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Abstract

In this paper, some left-symmetric algebras are constructed from linear functions. They inc
kind of simple left-symmetric algebras and some examples appearing in mathematical physic
complete classification is also given, which shows that they can be regarded as generaliz
certain two-dimensional left-symmetric algebras.
 2004 Elsevier Inc. All rights reserved.

Keywords:Left-symmetric algebra; Linear function; Lie algebra

1. Introduction

A left-symmetric algebra is an algebra whose associator is left-symmetric: letA be a
vector space over a fieldF with a bilinear product(x, y) → xy. A is called a left-symmetric
algebra if for anyx, y, z ∈ A, the associator

(x, y, z) = (xy)z − x(yz) (1.1)
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is symmetric inx, y, that is,

(x, y, z) = (y, x, z) or equivalently (xy)z − x(yz) = (yx)z − y(xz). (1.2)

Left-symmetric algebras are a class of non-associative algebras arising from the s
convex homogenous cones, affine manifolds and affine structures on Lie groups [13,
Moreover, they have very close relations with many problems in mathematical physic
example, they appear as an underlying structure of those Lie algebras that possess
space ([15–18], thus they form a natural category from the point of view of classica
quantum mechanics) and there is a close relation between them and classical Yang
equation [9,10,12].

However, due to the non-associativity, there is not a suitable representation the
left-symmetric algebras. It is also known that the definition identity (1.2) of left-symm
algebras involves the quadric forms of structure constants, which is not linear in
eral [13]. Hence it is quite difficult to study them. Therefore, one of the most impo
problems is how to construct interesting left-symmetric algebras. One way is to con
them through some well-known algebras and algebraic structures. This can be rega
a kind of “realization theory.” For example, there is a study of realization of Nov
algebras (they are left-symmetric algebras with commuting right multiplications)
commutative associative algebras and Lie algebras in [3–5]. Another way is to try to r
the “non-linearity” in certain sense. Combining these two ways, a natural and simpl
is to construct left-symmetric algebras from linear functions, which is the main conte
this paper.

On the other hand, there are many examples of left-symmetric algebras appea
mathematical physics ([6,11,12,21], etc.). For example, letV be a vector space over th
complex fieldC with the ordinary scalar product(,) anda be a fixed vector inV , then

u ∗ v = (u, v)a + (u, a)v, ∀u,v ∈ V, (1.3)

defines a left-symmetric algebra onV which gives the integrable (generalized) Burg
equation [20,21]

Ut = Uxx + 2U ∗ Ux + (
U ∗ (U ∗ U)

) − (
(U ∗ U) ∗ U

)
. (1.4)

However, such examples are often scattered and independent in different references
mathematical physics. And in most of the cases, there is neither a good mathematic
tivation nor a further study. In this paper, our construction not only has a natural motiv
from the point of view of mathematics, but also can be regarded as a kind of general
of the examples given by Eq. (1.3). Moreover, a systematic study is given.

The algebras that we consider in this paper are of finite dimension and overC. The pa-
per is organized as follows. In Section 2, we construct left-symmetric algebras from
functions. In Section 3, we give their classification. In Section 4, we discuss some p
ties of these left-symmetric algebras and certain application in mathematical physic
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2. Constructing left-symmetric algebras from linear functions

Let A be a vector space in dimensionn. In general, we assumen � 2. Just as said in
the introduction, motivated by the study of algebraic structure itself and some equ
in integrable systems, it is natural to consider the left-symmetric algebras satisfyin
following conditions: for any two vectorsx, y in A, the productx ∗y is still in the subspace
spanned byx, y, that is, any two vectors make up a subalgebra inA. Thus, it is natural to
assume

x ∗ y = f1(x, y)x + f2(x, y)y, ∀x, y ∈ A, (2.1)

wheref1, f2 :A × A → C are two functions. In general,f1 andf2 are not necessaril
linear. However, if they are not linear functions, they cannot be decided by their value
basis ofA. Hence the problem turns to be more complicated, even more complicated th
the study of the algebra itself.

Therefore, we can assume thatf1 andf2 are linear functions. Since the algebra pro
uct ∗ is bilinear, forf1 �= 0, f1 depends on onlyy, that is,f1 is not a linear function
depending onx. Otherwise, for anyλ ∈ C, we have

(λx) ∗ y = f1(λx, y)λx + f2(λx, y)y = λ2f1(x, y)x + λf2(x, y)y

= λ
(
f1(x, y)x + f2(x, y)y

)
. (2.2)

Hencef1(x, y) = 0, ∀x, y ∈ A, which is a contradiction. Similarly,f2 depends on onlyx.
Thus, we can setf1(x, y) = f (y), f2(x, y) = g(x), wheref,g :A → C are two linear
functions.

Proposition 2.1. Let A be a vector space in dimensionn � 2. Let f,g :A → C be two
linear functions. Then the product

x ∗ y = f (y)x + g(x)y, ∀x, y ∈ A (2.3)

defines a left-symmetric algebra if and only iff = 0 or g = 0. Moreover, whenf = 0 or
g = 0, the above equation defines an associative algebra.

Proof. For anyx, y, z ∈ A, the associator

(x, y, z) = (x ∗ y) ∗ z − x ∗ (y ∗ z)

= f (y)
(
f (z)x + g(x)z

) + g(x)
(
f (z)y + g(y)z

) − f (z)
(
f (y)x + g(x)y

)
− g(y)

(
f (z)x + g(x)z

)
= f (y)g(x)z − g(y)f (z)x.

Hence(x, y, z) = (y, x, z) if and only if for anyy, z ∈ A, g(y)f (z) = 0, that is,f = 0 or
g = 0. Moreover, whenf = 0 org = 0, (x, y, z) = 0. Thus the proposition holds.�
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Let Lx , Rx denote the left and right multiplication, respectively, i.e.,Lx(y) = xy,
Rx(y) = yx, ∀x, y ∈ A.

Corollary 2.2. With the conditions in above proposition, we have

(1) If f = 0, g �= 0, then there exists a basis{e1, . . . , en} in A such thatLe1 = Id, Lei =
0, i = 2, . . . , n, whereId is the identity transformation.

(2) If g = 0, f �= 0, then there exists a basis{e1, . . . , en} in A such thatRe1 = Id, Rei = 0,
i = 2, . . . , n.

(3) If f = g = 0, thenA is a trivial algebra, that is, all products are zero.

Proof. For any linear functiong : A → C, if g �= 0, due to the linearity ofg and the direct
sum of vector spaces

A = Kerg ⊕ g(A) = Kerg ⊕ C,

there exists a basis{e1, . . . , en} in A such thatg(e1) �= 0, g(ei) = 0, i = 2, . . . , n. Further-
more, we can normalizeg by g(e1) = 1. Hence (1) and (2) follows. (3) is obvious.�
Remark 1. There is a natural matrix representation of above associative algebras [8]. L
{Eij } be the canonical basis ofgl(n), that is,Eij is an × n matrix with 1 atith row and
j th column and zero at other places. Then the algebra in above case (1) (respectiv
is an associative subalgebra ofgl(n) (under the ordinary matrix product) withei = E1i

(respectivelyei = Ei1).

It is well known that the commutator of a left-symmetric algebra[x, y] = xy − yx

defines a (sub-adjacent) Lie algebra ([13,19], etc.).

Corollary 2.3. The sub-adjacent Lie algebras of the associative algebras defined by
tion (2.3) with g = 0, f �= 0, or f = 0, g �= 0 are isomorphic to the following2-step
solvable Lie algebra:

A = 〈
ei, i = 1, . . . , n

∣∣ [e1, ei] = ei , i = 2, . . . , n, other products are zero
〉
. (2.4)

Proof. For case (1) in Corollary 2.2, the conclusion is obvious. For case (2) in C
lary 2.2, we only need a linear transformation by lettinge1 be −e1 and ei still be ei

(i = 2, . . . , n), which the conclusion follows. �
Remark 2. The above conclusion also can be obtained from Eq. (2.3) directly. That i
Lie algebra given by[x, y] = (f − g)(x)y − (f − g)(y)x is isomorphic to the Lie algebr
given by Eq. (2.4) forg �= f . In fact, this algebra can be regarded as a (unique!)
abelian Lie algebra constructed from linear functions: it is easy to show that the pr
[x, y] = f (x)y + g(y)x defines a Lie algebra if and only iff (x) = −g(x), ∀x ∈ A.
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Due to the above discussion, in order to get non-associative left-symmetric algebr
need to extend the above construction. A simple extension of Eq. (2.3) is to add a
vectorc �= 0 as follows:

x ∗ y = f (x)y + g(y)x + h(x, y)c, ∀x, y ∈ A, (2.5)

whereh :A×A → C is a non-zero bilinear function. The above Eq. (2.5) can be unders
that for any two vectorsx, y, the three vectorsx, y, c make up a subalgebra inA. Moreover,
if h is symmetric, then its sub-adjacent Lie algebra is isomorphic to the Lie algebra give
by Eq. (2.4) (f �= g) or the abelian Lie algebra (f = g).

For a further study, we give a lemma on linear functions at first.

Lemma 2.4. Let A be a vector space in dimensionn � 2. Let f,g :A → C be two linear
functions andh :A × A → C be a symmetric bilinear function.

(1) If for anyx, y ∈ A, f (x)g(y) = f (y)g(x), thenf = 0, or g = 0, or f �= 0, g �= 0 and
there existsα ∈ C, α �= 0 such thatf (x) = αg(x), ∀x ∈ A.

(2) If for any x, y, z ∈ A, f (x)h(y, z) = f (y)h(x, z), thenf = 0, or h = 0, or there ex-
ists a basis{e1, . . . , en} in A andα ∈ C, α �= 0 such thatf (x) = h(x,αe1), ∀x ∈ A;
h(e1, e1) = 1, h(ei , ej ) = 0, i = 2, . . . , n, j = 1, . . . , n.

Proof. For a linear functionf , if f �= 0, we can choose a basis{e1, . . . , en} in A such that
f (e1) �= 0, f (e2) = · · · = f (en) = 0. If g �= 0, then fromf (x)g(y) = f (y)g(x), we can
haveg(e1) �= 0, g(ei) = 0, i = 2, . . . , n. Let α = f (e1)/g(e1), then by linearity, for any
x ∈ A, we havef (x) = αg(x).

Similarly, for f �= 0 and the basis{e1, . . . , en} in A such thatf (e1) �= 0, f (e2) = · · · =
f (en) = 0, we haveh = 0 or h(e1, e1) �= 0 andh(ei, ej ) = 0, i = 2, . . . , n, j = 1, . . . , n.
For the latter case, we can normalizeh by h(e1, e1) = 1. Thus, we still havef (x) =
h(x,αe1), ∀x ∈ A, whereα = f (e1)/h(e1, e1) = f (e1). �
Theorem 2.5. With the conditions in above lemma andh �= 0, Eq. (2.5) defines a left-
symmetric algebra if and only if the functionsf,g,h belong to one of the following case:

(1) f = g = 0, h(x, c) = 0, ∀x ∈ A;
(2) f = g = 0, and there exists a basis{e1, . . . , en} such thath(e1, e1) = 1, h(ei , ej ) = 0,

i = 2, . . . , n, j = 1, . . . , n, andc = ∑n
i=1 aiei with a1 �= 0;

(3) g = 0, f �= 0, f (x) = h(x, c), ∀x ∈ A;
(4) g = 0, f �= 0, and there exists a basis{e1, . . . , en} and α ∈ C, α �= 0 such that

f (x) = h(x, c − αe1), h(e1, e1) = 1, h(ei, ej ) = 0, i = 2, . . . , n, j = 1, . . . , n, and
c = ∑n

i=1 aiei with a1 �= α;
(5) f = 0, g �= 0, g(x) = −h(x, c), ∀x ∈ A andh(c, c) = 0;
(6) f = 0, g �= 0, h(x, c) = 0, ∀x ∈ A, and there exists a basis{e1, . . . , en} and α ∈ C,

α �= 0 such thatg(x) = h(x,αe1), h(e1, e1) = 1, h(ei, ej ) = 0, i = 2, . . . , n, j =
1, . . . , n;



656 C. Bai / Journal of Algebra 281 (2004) 651–665

is

the

2.4

on
(7) f �= 0, g �= 0, f (c) �= 0 and there existsα ∈ C, α �= 0 such thatg(x) = αf (x),
h(x, y) = −f (x)f (y)/f (c), ∀x ∈ A.

Proof. For anyx, y, z ∈ A, the associator

(x, y, z) = (x ∗ y) ∗ z − x ∗ (y ∗ z)

= f (x)
[
f (y)z + g(z)y + h(y, z)c

] + g(y)
[
f (x)z + g(z)x + h(x, z)c

]
+ h(x, y)

[
f (c)z + g(z)c + h(c, z)c

] − f (y)
[
f (x)z + g(z)x + h(x, z)c

]
− g(z)

[
f (x)y + g(y)x + h(x, y)c

] − h(y, z)
[
f (x)c + g(c)x + h(x, c)c

]
= [−f (y)g(z) − g(c)h(y, z)

]
x + [

g(y)f (x) + f (c)h(x, y)
]
z

+ [
g(y)h(x, z) − f (y)h(x, z) + h(x, y)h(c, z) − h(y, z)h(x, c)

]
c.

Then by left-symmetry, we can get the following equations: for anyx, y, z ∈ A,

f (y)g(x) = g(y)f (x); (2.6)

f (y)g(z) + g(c)h(y, z) = 0; (2.7)[
(g − f )(y) + h(y, c)

]
h(x, z) = [

(g − f )(x) + h(x, c)
]
h(y, z). (2.8)

From Eq. (2.6) and using Lemma 2.4, we can consider the following cases.

Case (I). f = g = 0. There is only one non-trivial equationh(y, c)h(x, z) = h(x, c)h(y, z).
Let h′(x) = h(x, c), then by Lemma 2.4, we know thath′(x) = 0 or there exists a bas
{e1, . . . , en} in A andα ∈ C, α �= 0 such thath′(x) = h(x,αe1), ∀x ∈ A; h(e1, e1) = 1,
h(ei, ej ) = 0, i = 2, . . . , n, j = 1, . . . , n. The former is the case (1) and the latter is
case (2) sinceh(x, c) = h(x,αe1) implies thata1 = α �= 0 for c = ∑n

i=1 aiei .

Case (II). g = 0, f �= 0. Then Eq. (2.7) is satisfied. From Eq. (2.8) and using Lemma
again, we havef (x) = h(x, c) or there exists a basis{e1, . . . , en} such thath(e1, c) −
f (e1) �= 0, f (ei) = h(ei, c) = 0; h(e1, e1) = 1, h(ei , ej ) = 0, i = 2, . . . , n, j = 1, . . . , n.
The former is the case (3) and the latter is the case (4) whereα = −f (e1)+h(e1, c). Notice
for the latter,f �= 0 if and only ifa1 �= α for c = ∑n

i=1 aiei .

Case (III). f = 0, g �= 0. From Eq. (2.7), we haveg(c) = 0. As the same as the discussi
in Case (II), Eq. (2.8) implies thatg(x) = −h(x, c) or there exists a basis{e1, . . . , en} such
thatg(e1) + h(e1, c) �= 0, g(ei) = h(ei , c) = 0, h(e1, e1) = 1, h(ei , ej ) = 0, i = 2, . . . , n,
j = 1, . . . , n. The former is the case (5). For the latter, we haveg(x) = −h(x, c) +
αh(x, e1) whereα = g(e1) + h(e1, c). Setc = ∑n

i=1 aiei , theng(c) = −a2
1 + αa1 = 0.

Thusa1 = α or a1 = 0. Therefore ifg �= 0, we haveh(x, c) = 0 andg(x) = h(x,αe1)

which is just the case (6).
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Case (IV). f �= 0, g �= 0. Thus there existsα �= 0 such thatg(x) = αf (x). Hence from
Eq. (2.7) and the assumptionh �= 0, we know thatf (c) �= 0 andh(x, y) = − f (x)f (y)

f (c)
,

∀x ∈ A. It is easy to see that Eq. (2.8) holds under these conditions. This is the case (7).�
Corollary 2.6. The left-symmetric algebras given in Theorem2.5are commutative(hence
associative), if and only if their sub-adjacent Lie algebras are abelian, if and only if t
belong to the case(1), (2), and(7) with α = 1.

By direct checking, we have

Corollary 2.7. LetA be a left-symmetric algebra in Theorem2.5.

(1) If A is in the case(1), (2), (4), (6), (7), then the corresponding bilinear functionh
satisfies

h(x ∗ y, z) = h(y ∗ x, z) = h(x ∗ z, y), ∀x, y, z ∈ A. (2.9)

(2) If A is in the case(3), then the corresponding bilinear functionh is invariant under
the following sense:

h(x ∗ y, z) = h(x, z ∗ y), ∀x, y, z ∈ A. (2.10)

That is, for everyx, y, z ∈ A, h(Rx(y), z) = h(y,Rx(z)) (Rx is self-adjoint).
(3) If A is in the case(5), then the corresponding bilinear functionh satisfies

h(x ∗ y, z) + h(y, x ∗ z) = 0, ∀x, y, z ∈ A. (2.11)

That is, for everyx, y, z ∈ A, h(Lx(y), z) + h(y,Lx(z)) = 0.

3. Classification of left-symmetric algebras from linear functions

In this section, we discuss the classification of left-symmetric algebras given in T
rem 2.5. Since the bilinear functionh appearing in the case (2), (4), (6), and (7) has b
(almost) decided completely, we give the classification of these cases at first.

Proposition 3.1. Let A be a left-symmetric algebra in the case(2) with dimensionn � 2.
ThenA is isomorphic to the following algebra(we only give the non-zero products):

A(2) = 〈ei , i = 1, . . . , n | e1e1 = e1〉. (3.1)

Proof. For c = ∑n
i=1 aiei with a1 �= 0, let

e′
1 = 1

a1
e1 + 1

a2
1

n∑
i=2

aiei, e′
j = ej , j = 2, . . . , n,

then under the new basis, Eq. (3.1) follows.�
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Proposition 3.2. Let A be a left-symmetric algebra in the case(4) with dimensionn � 2.
ThenA is isomorphic to one of the following algebras:

A1
(4) = 〈ei , i = 1, . . . , n | e1e1 = e1 + e2, e1ej = ej , j = 2, . . . , n〉; (3.2)

Aλ
(4) = 〈ei , i = 1, . . . , n | e1e1 = λe1, e1ej = ej , j = 2, . . . , n〉, λ �= 1,2. (3.3)

Proof. For the case (4), we have

e1 ∗ e1 = h
(
e1, (a1 − α)e1

)
e1 + h(e1, e1)c = (a1 − α)e1 + c = (2a1 − α)e1 +

n∑
i=2

aiei,

e1 ∗ ei = (a1 − α)ei , ei ∗ ej = 0, i = 2, . . . , n, j = 1, . . . , n.

If a1 = 0, thenc = ∑n
i=2 aiei �= 0. Without losing generality, we supposea2 �= 0. Let

e′
1 = − 1

α
e1, e′

2 = 1

α2
c, e′

j = ej , j = 3, . . . , n,

then under the new basis, we can get Eq. (3.2).
If a1 �= 0 anda1 �= α, then let

e′
1 = 1

a1 − α
e1 + 1

(a1 − α)a1

n∑
i=2

aiei, e′
j = ej , j = 2, . . . , n.

Hence under the new basis, we have

e′
1 ∗ e′

1 = 2a1 − α

a1 − α
e′

1, e′
1 ∗ e′

i = e′
i , e′

i ∗ e′
j = 0, i = 2, . . . , n, j = 1, . . . , n.

Set λ = 2a1−α
a1−α

which gives Eq. (3.3). Notice thatλ �= 1,2 sincea1 �= 0, a1 �= α and
α �= 0. �

As the same as the proof of Eq. (3.2), we have the following proposition.

Proposition 3.3. Let A be a left-symmetric algebra in the case(6) with dimensionn � 2.
ThenA is isomorphic to

A(6) = 〈ei, i = 1, . . . , n | e1e1 = e1 + e2, ej e1 = ej , j = 2, . . . , n〉. (3.4)

Proposition 3.4. Let A be a left-symmetric algebra in the case(7) with dimensionn � 2.
ThenA is isomorphic to one of the following algebras:

Aα
(7) = 〈ei , i = 1, . . . , n | e1e1 = αe1, e1ej = ej , ej e1 = αej , j = 2, . . . , n〉,
α �= 0. (3.5)
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Proof. Without losing generality, we can choose a basis{e1, . . . , en} such thate1 = c and
f (e2) = · · · = f (en) = 0. Hence

e1 ∗ e1 = αf (e1)e1, e1 ∗ ej = f (e1)ej , ej ∗ e1 = αf (e1)ej , j = 2, . . . , n.

The conclusion follows by the basis transformation

e′
1 = 1

f (e1)
e1, e′

j = ej , j = 2, . . . , n. �
In order to classify the left-symmetric algebras in other cases, we need the foll

lemma.

Lemma 3.5. LetA be a finite-dimensional algebra overC. LetA = A1 ⊕ A2 as the direct
sum of two subspaces andA1 be a subalgebra. Assume that, for everyx ∈ A1, Lx andRx

acts onA2 is zero orId. If there exists a non-zero vectorv ∈ A1 such that for any two
vectorsx, y ∈ A2, xy = yx ∈ Cv, then the classification of the algebraic operation inA2
(without changing other products) is given by the classification of symmetric bilinear for
on an-dimensional vector space overC, wheren = dimA2. That is, there exists a bas
{e1, . . . , en} in A2 such that the classification is given as follows: A2 is trivial or for every
k = 1, . . . , n:

eiej =
{

δij v, i, j = 1, . . . , k;
0, otherwise.

(3.6)

Proof. From the assumption, there exists a symmetric bilinear formf :A2×A2 → C such
that

xy = f (x, y)v, ∀x, y ∈ A2.

Moreover, any linear transformation ofA2 does not change the operation relations betw
A1 andA2, hence the whole algebraA = A1 ⊕A2. Thus the classification ofA2 is decided
completely by the classification of symmetric bilinear forms on a vector space in dime
dimA2. Therefore there exists a basis{e1, . . . , en} in A2 such that the matrix(f (ei , ej ))

is zero or a diagonal matrix with the firstk (k = 1, . . . , n) elements are 1 and the othe
are zero on the diagonal, which gives Eq. (3.6). It is easy to show that for differentk, the
algebras are not mutually isomorphic.�
Proposition 3.6. The classification of left-symmetric algebras in the case(1) with dimen-
sion n � 2 is equivalent to the classification of symmetric bilinear forms on a(n − 1)-
dimensional vector space. The classification is given as follows: for everyk = 0, . . . , n−1,

A
(k)
(1) = 〈ei , i = 1, . . . , n | ej ej = e1, j = 2, . . . , k + 1〉. (3.7)
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.10),
Proof. Let A be a left-symmetric algebra in the case (1) with dimensionn � 2. We can
choose a basis{e1, . . . , en} such thate1 = c. Thus we have

e1 ∗ e1 = e1 ∗ ej = ej ∗ e1 = 0, ej ∗ ek = h(ej , ek)e1, j, k = 2, . . . , n.

Let A1 be a subspace spanned bye1 andA2 be a subspace spanned bye2, . . . , en. Then by
Lemma 3.5, the proposition holds.�
Proposition 3.7. The classification of left-symmetric algebras in the case(3) with dimen-
sion n � 2 is given by the following matrices(F = (h(ei, ej )), where{e1, . . . , en} is a
basis):

F1 = I, F
(k)
2 =

(1 0 0
0 0 0
0 0 A(k)

)
, F

(k)
3 =

(0 1 0
1 0 0
0 0 A(k)

)
, (3.8)

whereA(k) = diag(1, . . . ,1,0, . . . ,0) is a (n − 2) × (n − 2) diagonal matrix with the firs
k elements are1 and the others are zero on the diagonal,k = 0,1 . . . , n − 2. The corre-
sponding left-symmetric algebras are

A1
(3) = 〈ei , i = 1, . . . , n | e1e1 = 2e1, e1ej = ej , ej ej = e1, j = 2, . . . , n〉; (3.9)

A
(k),2
(3) = 〈ei , i = 1, . . . , n | e1e1 = 2e1, e1ej = ej , elel = e1, j = 2, . . . , n,

l = 3, . . . , k + 2〉; (3.10)

A
(k),3
(3) = 〈ei , i = 1, . . . , n | e1e2 = e1, e2e1 = 2e1, e2e2 = e2, e2ej = ej , elel = e1,

j = 3, . . . , n, l = 3, . . . , k + 2〉. (3.11)

Proof. Let A be a left-symmetric algebra in the case (3) with dimensionn � 2. Without
losing generality, we can assumec = e1. At first we consider the caseh(e1, e1) �= 0. Thus
we can choosee2, . . . , en such that{e1, . . . , en} is a basis andh(e1, ej ) = 0, j = 2, . . . , n.
Sethij = h(ei , ej ). Therefore the product ofA is given by

e1 ∗ e1 = 2h11e1, e1 ∗ ej = h11ej , ej ∗ e1 = 0,

ej ∗ el = hjle1, j, l = 2, . . . , n.

Moreover, we can assumeh11 = 1 by letting

e′
1 = 1

h11
e1, e′

j = 1√
h11

ej , j = 2, . . . , n.

Let A1 = Ce1 andA2 be a subspace spanned bye2, . . . , en, then from Lemma 3.5, w
know the classification of above algebras is just given by the matrixF1 andF

(k)
2 , respec-

tively, which corresponds to the left-symmetric algebra given by Eqs. (3.9) and (3
respectively.
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Next assumeh(c, c) = h(e1, e1) = 0. Since there exists an elementu ∈ A such that
h(u, c) �= 0, we can letu = e2. Then we can choosee3, . . . , en such that{e1, . . . , en} is a
basis andh(e1, ej ) = 0, j = 1,3, . . . , n. Hence we have

e1 ∗ e1 = 0, e1 ∗ e2 = h12e1, e2 ∗ e1 = 2h12e1,

e2 ∗ e2 = h12e2 + h22e1, ej ∗ e1 = e1 ∗ ej = 0, e2 ∗ ej = h12ej + h2j e1,

ej ∗ e2 = h2j e1, ej ∗ el = hjle1, j, l = 3, . . . , n.

Let

e′
1 = e1, e′

2 = 1

h12
e2 − h22

2h12
e1, e′

j = ej − h2j

h2
12

e1, j = 3, . . . , n.

Under the new basis, we have

e′
1 ∗ e′

1 = 0, e′
1 ∗ e′

2 = e′
1, e′

2 ∗ e′
1 = 2e′

1, e′
2 ∗ e′

2 = e′
2,

e′
j ∗ e′

1 = e′
1 ∗ e′

j = 0, e′
2 ∗ e′

j = e′
j , e′

j ∗ e′
2 = 0,

e′
j ∗ e′

l = hjle
′
1, j, l = 3, . . . , n.

Let A1 be a subspace spanned bye1, e2 and A2 be a subspace spanned bye3, . . . , en,
then from Lemma 3.5, we know the classification of above algebras is just given b
matrixF

(k)
3 , which corresponds to the left-symmetric algebra given by Eq. (3.11).�

As the same as the proof of the caseA
(k),3
(3) in above proposition, we have

Proposition 3.8. The classification of left-symmetric algebras in the case(5) with di-
mensionn � 2 is given by the matrixF (k)

3 . The corresponding left-symmetric algebr
is (k = 0,1, . . . , n − 2)

A
(k)
(5)

= 〈ei , i = 1, . . . , n | e2e1 = −e1, e2e2 = e2, ej e2 = ej , elel = e1,

3 � j � n, 3 � l � k + 2〉. (3.12)

Corollary 3.9. LetA be a left-symmetric algebra in dimensionn � 2 given in Theorem2.5.
If the bilinear functionh is non-degenerate, thenA is isomorphic to one of the followin
algebras: A1

(3); A
(n−2),3
(3) ; A

(n−2)
(5) .

Theorem 3.10. When the dimensionn = 2, the left-symmetric algebras given in The
rem2.5are not(mutually) isomorphic except for

A
(0),3
(3) ∼ A

1/2
(7) , A

(0)
(5) ∼ A−1

(4). (3.13)

Moreover, with the associative algebras given in Corollary2.2 together, they include a
two-dimensional non-commutative left-symmetric algebras.
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Proof. Comparing the classification of two-dimensional left-symmetric algebras given
[1] or [8], the conclusion follows immediately. Notice thatA

(0),3
(3) is isomorphic toA1/2

(7) by
e1 → e2, e2 → 2e1 andA

(0)
(5) is isomorphic toA−1

(4) by e1 → e2, e2 → −e1, which the order
of e1, e2 is changed respectively.�
Remark 3. Obviously, some commutative associative algebras such as the direct s
two fields C ⊕ C are not included in above algebras. Moreover, we would like to p
out that the above conclusion is not obvious since for a general algebra, the “linear
struction like in this paper has certain restriction conditions for the corresponding stru
constants, which could not contain all (non-trivial) examples.

Corollary 3.11. Whenn > 2, the left-symmetric algebras given in Theorem2.5and Corol-
lary 2.2are not mutually isomorphic.

Proof. It is easy to see that whenn > 2, A
(k),3
(3) is not isomorphic toA1/2

(7) andA
(k)
(5) is not

isomorphic toA−1
(4). With the special roles ofe1, e2 in the algebraic operation and similar

the classification of two-dimensional left-symmetric algebras in [1] or [8], the conclu
follows by a straightforward analysis.�

4. Further discussion

In this section, we discuss some properties of the algebras given in the previous s
and certain application in mathematical physics.

Theorem 4.1. The left-symmetric algebras given by Eq.(1.3) are isomorphic to the left
symmetric algebraA1

(3). Moreover, it is a simple left-symmetric algebra, that is, it has
ideals except itself and zero.

Proof. The first half of the above conclusion follows directly from the proof of Prop
tion 3.7 and the fact that for everyc �= 0,h(c, c) �= 0 sinceh is the ordinary scalar produc
The simplicity of the algebra is proved in [8].�
Remark 4. The simple left-symmetric algebraA(1)

3 is firstly constructed in [8]. In certai
sense, our re-construction gives it an interesting (geometric) interpretation.

Due to Corollary 2.7, we have

Corollary 4.2. The scalar product appearing in Eq.(1.3) is invariant under the sense o
Eq. (2.10).

Corollary 4.3. The(generalized) Burgers Eq.(1.4) is just the following equation:
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[7,13,

s to a
a Lie
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amil-

the
u1
t = u1

xx + 4u1u1
x + 2

n∑
j=2

uju
j
x;

uk
t = uk

xx + 2u1uk
x − u1u1uk − ukukuk, k = 2, . . . , n. (4.1)

Proof. Let Ck
ij be the structure constants. Hence Eq. (1.4) gives

ui
t = ui

xx + 2
n∑

j,k=1

Ci
jku

juk
x +

n∑
k,j,l,m=1

(
Ci

mlC
l
kj − Cl

kjC
i
lm

)
ukujum.

For the left-symmetric algebraA1
(3), the non-zero structure constants areC1

11 = 2,C1
jj = 1,

C
j

1j = 1, j = 2, . . . , n. Hence Eq. (4.1) follows. �
Besides the simple left-symmetric algebraA1

(3), there are some other algebras appea
in Theorem 2.5 and Corollary 2.2 satisfying certain additional (interesting) condit
which play important roles in the study of left-symmetric algebras.

Definition. Let A be left-symmetric algebra.

(1) If for every x ∈ A, Rx is nilpotent, thenA is said to be transitive or complete. T
transitivity corresponds to the completeness of the affine manifolds in geometry
19].

(2) If for everyx ∈ A, Lx is an interior derivation of the sub-adjacent Lie algebra ofA,
thenA is said to be an interior derivation algebra. Such a structure correspond
flat left-invariant connection adapted to the interior automorphism structure of
group [19].

(3) If for everyx, y ∈ A, RxRy = RyRx , thenA is said to be a Novikov algebra. It wa
introduced in connection with the Poisson brackets of hydrodynamic type and H
tonian operators in the formal variational calculus [6,11].

(4) If for everyx, y, z ∈ A, the associator(x, y, z) is right-symmetric, that is,(x, y, z) =
(x, z, y), thenA is said to be bi-symmetric. It is just the assosymmetric ring in
study of near-associative algebras [2,14].

By direct computation, we have

Proposition 4.4. Let A be a left-symmetric constructed from Theorem2.5 and Corol-
lary 2.2.

(1) A is associative if and only ifA is isomorphic to one of the following algebras: the
associative algebras given in Corollary2.2;A(k)

(1); A(2); A1
(7).

(2) A is transitive if and only ifA is trivial or A is isomorphic toA(k) or A0 .

(1) (4)
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(3) Besides the commutative cases,A is an interior derivation algebra if and only ifA
is isomorphic toA0

(4). Moreover,A0
(4) is the unique left-symmetric interior derivatio

algebra on the Lie algebra given by Eq.(2.4) (cf. [19]).
(4) Besides the commutative cases,A is a Novikov algebra if and only ifA is isomorphic to

one of the following algebras: the associative algebra in the case(2) of Corollary2.2;
A0

(4)
; A(6); Aα

(7)
; A

(k),3
(3)

.

(5) Besides the associative cases,A is bi-symmetric if and only ifA isomorphic toA1
(4)

or A(6).

Corollary 4.5. LetA be a left-symmetric constructed from Theorem2.5and Corollary2.2.
ThenA with dimensionn > 2 is associative(or transitive, or bi-symmetric, or a interio
derivation algebra, or a Novikov algebra) if and only if A has such an additional struc
ture when its dimensionn = 2. Hence, the construction in this paper can be regarded
generalization(not extension!) of certain two-dimensional left-symmetric algebras.

At the end of this paper, we give an application of the results in this paper to integrab
systems. Recall that a linear transformationR on a Lie algebraG is called a classicalr-
matrix if R satisfies

[
R(x),R(y)

] = R
([

R(x), y
] + [

x,R(y)
])

, ∀x, y ∈ G. (4.2)

It corresponds to a solution of classical Yang–Baxter equation [12,18]. MoreoverR

satisfies the above equation, then

x ∗ y = [
R(x), y

]
, ∀x, y ∈ G, (4.3)

defines a left-symmetric algebra onG. Two classicalr-matrices are said to be equivalen
their corresponding left-symmetric algebras are isomorphic.

Corollary 4.6. For the Lie algebraA given by Eq.(2.4), there is only one non-zero classic
r-matrix under the sense of equivalence such thatA is the sub-adjacent Lie algebra of th
left-symmetric algebra given by Eq.(4.3), whichR is given by

R(e1) = e1, R(ej ) = 0, j = 2, . . . , n. (4.4)

The corresponding left-symmetric algebra given by Eq.(4.3) is isomorphic toA0
(4).

Proof. Let R satisfy Eq. (4.2). Hence by Eq. (4.3), we know that for everyx ∈ A, Lx =
adR(x), where ad is the adjoint operator of Lie algebra. HenceLx is an interior derivation
of the Lie algebraA. Thus the left-symmetric algebra defined by Eq. (4.3) is an inte
derivation algebra. Therefore the conclusion follows from (3) in Proposition 4.4.�
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