Bowel preparation has long been considered necessary to improve the diagnostic quality of subsequent radiologic examination. Indeed, bowel preparation before intravenous urography (IVU) is recommended in both urologic and radiologic textbooks [1,2]. Almost all medical centers in Taiwan follow this practice. Castor oil and bisacodyl (Veterans Pharmaceutical Plant, Taoyuan, Taiwan) are two commonly used laxatives. Both drugs stimulate smooth muscle in the bowels to increase peristalsis. Castor oil is widely used as the pre-IVU laxative in many hospitals, including ours [3–6]. It is supplied as an emulsion and patients are usually given about 80 mL the night before IVU. However, patients often find the taste of castor oil unpleasant. Another laxative, bisacodyl, is available as a coated tablet that can be swallowed and is not associated with an unpleasant taste. Thus, the purpose of this randomized, prospective trial was to compare the efficacy of castor oil and bisacodyl for use in bowel preparation in patients undergoing IVU.

Materials and Methods

Bowel preparation and IVU

We used castor oil as the laxative in patients undergoing IVU during 1 month, and then bisacodyl in patients undergoing IVU during another month. The laxative was supplied to outpatients, with instructions to ingest it after the meal on the evening before IVU.
During IVU, standard radiographs were obtained. After obtaining an initial plain image of the abdomen, 50 mL of contrast material (Ultravist 370; Schering AG, Berlin, Germany) was administered intravenously. Five minutes after the injection, a radiograph (24 × 30 cm) centered over the kidneys was obtained in an anterior-posterior (A-P) projection. Fifteen minutes after injection, A-P, right-oblique, and left-oblique abdominal radiographs (35 × 43 cm) were acquired, with a small pillow and fastened band compressing the lower abdomen to retain the contrast material in the upper part of the urinary system, i.e. if the patient did not have contraindications such as abdominal aortic aneurysm, nephrostomy, or an abdominal wound. Thirty minutes after injection, an abdominal radiograph (35 × 43 cm) was obtained to visualize the whole urinary system, including the urinary bladder.

Image grading
Two uroradiologists without knowledge of the patient’s laxative treatment randomly reviewed and graded all images separately and independently. To evaluate the degree of fecal residue on plain abdominal images, the following grading system was created: if there was residue in more than two-thirds of a specific film area (e.g. the area of the location and pathway of the whole urinary system), the score was 0 (Figure 1); if residue was seen in less than two-thirds, but more than one-third, of a specific film area, the score was 1; if residue was seen in less than one-third of a specific area of the film, the score was 2; and if no residual fecal material was seen, the score was 3 (Figure 2).

Another detailed, anatomically based system was developed and used to grade the radiographs. Five areas of interest were examined: the outline of the kidneys; the calices; the renal pelvis; the ureters; and the bladder. The calices were further subdivided into sections: upper, middle, and lower. If the specified section of the urinary system was fully visualized on a radiograph, that section received a score of 2. If it was partially visualized, it was scored 1; and if it was not visualized, it was scored 0. If all three subsections of the calices were visualized, the score was 3; if two were visualized, the score was 2; if one was visualized, the score was 1; and if none were visualized, the score was 0. Thus, a total score was derived for each area of interest, as was a combined total score for the entire collecting system from kidney to bladder. The maximum score was 11 points per side or 20 points per patient (only one urinary bladder) (Figure 3). Although each side was graded separately, the scores were added together for statistical analysis.

Statistical analysis
Statistical analysis was performed using the Student’s t test for each patient’s total score. This was done to compare scores, from each uroradiologist, for images obtained from patients given castor oil versus bisacodyl. The reading results of the two uroradiologists were also compared to evaluate discrepancies; for this analysis, we used total scores for the castor oil and bisacodyl groups.

Results
In total, 71 consecutive outpatients were given castor oil as the laxative for bowel preparation, and 84 were given bisacodyl. Detailed statistical results are shown in Tables 1 and 2.

When we compared results for the two uroradiologists, we found no significant difference in the grading of fecal residue on plain abdominal images (p = 0.54), or in visualization of the urinary system on the left (p = 0.36) and right sides (p = 0.63), for patients receiving castor oil. Findings were similar for bisacodyl recipients (p = 0.11, 0.59, and 0.32, respectively). These statistical results indicated
no reading discrepancy between the two uroradiologists (Table 1).

When we compared the laxative efficacy of castor oil with that of bisacodyl, we also found no significant difference in the grading of fecal residue on plain abdominal images ($p = 0.14$), or in visualization of the urinary system on the left ($p = 0.31$) and right sides ($p = 0.98$). The results indicated no difference in the laxative efficacy of bisacodyl versus castor oil (Table 2).

DISCUSSION

There is disagreement in the literature regarding bowel preparation before IVU. Some authors believe that vigorous catharsis creates excessive gas that compromises the images [5,6]. And, although some clinicians prefer no preparation at all [3–9], textbooks recommend some form of catharsis before IVU [1,2]. In conventional practice, bowel preparation is considered a necessary preliminary step to obtaining good-quality images [1,2]. Many radiologic departments in Taiwan continue to administer bowel preparation before IVU, despite the opinion that it may be unnecessary.

The purpose of IVU is to visualize the urinary tract: the kidneys, renal collecting systems, ureters, and urinary bladder. We used a grading system to minimize examiner subjectivity and bias similar to the one employed by Schuster et al [6]; thus, our system was based on whether the urinary tract was visualized or not, rather than on whether bowel gas or feces obscured visualization.

Bowel preparation has well-recognized adverse effects, including severe abdominal cramps, nausea, interference with sleep, and fluid and electrolyte depletion [3]. These adverse effects can be especially devastating for bedridden and debilitated patients. Although some authors have reported that radiographs obtained after laxative preparation are clear of feces in 40% of patients [10], other groups have reported that bowel preparation before IVU is unnecessary [3–9]. We do not know the origin of recommendations for catharsis, bowel preparation, and fluid or dietary restriction before IVU. Presumably, these procedures were recommended early on, when the type and amount of contrast material, the radiographic equipment and technique, and the unavailability of tomography provided...
In addition, an overlying, stool-filled bowel can easily obscure small renal calculi and the renal outlines. To overcome these problems, we suspect that catharsis was used to eliminate fecal material and gas in the overlying bowel.

In the grading of fecal residue on plain abdominal images, about 45–60% of patients were given a score of 0 or 1, i.e. fecal residue was found in more than one-third of a specific area of the film (these percentages represented 34/71 patients given castor oil, and 49/84 patients given bisacodyl, as graded by one uroradiologist; and 31 and 42 patients, respectively, as graded by the other uroradiologist). Although patients underwent the regimen for bowel preparation (i.e. intake of the laxative the night before IVU, and appropriate food and liquid restriction for about 3 days before IVU), satisfactory bowel preparation was not achieved in almost half the patients. Besides bowel preparation, the quality of urographic examination and visualization of the urinary tracts depend on factors such as habitus, renal function, amount and type of contrast material used, and the radiographic technique and equipment used [6]. In light of the improved quality of today’s contrast materials, and the larger volumes used, we believe that visualization of a urinary tract masked by fecal residue can be improved.

Our results showed no difference, in visualizing various parts of the urinary tract, between castor oil and bisacodyl recipients. Accordingly, bisacodyl may be used as an alternative laxative before IVU. Our study was confined to a relatively ambulatory, outpatient population. We suggest that for more debilitated inpatients, for whom the intake of 80 mL of castor oil is difficult, bisacodyl tablets may be an easier way to achieve the laxative effect.

ACKNOWLEDGMENT

This study was supported by a research grant (VGH92-092) from Taipei Veterans General Hospital.

REFERENCES

門診病患靜脈注射對比劑泌尿系統
攝影檢查前之腸道準備 — Castor Oil 與
Bisacodyl 兩者有效度之比較

楊慧珍¹ 許明輝² 王家權³ 張政彥¹
¹台北榮民總醫院 放射線部 ²亞東紀念醫院 放射線部

本研究目的在於比較 castor oil 及 bisacodyl 兩種輕瀦劑在門診病患的靜脈注射對比劑泌尿系統檢查前的常規腸道準備工作之有效程度。我們隨機選擇一個月內的病患服用 castor oil 而另一個月的病患則服用 bisacodyl。由兩位資深的泌尿系統放射科專家在不知道病患服用何種輕瀦劑的情況下對腹部 X 光素片中之糞便殘餘量及注射對比劑後泌尿系統顯影的結果給予分級及計分，再以統計分析其間差異。共有 71 位病患服用 castor oil，84 位服用 bisacodyl，結果發現兩位專家在糞便殘餘量及泌尿系統顯影清晰度的分級及計分上無關於病患服用何種輕瀦劑均無統計上之差異 (p > 0.1)，至於兩種輕瀦劑的有效程度亦無差異 (p > 0.1)。總結本研究可發現 castor oil 及 bisacodyl 輕瀦效果並無統計學上之差異，因此 bisacodyl 可以用於取代 castor oil 作為門診病患靜脈注射對比劑泌尿系統攝影前腸道準備之瀦劑。

關鍵詞：bisacodyl，腸道準備，castor oil，靜脈注射對比劑泌尿系統攝影檢查，瀦劑

(高雄醫誌 2005;21:153－8)

收文日期：93 年 11 月 15 日
接受刊載：94 年 2 月 15 日
通訊作者：王家權醫師
台北榮民總醫院放射線部
台北石牌路二段 201 號