,z) = f(y)h(x,z),thenf =0, or h =0, or there ex-
ists a baside1,...,e,} in A anda € C, o # 0 such thatf (x) = h(x, ae1), Vx € A;
h(e1,e1) =1,h(ei,e;)=0,i=2,...,n,j=1,...,n.

Proof. For a linear functiory, if f # 0, we can choose abagis, ..., ¢,} in A such that
f(e1) #0, f(ea) == f(en) = 0. If g #0, then fromf (x)g(y) = f(y)g(x), we can
haveg(e1) #0, g(e;) =0,i =2,...,n. Leta = f(e1)/g(e1), then by linearity, for any
x € A, we havef (x) = ag(x).

Similarly, for f = 0 and the basiée1, ..., e,} in A such thatf(e1) #0, f(e2) =--- =
f(en) =0, we haveh =0 orh(ey, e1) # 0 andh(e;,e;) =0,i=2,...,n, j=1,...,n.
For the latter case, we can normalizeby h(e1,e1) = 1. Thus, we still havef (x) =
h(x,ae1),Vx € A, wherea = f(e1)/h(e1,e1) = f(e1). O

Theorem 2.5. With the conditions in above lemma ahd# O, Eq. (2.5) defines a left-
symmetric algebra if and only if the functioiisg, 4 belong to one of the following cases

(1) f=g=0,h(x,c)=0,Vx € A;

(2) f=g=0, and there exists a bas{8y, ..., ¢,} such thati(e1, e1) =1, h(e;, e;) =0,
i=2,...,n,j=1...,n,andc=3"7"_;aje; withay #0;

(3) =0, f#0, f(x)=h(x,c),Vx € A;

(4) g =0, f #0, and there exists a basigi1,...,¢,} anda € C, a # 0 such that
fx) =h(x,c—aep), hler,e1) =1, hiej,e;) =0,i=2,...,n, j=1,...,n, and
c=Y" qaie; Witha # «;

(5) f=0,¢+#0, g(x)=—h(x,c),Vx € Aandh(c,c) =0;

(6) f=0,g+#0, h(x,c) =0, Vx € A, and there exists a bas{g1,...,e,} anda € C,
o # 0 such thatg(x) = h(x,ae1), h(e1,e1) =1, h(ej,e;)) =0,i=2,...,n, j =
1,....n;



656 C. Bai/ Journal of Algebra 281 (2004) 651-665

(7) f#0, g #0, f(c) # 0 and there existsx € C, o # 0 such thatg(x) = af (x),
h(x,y)=—f(x)f(»/f(c), Vx € A.

Proof. For anyx, y, z € A, the associator

(x,y,2)=@x*xy)xz—x*(y*27)
= fO[fMz+g@y +h(y,c]+ W[ f )z + g@)x + h(x, 2)c]
+h(x, V[ f(©)z+g@)c+h(c,2)c] — fFW[f )z + g@)x +h(x,z)c]
—8@[f @)y +8Wx +h(x,y)c] —h(y,2)[f(x)c+ glc)x + h(x, c)c]
= [-fMe@ = g@Oh(y, D]x + [¢() f @) + f(h(x, 0]z
+[gWh(x,2) = f(Mh(x,2) + h(x, y)h(c,z) — h(y, 2h(x, ) ]c.

Then by left-symmetry, we can get the following equations: forany, z € A,

Fgkx) =gy f(x); (2.6)
F(g@) +g)h(y,z) =0; (2.7)
[((g—=HD)+h(y.0)hx.2) =[(g — /Hx) + h(x, ) ]h(y. 2). (2.8)

From Eq. (2.6) and using Lemma 2.4, we can consider the following cases.

Case(l). f = g =0. Thereis only one non-trivial equatiéfy, c)h(x, z) = h(x, c)h(y, 2).

Let #/(x) = h(x, c¢), then by Lemma 2.4, we know that(x) = O or there exists a basis
{e1,...,ey} in A anda € C, a # 0 such that'(x) = h(x, ae1), Vx € A; h(e1,e1) =1,
h(ej,e;) =0,i=2,...,n, j=1,...,n. The former is the case (1) and the latter is the
case (2) sincé(x, c) = h(x,aey) implies thatuy =a # 0 forc =", aje;.

Case(ll). g=0, f #0. Then Eq. (2.7) is satisfied. From Eq. (2.8) and using Lemma 2.4
again, we havef (x) = h(x,c¢) or there exists a basig;, ..., e,} such thatk(e1, c) —
fler) #0, f(e;) =h(ei,c) =0; h(er,e1) =1, h(ej,e;)=0,i=2,...,n, j=1,..., n.

The former is the case (3) and the latter is the case (4) where- f (e1) +h(e1, ¢). Notice

for the latter,f # 0 if and only ifa1 # o forc = Y"7_; aje;.

Case(lll). f =0,g #0. From Eq. (2.7), we havg(c) = 0. As the same as the discussion
in Case (ll), Eq. (2.8) implies that(x) = —h(x, ¢) or there exists a basfsy, ..., ¢,} such
that g(e1) + h(e1, ¢) #0, g(e;) = h(ei,c) =0, h(er,e1) =1,h(ej,e;) =0,i=2,...,n,
j=1,...,n. The former is the case (5). For the latter, we hawe) = —h(x,c) +
ah(x,e1) Wherea = g(e1) + h(e1,c). Setc =Y 7 ; aje;, theng(c) = —a% +aa1 =0.
Thusai = «a or a1 = 0. Therefore ifg £ 0, we haveh(x,c) =0 andg(x) = h(x, ae1)
which is just the case (6).
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Case (1V). f #0, g #0. Thus there exista # 0 such thatg(x) = af (x). Hence from

Eq. (2.7) and the assumptidn=£ 0, we know thatf (c) # 0 andh(x, y) = —%,
Vx € A. Itis easy to see that Eq. (2.8) holds unttese conditions. This is the case (7)2

Corallary 2.6. The left-symmetric algebras given in Theor2fhare commutativéhence
associativg, if and only if their sub-adjacent Lie algebras are abelian, if and only if they
belong to the casfl), (2), and(7) with « = 1.

By direct checking, we have
Corollary 2.7. Let A be a left-symmetric algebra in Theoréhb.

(1) If Ais in the casg1), (2), (4), (6), (7) then the corresponding bilinear functidn
satisfies

h(x*y,z)=h(y*xx,z) =h(xxz,y), Vx,y,z€A. (2.9)

(2) If A isin the casd3), then the corresponding bilinear functidnis invariant under
the following sense

h(xxy,z)=h(x,z*xy), Vx,y,z€A. (2.10)

That is, for every, y,z € A, h(R,(y), z2) = h(y, R« (2)) (R, is self-adjoin}.
(3) If Aisinthe casdb), then the corresponding bilinear functiégnsatisfies

h(x*y,z)+h(y,x+z)=0, Vx,y,zeA. (2.11)

That is, for every, y,z € A, h(Ly(¥),2) + h(y, L« (z)) =0.

3. Classification of left-symmetric algebrasfrom linear functions

In this section, we discuss the classification of left-symmetric algebras given in Theo-
rem 2.5. Since the bilinear functidgnappearing in the case (2), (4), (6), and (7) has been
(almost) decided completely, we give the classification of these cases at first.

Proposition 3.1. Let A be a left-symmetric algebra in the ca@ with dimensiom > 2.
ThenA is isomorphic to the following algebr@ve only give the non-zero produjts

A =(ei, i=1....,nleler=e1). (3.1)

Proof. Forc=Y""_; aje; with a1 #0, let

.1 1
ey="—e1+= Y aiei, ¢j=ej, j=2,....n,
a1 1i=2

then under the new basis, Eq. (3.1) followsa
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Proposition 3.2. Let A be a left-symmetric algebra in the ca@h with dimensiom > 2.
ThenA is isomorphic to one of the following algebras

A(l4)=(e,~, i=1...,n|letexr=e1+ep, erej=¢e;, j=2,...,n); (3.2

Ai‘4)=(e,',i:l,...,n|elelzke1, elej=ej, j=2,...,n), ArA#12 (3.3)

Proof. For the case (4), we have

n
e1xe1=h(e1, (a1 — @er)er+h(e, en)e = (a1 —a)er +c = (a1 —a)er + Y _aie;,
i=2
e1xe; = (a1 — a)e;, eixej=0, i=2...,n, j=1...,n

If a1 =0, thenc = )"} _,a;e; # 0. Without losing generality, we suppasg+ 0. Let

1 1
/ / / .
elz—ael, 322;& ejzej,]=3,...,n,
then under the new basis, we can get Eq. (3.2).
If a1 # 0 andai # «, then let

n

, 1 1 , .
el = e1+ Zaiei, e;=ej, j=2,...,n.

a1 —o (a1 —a)ay 4
i=2
Hence under the new basis, we have
201 — «
el xey = ——e, e kel =ée, elxe’, =0, i=2,...,n, j=1,...,n.
17 a; —a 1 1*% i i J

Sig: ﬁ which gives Eq. (3.3). Notice that # 1,2 sinceas # 0,a1 # o and
a#0. O

As the same as the proof of Eq. (3.2), we have the following proposition.

Proposition 3.3. Let A be a left-symmetric algebra in the ca@ with dimensiom > 2.
ThenA is isomorphic to

Ag=(ei, i=1...,nlelex=e1+ep ejer=¢j, j=2,...,n). (3.4)

Proposition 3.4. Let A be a left-symmetric algebra in the caE® with dimensiom > 2.
ThenA is isomorphic to one of the following algebras

‘E‘?)z(e,', i=1...,nleler=ae1, erej=ej, ejer=wej, j=2,...,n),

a#0. (3.5)
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Proof. Without losing generality, we can choose a bdsis.. ., ¢,} such thak; = ¢ and
f(e2)=---= f(ey) =0. Hence

e1xe1=af (e1)e1, e1*xej = f(erej, ejxer=oaf(eej, j=2,...,n.

The conclusion follows by the basis transformation

1 /
e1, e
f(e1) /

/ .
e1= =e;, j=2,...,n. O

In order to classify the left-symmetric algebras in other cases, we need the following
lemma.

Lemma 3.5. Let A be a finite-dimensional algebra over. LetA = A1 ® A2 as the direct
sum of two subspaces add be a subalgebra. Assume that, for everg A1, L, and R,
acts onAy is zero orld. If there exists a non-zero vectore A; such that for any two
vectorsx, y € Az, xy = yx € Cuv, then the classification of the algebraic operationdp
(without changing other produdtis given by the classification of symmetric bilinear forms
on an-dimensional vector space ov€r, wheren = dim A,. That is, there exists a basis
{e1,...,e,} In A2 such that the classification is given as follows is trivial or for every
k=1,...,n:

o 5,']'1), i,j=1,...,k;
“ier= { 0, otherwise (3:6)

Proof. From the assumption, there exists a symmetric bilinear férm, x A — C such
that

xy=f(x,y)v, Vx,yeAs

Moreover, any linear transformation af does not change the operation relations between
A1 andAy, hence the whole algebra= A1 @ A». Thus the classification o, is decided
completely by the classification of symmetric bilinear forms on a vector space in dimension
dim A,. Therefore there exists a bagis, ..., e,} in Az such that the matrixf(e;, ¢;))

is zero or a diagonal matrix with the firgt(k = 1, ..., n) elements are 1 and the others
are zero on the diagonal, which gives Eg. (3.6). It is easy to show that for diffierte
algebras are not mutually isomorphict

Proposition 3.6. The classification of left-symmetric algebras in the cdavith dimen-
sionn > 2 is equivalent to the classification of symmetric bilinear forms o & 1)-
dimensional vector space. The classification is given as follfmweveryk =0, ...,n — 1,

Ay =t(ei.i=1...nlejej=e1, j=2.....k+1). (3.7)
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Proof. Let A be a left-symmetric algebra in the case (1) with dimengign2. We can
choose a basig1, ..., e,} such thak; = c. Thus we have

etxer=ejxe;j=ejxe; =0, ejxep=h(ej,ex)er, jk=2,...,n.

Let A1 be a subspace spanneddayand A, be a subspace spanneddy. .., e,. Then by
Lemma 3.5, the proposition holdsO

Proposition 3.7. The classification of left-symmetric algebras in the c@avith dimen-
sionn > 2 is given by the following matriceg” = (i(e;, ¢;)), wherefes, ..., e,} is a

basig:
10 0 01 0
=1, FP=(oo o), FP=(10 o], (3.8)
0 0 A® 0 0 AW

whereA® =diag1,...,1,0,...,0) isa(n — 2) x (n — 2) diagonal matrix with the first

k elements ard and the others are zero on the diagovak=0,1...,n — 2. The corre-
sponding left-symmetric algebras are

A(l3)=(ei, i=1...,n|ele1=2e1, erej=¢j, ejej=e1, j=2,...,n); (3.9)

A%;’Z:(e,», i=1,...,n|eie1=2e1, erej=ej, ee;=e1, j=2,...,n,
1=3,...,k+2); (3.10)
AE§;’3= (ei, i=1,...,n|elep=e1, ege1 =2e1, exex =e2, exej =ej, eje; =eq,
j=3,...,n,1=3,...,k+2). (3.112)

Proof. Let A be a left-symmetric algebra in the case (3) with dimengign2. Without
losing generality, we can assume- e1. At first we consider the cagge1, e1) # 0. Thus
we can choosey, ..., e, such thates, ..., e,} is a basis and(e1,e;) =0, j=2,...,n.
Seth;; = h(e;, ;). Therefore the product of is given by

e1xe1 = 2h11e1, e1*xej =hyiej, ej*xe1=0,

ejxe=hjel, jl=2,...,n
Moreover, we can assuntg1 = 1 by letting

!/ 1 /I 1 . _2
6‘1——31, E-——Ej, ] =4 ...,1n.

hi11 7 Jh1

Let A1 = Ce1 and A, be a subspace spanned &y. . ., ¢,, then from Lemma 3.5, we

know the classification of above algebras is just given by the méagriand Fz(k), respec-
tively, which corresponds to the left-symmetric algebra given by Egs. (3.9) and (3.10),
respectively.
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Next assuméi(c, c) = h(ey, e1) = 0. Since there exists an element A such that
h(u,c) #0, we can letu = e¢2. Then we can chooss, ..., e, such thatle,...,¢,} is a
basis andi(e1,¢;) =0, j =1,3,...,n. Hence we have

e1xe1 =0, e1 % e2 = hygeq, e2x e1 = 2h12e1,
e2 % e2 = h12e2 + hooeq, ejxey=erxej =0, ex*xej =higej + hpjen,
ejxex=hpjey, ejxe=hjel, jl=3, ..., n
Let
el =e1, e’zziez—ﬁel, e’-:ej—@el, j=3,...,n.
hiz = 2hip ! h3,

Under the new basis, we have

el xep =0, el xes=el, e x e = 2e), e x e = e,
/ r_ ’_ / r_ / ;o
ej*el_el*ej_o, epke;=e;, ej*ez_O,

/ / / .
ej*elzh.,'lel, Jj,1=3,...,n.

Let A; be a subspace spanned by e, and A2 be a subspace spanned &y ..., e,
then from Lemma 3.5, we know the classification of above algebras is just given by the

matrix F§", which corresponds to the left-symmetric algebra given by Eq. (3.11).

As the same as the proof of the ca%%i’?’ in above proposition, we have

Proposition 3.8. The classification of left-symmetric algebras in the céSewith di-
mensionn > 2 is given by the matriWék). The corresponding left-symmetric algebras

is(k=0,1,....n—2)

k .
AE5;=(61', i=1...,nleer1=—e1, e2e2=e2, ejex=e¢j, eje;=e1,

3<j<n 3<I<k+2). (3.12)

Corollary 3.9. Let A be a left-symmetric algebra in dimensie: 2 given in Theorer2.5.
If the bilinear functionk is non-degenerate, thefi is isomorphic to one of the following

1 . ,(m=2).3. 4(n-2
algebras A Ag A -

Theorem 3.10. When the dimension = 2, the left-symmetric algebras given in Theo-
rem2.5are not(mutually) isomorphic except for

©.3 _ 41/2 © _ 4-1
AR~ AL A~ AL (3.13)

Moreover, with the associative algebras given in Corollac® together, they include all
two-dimensional non-commutative left-symmetric algebras.
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Proof. Comparing the classification of two-dim&onal left-symmetric algebras given in
[1] or [8], the conclusion follows immediately. Notice thélg;’3 is isomorphic toA(17)2 by

e1— e2,e2 —> 2e1 andAEg; is isomorphic toA(L& by e1 — e2, e2 — —e1, which the order
of e1, ez is changed respectively.oo

Remark 3. Obviously, some commutative associative algebras such as the direct sum of
two fieldsC & C are not included in above algebras. Moreover, we would like to point
out that the above conclusion is not obvious since for a general algebra, the “linear” con-
struction like in this paper has certain restriction conditions for the corresponding structure
constants, which could not contain all (non-trivial) examples.

Coroallary 3.11. Whem > 2, the left-symmetric algebras given in Theor2rfiand Corol-
lary 2.2 are not mutually isomorphic.

Proof. Itis easy to see that when> 2, Ag,s is not isomorphic t04(17/)2 andAE’;; is not

isomorphic toAj&. With the special roles afy, e; in the algebraic operation and similar to
the classification of two-dimensional left-symmetric algebras in [1] or [8], the conclusion
follows by a straightforward analysis.co

4. Further discussion

In this section, we discuss some properties of the algebras given in the previous sections
and certain application in mathematical physics.

Theorem 4.1. The left-symmetric algebras given by E#.3) are isomorphic to the left-
symmetric algebraﬁé). Moreover, it is a simple left-symmetric algebra, that is, it has no
ideals except itself and zero.

Proof. The first half of the above conclusion follows directly from the proof of Proposi-
tion 3.7 and the fact that for every£ 0, h(c, ¢) # 0 sinceh is the ordinary scalar product.
The simplicity of the algebra is proved in [8].0

Remark 4. The simple left-symmetric algebmgl) is firstly constructed in [8]. In certain
sense, our re-construction gives it an interesting (geometric) interpretation.

Due to Corollary 2.7, we have

Corollary 4.2. The scalar product appearing in E¢L.3)is invariant under the sense of
Eq.(2.10)

Corollary 4.3. The(generalize§lBurgers Eq(1.4)is just the following equatian



C. Bai/ Journal of Algebra 281 (2004) 651-665 663

n
1_ .1 1.1 Jo .
uy =u,, +4u ux-l—ZE u’uy;
j=2

k_ k 1k 1.1k k. k. k _
uf =uy, +2uuy —uuut —ututu", k=2,...,n. (4.1)

Proof. Let C{‘j be the structure constants. Hence Eq. (1.4) gives

n n
i i ik i ol _ ol i\ dm
up =t +2 ) Chadu+ Y (CpyCiy — Ciy Gy Ju*ulu™.
Jk=1 k,j.l,m=1

For the left-symmetric algebm(ls), the non-zero structure constants @tg = 2, C}j =1,
C{j =1,j=2,...,n.Hence Eq. (4.1) follows. O

Besides the simple left-symmetric algeb?ré), there are some other algebras appearing
in Theorem 2.5 and Corollary 2.2 satisfying certain additional (interesting) conditions,
which play important roles in the study of left-symmetric algebras.

Definition. Let A be left-symmetric algebra.

(1) If for everyx € A, Ry is nilpotent, thenA is said to be transitive or complete. The
transitivity corresponds to the completeness of the affine manifolds in geometry [7,13,
19].

(2) If for everyx € A, L, is an interior derivation of the sub-adjacent Lie algebraiof
then A is said to be an interior derivation algebra. Such a structure corresponds to a
flat left-invariant connection adapted to the interior automorphism structure of a Lie
group [19].

(3) If foreveryx,y € A, R.Ry, = R R, thenA is said to be a Novikov algebra. It was
introduced in connection with the Poisson brackets of hydrodynamic type and Hamil-
tonian operators in the formal variational calculus [6,11].

(4) If for everyx, v,z € A, the associatofx, y, z) is right-symmetric, that is¢x, y, z) =
(x,z,y), thenA is said to be bi-symmetric. It is just the assosymmetric ring in the
study of near-associative algebras [2,14].

By direct computation, we have

Proposition 4.4. Let A be a left-symmetric constructed from Theor2rd and Corol-
lary 2.2

(1) A is associative if and only ifA is isomorphic to one of the following algebrake
associative algebras given in Corollagy2; Af’ﬁ; A, A(17).

(2) A is transitive if and only ifA is trivial or A is isomorphic tOAg; or A?4).
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(3) Besides the commutative casdsis an interior derivation algebra if and only i
is isomorphic toA?4). Moreover,A&) is the unique left-symmetric interior derivation
algebra on the Lie algebra given by H@.4) (cf.[19]).

(4) Besides the commutative casass a Novikov algebra if and only i is isomorphic to
one of the following algebrashe associative algebra in the cagd of Corollary 2.2;
Ay Ae Al Ag)”™

(5) Besides the associative casdsis bi-symmetric if and only ifi isomorphic toA%4)
or A).

Corollary 4.5. Let A be a left-symmetric constructed from Theo2®and Corollary2.2
ThenA with dimensiom > 2 is associativgor transitive, or bi-symmetric, or a interior
derivation algebra, or a Novikov algeby@ and only if A has such an additional struc-
ture when its dimension = 2. Hence, the construction in this paper can be regarded as
generalizationnot extensiol) of certain two-dimensional left-symmetric algebras.

At the end of this paper, we give an applicatiof the results in this paper to integrable
systems. Recall that a linear transformati®ron a Lie algebraj is called a classical-
matrix if R satisfies

[R(x), R ]=R([R&x),y]+[x.R»)]). Vx,yeq. (4.2)

It corresponds to a solution of classical Yang—Baxter equation [12,18]. MoreowRr, if
satisfies the above equation, then

xxy=[R(x).,y]. Vx,yeg, (4.3)

defines a left-symmetric algebra gnTwo classicalF-matrices are said to be equivalent if
their corresponding left-symmetric algebras are isomorphic.

Corollary 4.6. For the Lie algebraA given by Eq(2.4), there is only one non-zero classical
r-matrix under the sense of equivalence such thé the sub-adjacent Lie algebra of the
left-symmetric algebra given by E@t.3), which R is given by

R(e1) = e, R(ej)=0, j=2,...,n. 4.4)
The corresponding left-symmetric algebra given by @) is isomorphic toA?4).

Proof. Let R satisfy Eq. (4.2). Hence by Eq. (4.3), we know that for every A, L, =
adR(x), where ad is the adjoint operator of Lie algebra. Hehgés an interior derivation

of the Lie algebraA. Thus the left-symmetric algebra defined by Eq. (4.3) is an interior
derivation algebra. Therefore the ctugion follows from (3) in Proposition 4.4.0
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