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Abstract

The paper proves that data-independent neighborhood functions with the smooth property (all strict
local optima are global optima) for maximum 3-satisfiability (MAX 3-SAT) must contain all possible
solutions for large instances. Data-independent neighborhood functions with the smooth property
for 0—1 knapsack are shown to have size with the same order of magnitude as the cardinality of
the solution space. Data-independent neighborhood functions with the smooth property for traveling
salesman problem (TSP) are shown to have exponential size. These results also hold for certain
polynomially solvable sub-problems of MAX 3-SAT, 0-1 knapsack and TSP.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

The effectiveness of local search algorithii@ on discrete optimization problems is
highly dependent on the choice of neighborhood function. This paper proves that the only
data-independent neighborhood functions with the smooth property (all strict local op-
tima are global optima) for maximum 3-satisfiability (MAX 3-SAM) are neighborhood
functions that contain all possible solutions for large instances. More precisely, if a given
neighborhood function for MAX 3-SAT has the smooth property, then, for instances with
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n >4 Boolean variables, the neighborhood of every soluti@ontains all possible solu-
tions except for the solutioxitself. A result for 0—1 knapsack shows that data-independent
neighborhood functions with the smooth property must have size tig{2%), wheren
denotes the number of items in the problem instance. Furthermore, a neighborhood function
nK with the smooth property for 0—1 knapsack is given so thatit x) c #X (I, x) for

some instancé and solutionx, theny does not have the smooth property. The neighbor-
hood functionX is said to be the minimal data-independent neighborhood function with the
smooth property for 0—1 knapsack. Note that a neighborhood fungtt®onsisting of all
solutions for instances of MAX 3-SAT (with >4 Boolean variables) also has the property
that if (1, x) ¢ yMS(1, x) (for an instance with n >4 Boolean variables) and solution

X, thenn does not have the smooth property. This paper also shows that if a given neigh-
borhood function of traveling salesman problem (T$7)has the smooth property, then

the neighborhood of every solution has cardinali"/3), wheren denotes the number of
cities in the problem instance.

The results in this paper are obtained by constructing instances of the discrete optimization
problem such that specified data-independent neighborhood functions have a strict local
optimum that is not a global optimum. In particular, instances are created where there is
a unique global optimum and a unique solution with the second best objective function
value. The solution with the second best objective function value is chosen such that the
unique global optimum is not in its neighborhood. This implies that the solution with the
second best objective function value is a strict local optimum. By construction, the classes
of instances used in the proofs form polynomially solvable sub-problems of MAX 3-SAT,
0-1 knapsack and TSP. Therefore, the results listed in the first paragraph also hold for
polynomially solvable sub-problems of MAX 3-SAT, 0-1 knapsack and TSP. For example,
there exists a polynomially solvable sub-problem of MAX 3-SAT such that data-independent
neighborhood functions with the smooth property must contain all possible solutions for
instances wit: > 4 Boolean variables.

A neighborhood functiorior problemIT in NP optimization (NPOJ)3] is a rule that
maps an instance and feasible solution gairx), wherel/ € D andx € SOL(I), to
a set of feasible solutions. Therefore, a neighborhood funetifor problemI] satisfies
n(I,x) € SOL(I) for every instancd € D and every solutiox € SOL(]). Given an
instance and feasible solution pélt x), wherel € D andx € SOL(I), y(1, X) is referred
to as the neighborhood of solutignin this paper, a solution is not permitted to be a member
of its own neighborhood (i.ex,¢ n (1, x) for allinstanced € D and solutiong € SOL(1)).

This restriction is consistent and compatible with the local search algorithm formulation.

To characterize properties of neighborhood functions, the following definitions are needed.
Define thesize of a neighborhood functionfor an instance to be maxesov |11, X)|.

A neighborhood functiom for I1 is completef #(1, X) = SOL(I) — {x} for every instance

I € D (with length]] sufficiently large, since the size of the neighborhood function is
analyzed asymptotically) and € SOL(/). A neighborhood function in which all local
optima are global optima is said to have tjflebal search(GS)property. A neighbor-
hood function in which all strict local optima are global optima is said to haveiti@oth
property. Suppose that for every solution if the neighborhood functi@an be searched
in polynomial time for an improving solution or elges deemed a local optimum, then

is said to bepolynomially computable
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The following definitions will be given for a maximization problem. A solutione
SOL(7) is a (strict) local optimunif m (1, X)(>) >m(1, y) forally € (1, X), and a solution
X € SOL(J) is aglobal optimunif m(I, X) >m(1, y) forally € SOL(I). Data-independent
neighborhood functions are defined for discrete optimization problems in NPO that can
be formulated agonsistentoptimization problems (i.e., there exists a sequence of sets
{4,}724 such that4,, < {0, 1}" and every instanckcan be represented as max/, X)
subject tox € 4,, wherem s a polynomially computable objective function ands a
positive integer that is polynomial in the length of instamhgelo beindependentf the
problem data, a neighborhood functipmust satisfy the following property for all positive
integeran:

Let7; and/l; be instances denoted as mai1, X) subjecttox € A,,, and maxn (12, X)
subject tox € 4, respectively. Then (11, X) = n(I2, X) for all x € 4,,.

The data-independent neighborhood function definition depends on the representation of
the problem as a consistent optimization problem. Therefore, for the optimization problems
discussed in this paper, the s@tk,}°° ; will be specified. In particular, MAX 3-SAT and
0-1knapsack are consistentwhetg} > ; are all Boolean vectors ovedimensions, while

TSP is consistent whe|{e1(§)};'l°:1 are the collection of distinct Hamiltonian tours over the

n cities. A neighborhood function iasonabléf it is independent of the problem data

and has polynomial size. Reasonable neighborhood functions have been studied since it is
conjectured that their properties may indicate the difficulty of a discrete optimization prob-
lem[11]. Note that the restriction to polynomially sized neighborhood functions is not, in
general, always necessary for iterations of a local search algorithm to be completed in poly-
nomialtime. In particular, there exist several exponentially large neighborhood functions for
NP-hard discrete optimization problems, such as TSP, which can be searched in polynomial
time[1].

A limited number of papers report results that prove that certain discrete optimization
problems have no reasonable neighborhood function with the GS or smooth properties. Viz-
ing[12] and Savage et dlL0] independently show that any problem parameter-independent
neighborhood function of TSP for which all local optima are global optima must be expo-
nentially large, hence there does not exist a reasonable neighborhood function for TSP that
has the GS property. This result is extended here by showing that data-independent neigh-
borhood functions with the smooth property must have siz@@"/3), wheren denotes
the number of cities in the TSP instance. Papadimitriou and Stefiglishow that alk-opt
neighborhood functions for TSP do not have the GS property and their local optima can
have cost that is arbitrarily worse than the cost of global optima. In particular, Papadim-
itriou and Steiglit47] show that there exist instances of TSP withc3ies, for which there
is a unique optimal tour and’21(n — 1)! tours that are second best with arbitrarily high
cost. Furthermore, all of thesé 2 (n — 1)! tours that are second best cannot be improved
without changing fewer thamm3edges. dvey[11] shows that every reasonable neighbor-
hood function for maximum cligue and MAX SAT does not have the smooth property. This
MAX 3-SAT resultis strengthened here by showing that all data-independent neighborhood
functions for MAX 3-SAT do not have the smooth property, except for neighborhood func-
tions that contain all possible solutions for instances with4 Boolean variables. Rodl
and Tovey[9] also demonstrate that for a maximum-independent set, there exists a graph
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G (up to the relabeling of the vertices) such that all neighborhood functions of polynomial
size have exponentially many local optima.

Showing that particular NP-hard discrete optimization problems do not have areasonable
neighborhood function with the smooth property is important since it is conjectured that this
condition is characteristic of all NP-hard discrete optimization problems. In other words, it
is conjectured that all NP-hard discrete optimization problems have the property that every
reasonable neighborhood function does not have the smooth property. This result is likely
to be hard to prove in general since it implies tha$ZPNP [11]. Conversely, a discrete
optimization problem is not necessarily hard if it does not have a reasonable neighborhood
function with the smooth property, since there exist polynomially solvable such problems
that do not have a reasonable neighborhood function with the smooth property. The results in
this paper for MAX 3-SAT, 0—1 knapsack and TSP also hold for corresponding polynomially
solvable sub-problems.

The results in this paper do not rely on complexity theoretic assumptions. The results
in this paper show that a large collection of data-independent neighborhood functions for
MAX 3-SAT, 0—1 knapsack, and TSP do not have the smooth property. Thisisin contrastto a
similar result in Yannakakil 3] that relies on the assumption tha#PNP or NP# co-NP.
Suppose thafl is an optimization problem anglis a neighborhood function such that the
local search problerl1, ) is in PLS[5]. Yannakakig13] shows that iff] is strongly NP-
hard (NP-hard), themcannot have the GS property unlessRP (NP=co-NP). The MAX
3-SAT result in this paper implies that any neighborhood function (which can be searched
in polynomial time) with the GS property for MAX 3-SAT must be datependenbr
complete. Also, the 0—1 knapsack (TSP) result in this paper implies that any neighborhood
function (which can be computed in polynomial time) with the GS property for 0—1 knapsack
(TSP) must have siz®(2")(Q(2"/3)) or else it must be data dependent, unless¢B-NP
(P=NP).

The paper is organized as follows: Section 2 provides formal definitions for MAX 3-SAT,
0-1 knapsack and TSP. Section 3 give results on the size of data-independent neighborhood
functions for MAX 3-SAT, 0-1 knapsack and TSP with the smooth property. Section 4
provides concluding comments and directions for future research.

2. Definitions and background

Several discrete optimization problems are now formally described. Throughout
the paper, letx denote a non-negated literal addenote the corresponding negated
literal. Therefore, a truth assignmentsatisfies the literak(x) if and only if 7(x) =
T(X)=F).

MAX SAT. Givenm clauses, oven Boolean variableX = {x1, xo, ..., x,}, find a truth
assignment : X — {T, F} that maximizes the number of satisfied clauses.

MAX 3-SAT is a special case of MAX SAT in which each clause has exactly three
literals.
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Given a knapsack with a finite capacity and a (finite) collection of items, where each
item has two integers associated with it (i.e., size and value), the objective of 0-1 knapsack
is to identify a subset of items that fit into the knapsack and have highest value. Instances
of 0-1 knapsack are formulated with respect to the definition of a consistent optimization
problem.

0-1 knapsack. Given vectors=(s(1), s(2), ..., s(n)),v=(v(1), v(2), ..., v(n)), where
s(i),v(i) € Z*, and capacityy € Z T, find the vectox = (x1, x2, ..., x,) € {0, 1} that
maximizes the objective function)_"_; v(i) max{0, >_"_; x;s(i) — B} + Y_'_; xiv(i).

In this definition,s (i) denotes the size of item v(i) denotes the value of item and
B denotes the size of the knapsack. The terin;_; v(i) max{0, Y /_; x;s(i) — B} is a
penalty function that ensures that any solution of 0—1 knapsack, for which the collection of
items exceeds the size of the knapsack, will have a nonpositive objective function value.

Symmetric TSP is now formally stated.

Traveling salesman problem (TSP).Given a collection oh cities {x1, x2, ..., x,,} and
distancesi(x;, x;) for each pair of cities;; andx;, wherex; # x;, find a Hamiltonian
circuit (permutation of the cities, y1, y2. .., y,, where for each, y; = x; for somej and

vi # yi for all i # k) with smallest total lengtitd (y1, y,) + Z;’;lld(y,-, Vit1))-

3. Neighborhood results

This section gives results on the size of data-independent neighborhood functions for
MAX 3-SAT, 0-1 knapsack and TSP that have the smooth property. Theorem 1 implies
that the only data-independent neighborhood functions for MAX 3-SAT with the smooth
property are the complete neighborhood functions.

Theorem 1. If 5 is a data-independent neighborhood function with the smooth property
for MAX 3-SAT, then for each instance | of MAR-SAT and truth assignment t ovei= 4
variables 5 (1, t) consists of all truth assignments over the n variaptesept for the truth
assignment t itself

Proof. It is shown that forn >4 and truth assignments, r2(t1 # t2) over n Boolean
variables, there exists an instah@éth nvariables such that is the unique global optimum
andz; is the unique solution with second best objective function value. This implies that
t1 € n(I, ) if n has the smooth property and the proof then follows sinae are arbitrary.
Suppose tha is a data-independent neighborhood function ang (11 # r2) are truth
assignments over> 4 Boolean variableX ={x1, x2, ..., x,,}. Given any truth assignment

t : X — {T,F} defineh(t, x;, x;, x;) to be the set of clauses over Boolean variabjes;,
andxy thatt satisfies. For example,ifx1) = F, 7 (x2) = F, andt (x3) = F, then

h(t, x1, x2, x3) = {(X1, X2, X3), (X1, X2, X3), (X1, X2, X3), (X1, X2, X3),
(x1, X2, X3), (x1, X2, x3), (X1, X2, X3)}.
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Choosez, b, c € ZT (1<a, b, c<n) such thaty(x,) # t2(x,) anda # b,a # ¢, b # c.
Define a set of clauses

n n n
C=htr,xexp.x)U [ J U G xixj 00 Nkt xio x| (1)
i=1j=i+1k=j+1

By constructiony; satisfies all the clauses @ Also, ¢, satisfies all clauses i@, except for
one clause it (t1, x4, xp, x). Lett : X — {T, F} be a truth assignment such thag #1,

t # 1. To show that does not satisfy as many clauseszaset p andq be positive integers
(1< p,g<n)suchthat(x,) # r1(x,) andt(x,) # t2(x,). Therefore, there are two cases
to consider.

Casel:If p # g, thenthe truth assignmetrttoes not satisfy one clauséitry, x, x4, x;)N
h(t2, xp, x4, Xr), Wherek # p andk # g. It then follows thatt does not satisfy at least
n — 2 clauses irC.

Case2: If p=q,thenthe truth assignmetridoes not satisfy one clausditry, x, x;, x,)N
h(t2, xp, xj, xx), Wherej # p, k # p, andj # k. Therefore, the truth assignmeirdoes

not satisfy at Ieas(”;l) clauses irC.

From Cases 1 and 2does not satisfy at least— 2 clauses ofC. Thereforet; is the
unique truth assignment that satisfies all claus&samdr; is the unique truth assignment
that satisfies all but one clausen O

The class MAX 3-SAT instances that can be specified according to (1) can be formulated
into a polynomially solvable sub-problem of MAX 3-SAT. Instances of the form given in
(1) can be recognized in polynomial time. Furthermore, given an instance of the form in
(1), the optimal solution (truth assignment that satisfies all of the clauses) can be found in
polynomial time. Therefore, Theorem 1 also holds for a polynomially solvable sub-problem
of MAX 3-SAT.

In contrast to the result for MAX 3-SAT, there exists a data-independent neighborhood
function with the smooth property for 0-1 knapsack that is not complete. The size of
data-independent neighborhood functions for 0—1 knapsack can be given as a function
of the number of possible items. Theorem 2 shows that there exists a data-independent
neighborhood functionyX with the smooth property for 0-1 knapsack that has
size®(2").

Theorem 2. There exists a data-independent neighborhood function with the GS property
for 0—1knapsack with size

2l k42 for n even

= >
fn) {zn_2(n—1)/2_2(n+l)/2+n_k+2 For n odd for n>1,

where n denotes the number of possible items
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Proof. Letn>1. Construct a neighborhood functigrnfor 0—1 knapsack as follows: for
each instanceovern Boolean variablesy € {0, 1}"*, andx # 0,

L) =10,1)"—{ye{0,1)": > yi—x>2 and y—xe{0,1}"¢,
i=1
—{ye{0,1}':y£0 and x—-ye{0, 1}"}.

Forx =0, definen (1, x) = {y = (y1, y2, . ... y») € {0, 1}" : 3°'_, y; = 1}. Suppose that
x has exactlyt >1 elements equal to one. Thenp (1, x)| =2" — 2"k — 2k 4 n —k + 2.
The value ofiyK (1, x)| is maximized when there ake= n/2 elements equal to one, for
even, and = (n — 1)/2 elements equal to one, farodd. Givenx € {0, 1}", x # 0, if
there exists a solution with better objective function value (as defined in Section 2 than
in the set{ly € {0, 1}" : y — x € {0, 1}"*}, then there exists an improving solutionxan
the setly € {0,1}" : Y7 ; x; — y; = Landy — x € {0, 1}"}. Also, if a solution in the set
{y € {0, 1} : x —y € {0, 1}"} has objective function value greater tharthen the solution
y=0has a better objective function value thart then follows thay® has the GS property
(and hence the smooth property) singehas no local optima, except for global optima.
O

Theorem 3 shows that the neighborhood functjrdescribed in the proof of Theorem
2 is the minimal data-independent neighborhood function with the smooth property. There-
fore, Theorem 3 implies that a data-independent neighborhood function with the smooth
property for 0-1 knapsack must have s@&").

Theorem 3. LetyX be the neighborhood function fo+1knapsack that is given in the proof
of Theoren?. If 5 is a data-independent neighborhood function suchiliatx) c #K (7, x)
for somex € {0, 1}* (n>1) and instance,lthens does not have the smooth property

Proof. The proof follows by showing that does not have the smooth property. By def-
inition, any data-independent neighborhood function for 0-1 knapsack is independent of
the instance and depends only on the solutigre {0, 1}". Therefore, the neighborhood
of a solutiony for a data-independent neighborhood functipmay be written ag;(y).
Suppose that* € {0, 1} such thax* e 7 (x) — 5(x). The proof follows by showing that
there exists an instance of 0—1 knapsack ovediriables such that* has better objective
function value thamx and no other solution in(x) has objective function value greater than
or equal tox. In the following, for anyy € {0, 1}, defineAd(y) = {i : y; = 1}. There are
three possibilities for the solutioxi.

Casel: x* —x € {0,1}" and}_/_; x} — x; = 1. Suppose that_;_, x; = k. In this case,
letB=k+ 1,v@)=2fori € AX), v(i) =1fori¢ A(X),s()=1fori € A(x*), and
s(i) =B+ 1fori ¢ A(x*). It then follows thaix* is the unique global optimum ands the
unique solution with second best objective function value.

Case2:x*=0.LetB=1,v(i)=1fori=1,2,...,n,ands(i) =2 fori € 4(x) and
s(i) =2nfori ¢ A(X). Therefore, there is no solution#ix) with better objective function
value tharx.
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Case3: x* —x ¢ {0, 1} andx—x* ¢ {0, 1}". Letky =4 (X*) — A(X)|, ko= A(X) — A(X*)],
kz = k1 + kz andkg = |A(X*) N A(X)]. Also, letA(x*) — A(X) = {011, d12. ..., Ou,} @nd
A(X) — A(X*) = {021, 022, . .., Oz, }. Note thatks, ko > 1. Define the values and sizes for
the items as follows:

k1—1

(011 =5(01) =28, w0 =s5(02) =291 42 " 2 41,
i—1

(1) = s(01) =27 fori=2,3,... ki,

V(02) =5(dp) =281 fori=2,3,... ko,

V(i) =s@) =282 fori e AX*) N A(X)

and
k1—1 .
v(i)=1 s(@i)=B :k42k3+2 + 2k3 4 Z 2k1—l for i ¢A(X*) U AX).
i=1
For the remainder of the proof, 1&t(y) = > /_; v(i)y; and S(y) = > /_; s(i)y; for any
y € {0, 1}". Then
k1—1 '
V(X*) = S(X*) — k42k3+2 4 2k3 + Z 2k1—l
i=1

and
ko k1—1
V(X) = S(X) = kg2¥3t2 + Z PASRUNE,) Z k=i 4 q
i=1 i=1
k1—1

= kg2k3t2 4 k3 4 Z K _ 1=y -1
i=1

Now, x* and x will be shown to be the unique global optimum and unique solution
with second best objective function value, respectively. Supposeytiat{0, 1}" such
that V(y) > V(x) and S(y) < B, and show thay = x* ory = x. Fori € A(x*) N 4(X),
v(i) = 2kst2 5 Zf.‘il v(dy) + Zfilv(ég,-). Therefore,y; = 1 for alli € A(x*) N A(x).
Furthermore, since(i) = B fori ¢ A(x*) U A(X), theny; =0 for alli ¢ A4(x*)U 4(X). Since
V(y) =V (X), thenys,, =1 orys,, = 1. However, itis impossible that,, = vs,, = 1, since
this implies thatS(y) > k425312 4 2k 4 2ks=1 4 22;‘:11 2k—i 4 1> B. Therefore, there
are two possibilities:

Case3a:ys,, =1andys,, =0. Inthis caseys, =0foralli=1, 2, ..., k2, since otherwise
S(Y) > kq2k3t2 42k Dks—k2 . B Also, sinceV (y) > V (x) andv(01;) =2 (i=1,2, ..., k1),
thenys,, =1foralli=1,2,..., k1. Thereforey = x*.

Case3b: y;,, =0 andys,, = 1. SinceV (y) >V (x) andv(dy,) <27 (i=2,3,..., k1),
theny;, =1foralli =1,2,..., ko. Furthermore, ify;,, = 1 for somei =1,2,..., k1,
thenS(y) > B + 1. Thereforey=x. [
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Theorem 4 shows that for every reasonable neighborhood function of TSP, there exists
an instance of TSP withtrict local optima that are not global optima; hence TSP has no
reasonable neighborhood function with the smooth property. Furthermore, Theorem 4 shows
that many exponentially sized and data-independent neighborhood functions do not have
the smooth property. The proof of Theorem 4 follows by starting with an arbitrary solution
w and choosing another solutian,, (that is not a neighbor aib) from an exponential
set of solutionsA’ (Hamiltonian circuits) such that there does not exist any solution using
edges from only» andw 4/, except for the solution® andw 4 themselves. The distances
between the cities are then defined so that andw are the unique global optimum and
unique second best solution (Hamiltonian circuit), respectively. For TSP, the size of data-
independent neighborhood functions can be given as a function of the number af gities
an instance.

Theorem 4. If yis a data-independent neighborhood function for the TSP with the smooth
property, thenminyesovr) 11(1, X)| = Q(2"/3), where n denotes the number of cities

Proof. The proof follows by showing that any data-independent neighborhood fungtion
for TSP such thap (I, w)| < 2L*=2/3] — 1, wherel is an (>5) city TSP instance, does
not have the smooth property. Lgbe a data-independent neighborhood function for TSP
such thati(1, )| < 2L*=2/3] _1 for some TSP instandavith n (>5) cities and solution

. Consider the collection df(n — 2)/3] pairs of cities

A={G,i+1):i=2+3k k=0,1,..., | (n —2)/3] — 1}.

LetA={(kij,ki+1):i=12,..., p} (Wherek; <k;;1fori=1,2,..., p—1)beasubset
of sizep of the set4 and define the solution (Hamiltonian circuit):

wa=12... (k1 — 1) (k1 + Dka(k1 +2) ... (k2 — (k2 + Dkatka+ 2) - - - (k) — D (kp +
Dkykp +2)(kp +3) - - n.

Supposé andB are two non-empty subsetsdfsuch thatd # B, thenws # wp. Also,
note there arel®'—2/3/ _1 different non-empty subsets.6fWithout loss of generality, sup-
posew=123...n.Sinceln(I, w)| < 21"=2/3] _1 wherd denotes an-city TSP instance,
choose a subset’ C 4 such thaiws ¢ n(I, ). Let A" ={(k;j, ki +1) :i=21,2,..., p}
(wherek; <k;y1fori=1,2,..., p—1)for some positive integegr (1< p<|[(n—2)/3)).
Define the distance function

dki—L ki+1) =dki, ks +2=1 foralli=12,...,p,

di,i+1=1 foralli=12,...,n—-1, i #k1—1 dn1=1,
dk1—1,k1) =2.

Suppose that all of the remaining edges have length three. It then follows that the length of
wisn + 1 and the length ofo 4+ is n.

To complete the proof, to show thatis the unique solution of length + 1 andw 4/
is the unique solution of length, suppose that there exists a solutioh= x1xz. .. x, of
length less than or equal to+ 1. Then, by the distance definition, every edge that is part
of solutionw’ must be an edge an or w 4. Thereforew’ =12. .. (k1 — 1)xp Xk 41 - - - Xn;
hence there are two possibilitieg; = kq or xx, = k1 + 1. If xz; = kq, thenxg, 1 =k1 +1



242 D.E. Armstrong, S.H. Jacobson / Discrete Applied Mathematics 146 (2005) 233-243

since otherwisey,+1 = k1 + 2 and it is impossible to visit both citidg + 1 andky + 3
using edges only om or w,'. Similarly, if xx, = k1 + 1, thenx, +1 = k1 since otherwise,
Xk+1=k1+ 2 and it is impossible to visit both citigg andk1 + 3 by using edges only on
w or wy/. Therefore,

o' =12...(kp — Dxp2...x, OF
o =12... (k1 — L) (k1 + Dk1(k1+2) ... (ko — 1)xk2xk2+1 R

Iteratively applying this argument resultsdfi= w or @’ = w 4. Thereforew is the unique
solution of length + 1 andw 4/ is the unique solution of length. Sincew 4/ ¢ 1(1, w),
thenw is a strict local optimum that is not a global optimuni

Similar to Theorems 1 and 3, the class of instances used in the proof of Theorem 4
can be formulated into a polynomially solvable sub-problem. It follows that there exists
a polynomially solvable sub-problem of TSP such that a data-independent neighborhood
functiony with the smooth property must satisfy migor ) 1n(7, X)|=Q(2"/3). Theresults
in this section demonstrate a drawback of local search algorithms that use data-independent
neighborhood functions for MAX 3-SAT, 0—1 knapsack and TSP. These results also provide
a first step towards showing that a large class of NP-hard discrete optimization problems
has the property that every reasonable neighborhood function does not have the smooth

property.

4. Conclusions and directions for future research

A difficulty with local search algorithms is that neighborhood functions for NP-hard dis-
crete optimization problems typically have many (strict) local optima that are not global
optima. This paper shows that a large class of neighborhood functions for MAX 3-SAT, 0-1
knapsack and TSP do not have the smooth property. In particular, the complete neighbor-
hood functions are shown to be the only data-independent neighborhood functions with the
smooth property for MAX 3-SAT. The smallest data-independent neighborhood function
for 0—1 knapsack is proven to have size with the same order of magnitude as the solution
space size. Furthermore, the results demonstrate the minimal data-independent neighbor-
hood functions with the smooth property for 0—1 knapsack and MAX 3-SAT. Every reason-
able neighborhood function (and many exponentially sized data-independent neighborhood
functions) for TSP is shown to not have the smooth property.

Directions for future research include studying the properties of data-independent neigh-
borhood functions for other discrete optimization problems. By doing this, it may be possible
to develop a general proof that would show that every reasonable neighborhood function
for a large class of discrete optimization problems has at least one strict local optimum that
is not a global optimum. In particular, one future direction of research focuses on deter-
mining if transformations between discrete optimization problems can be used to show that
problems do not have reasonable neighborhood functions with the smooth property. That s,
developing transformations from a problé, to a problenmi1 3 so that if problenil 4, does
not have a reasonable neighborhood function with the smooth property, then prdllem
does not have a reasonable neighborhood function with the smooth property. Armstrong
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and Jacobsof2] have defined a transformation between discrete optimization problems
that preserves semi-reasonable neighborhood functions in this manner. A semi-reasonable
neighborhood function is a neighborhood function that is independent of the problem data,
except that it may depend on the maximum absolute value of a number in an instance. It
would be useful to obtain similar results as reportefPinfor data-independent neighbor-

hood functions. The overall objective of this research is to develop an understanding of the
properties of neighborhood functions for discrete optimization problems.
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