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Abstract

The paper proves that data-independent neighborhood functions with the smooth property (all strict
local optima are global optima) for maximum 3-satisfiability (MAX 3-SAT) must contain all possible
solutions for large instances. Data-independent neighborhood functions with the smooth property
for 0–1 knapsack are shown to have size with the same order of magnitude as the cardinality of
the solution space. Data-independent neighborhood functions with the smooth property for traveling
salesman problem (TSP) are shown to have exponential size. These results also hold for certain
polynomially solvable sub-problems of MAX 3-SAT, 0–1 knapsack and TSP.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

The effectiveness of local search algorithms[8] on discrete optimization problems is
highly dependent on the choice of neighborhood function. This paper proves that the only
data-independent neighborhood functions with the smooth property (all strict local op-
tima are global optima) for maximum 3-satisfiability (MAX 3-SAT)[4] are neighborhood
functions that contain all possible solutions for large instances. More precisely, if a given
neighborhood function for MAX 3-SAT has the smooth property, then, for instances with
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n�4 Boolean variables, the neighborhood of every solutionx contains all possible solu-
tions except for the solutionx itself. A result for 0–1 knapsack shows that data-independent
neighborhood functions with the smooth property must have size that is�(2n), wheren
denotes the number of items in the problem instance. Furthermore, a neighborhood function
�K with the smooth property for 0–1 knapsack is given so that if�(I, x) ⊂ �K (I, x) for
some instanceI and solutionx, then� does not have the smooth property. The neighbor-
hood function�K is said to be theminimal data-independent neighborhood functionwith the
smooth property for 0–1 knapsack. Note that a neighborhood function�MS consisting of all
solutions for instances of MAX 3-SAT (withn�4 Boolean variables) also has the property
that if �(I, x) ⊂ �MS(I, x) (for an instanceI with n�4 Boolean variables) and solution
x, then� does not have the smooth property. This paper also shows that if a given neigh-
borhood function of traveling salesman problem (TSP)[6] has the smooth property, then
the neighborhood of every solution has cardinality�(2n/3), wherendenotes the number of
cities in the problem instance.
The results in this paperareobtainedbyconstructing instancesof thediscreteoptimization

problem such that specified data-independent neighborhood functions have a strict local
optimum that is not a global optimum. In particular, instances are created where there is
a unique global optimum and a unique solution with the second best objective function
value. The solution with the second best objective function value is chosen such that the
unique global optimum is not in its neighborhood. This implies that the solution with the
second best objective function value is a strict local optimum. By construction, the classes
of instances used in the proofs form polynomially solvable sub-problems of MAX 3-SAT,
0–1 knapsack and TSP. Therefore, the results listed in the first paragraph also hold for
polynomially solvable sub-problems of MAX 3-SAT, 0–1 knapsack and TSP. For example,
thereexistsapolynomially solvable sub-problemofMAX3-SATsuch that data-independent
neighborhood functions with the smooth property must contain all possible solutions for
instances withn�4 Boolean variables.
A neighborhood functionfor problem� in NP optimization (NPO)[3] is a rule that

maps an instance and feasible solution pair(I, x), whereI ∈ D and x ∈ SOL(I ), to
a set of feasible solutions. Therefore, a neighborhood function� for problem� satisfies
�(I, x) ⊆ SOL(I ) for every instanceI ∈ D and every solutionx ∈ SOL(I ). Given an
instance and feasible solution pair(I, x), whereI ∈ D andx ∈ SOL(I ), �(I, x) is referred
to as the neighborhood of solutionx. In this paper, a solution is not permitted to be amember
of its ownneighborhood (i.e.,x /∈ �(I, x) for all instancesI ∈ D and solutionsx ∈ SOL(I )).
This restriction is consistent and compatible with the local search algorithm formulation.
Tocharacterizepropertiesofneighborhood functions, the followingdefinitionsareneeded.

Define thesize of a neighborhood function� for an instanceI to be maxx∈SOL(I )|�(I, x)|.
A neighborhood function� for � is completeif �(I, x)=SOL(I )− {x} for every instance
I ∈ D (with length[I] sufficiently large, since the size of the neighborhood function is
analyzed asymptotically) andx ∈ SOL(I ). A neighborhood function in which all local
optima are global optima is said to have theglobal search(GS)property. A neighbor-
hood function in which all strict local optima are global optima is said to have thesmooth
property. Suppose that for every solution if the neighborhood function� can be searched
in polynomial time for an improving solution or elsex is deemed a local optimum, then�
is said to bepolynomially computable.
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The following definitions will be given for a maximization problem. A solutionx ∈
SOL(I ) is a (strict) local optimumif m(I, x)(>)�m(I, y) for all y ∈ �(I, x), and a solution
x ∈ SOL(I ) is aglobal optimumif m(I, x)�m(I, y) for all y ∈ SOL(I ). Data-independent
neighborhood functions are defined for discrete optimization problems in NPO that can
be formulated asconsistentoptimization problems (i.e., there exists a sequence of sets
{�n}∞n=1 such that�n ⊆ {0,1}n and every instanceI can be represented as maxm(I, x)
subject tox ∈ �n, wherem is a polynomially computable objective function andn is a
positive integer that is polynomial in the length of instanceI). To be independentof the
problem data, a neighborhood function�must satisfy the following property for all positive
integersn:

LetI1 andI2 be instances denoted asmaxm(I1, x) subject tox ∈ �n, andmaxm(I2, x)
subject tox ∈ �n, respectively. Then�(I1, x) = �(I2, x) for all x ∈ �n.

The data-independent neighborhood function definition depends on the representation of
the problem as a consistent optimization problem. Therefore, for the optimization problems
discussed in this paper, the sets{�n}∞n=1 will be specified. In particular, MAX 3-SAT and
0–1knapsackare consistentwhere{�n}∞n=1 are all Boolean vectors overndimensions,while
TSP is consistent where{�(

n
2 )

}∞n=1 are the collection of distinct Hamiltonian tours over the
n cities. A neighborhood function isreasonableif it is independent of the problem data
and has polynomial size. Reasonable neighborhood functions have been studied since it is
conjectured that their properties may indicate the difficulty of a discrete optimization prob-
lem [11]. Note that the restriction to polynomially sized neighborhood functions is not, in
general, always necessary for iterations of a local search algorithm to be completed in poly-
nomial time. In particular, there exist several exponentially large neighborhood functions for
NP-hard discrete optimization problems, such as TSP, which can be searched in polynomial
time [1].
A limited number of papers report results that prove that certain discrete optimization

problems have no reasonable neighborhood function with theGS or smooth properties.Viz-
ing [12] and Savage et al.[10] independently show that any problem parameter-independent
neighborhood function of TSP for which all local optima are global optima must be expo-
nentially large, hence there does not exist a reasonable neighborhood function for TSP that
has the GS property. This result is extended here by showing that data-independent neigh-
borhood functions with the smooth property must have size of�(2n/3), wheren denotes
the number of cities in the TSP instance. Papadimitriou and Steiglitz[7] show that allk-opt
neighborhood functions for TSP do not have the GS property and their local optima can
have cost that is arbitrarily worse than the cost of global optima. In particular, Papadim-
itriou and Steiglitz[7] show that there exist instances of TSP with 8n cities, for which there
is a unique optimal tour and 2n−1(n − 1)! tours that are second best with arbitrarily high
cost. Furthermore, all of these 2n−1(n − 1)! tours that are second best cannot be improved
without changing fewer than 3n edges. Tovey[11] shows that every reasonable neighbor-
hood function for maximum clique and MAX SAT does not have the smooth property. This
MAX 3-SAT result is strengthened here by showing that all data-independent neighborhood
functions for MAX 3-SAT do not have the smooth property, except for neighborhood func-
tions that contain all possible solutions for instances withn�4 Boolean variables. Rodl
and Tovey[9] also demonstrate that for a maximum-independent set, there exists a graph



236 D.E. Armstrong, S.H. Jacobson / Discrete Applied Mathematics 146 (2005) 233–243

G (up to the relabeling of the vertices) such that all neighborhood functions of polynomial
size have exponentially many local optima.
Showing that particular NP-hard discrete optimization problems do not have a reasonable

neighborhood functionwith the smooth property is important since it is conjectured that this
condition is characteristic of all NP-hard discrete optimization problems. In other words, it
is conjectured that all NP-hard discrete optimization problems have the property that every
reasonable neighborhood function does not have the smooth property. This result is likely
to be hard to prove in general since it implies that P�= NP [11]. Conversely, a discrete
optimization problem is not necessarily hard if it does not have a reasonable neighborhood
function with the smooth property, since there exist polynomially solvable such problems
that do not have a reasonable neighborhood functionwith the smooth property. The results in
this paper forMAX3-SAT, 0–1 knapsackandTSPalsohold for correspondingpolynomially
solvable sub-problems.
The results in this paper do not rely on complexity theoretic assumptions. The results

in this paper show that a large collection of data-independent neighborhood functions for
MAX3-SAT, 0–1 knapsack, andTSPdonot have the smooth property. This is in contrast to a
similar result inYannakakis[13] that relies on the assumption that P�= NP or NP �= co-NP.
Suppose that� is an optimization problem and� is a neighborhood function such that the
local search problem(�, �) is in PLS[5].Yannakakis[13] shows that if� is strongly NP-
hard (NP-hard), then� cannot have theGSproperty unless P=NP (NP=co-NP). TheMAX
3-SAT result in this paper implies that any neighborhood function (which can be searched
in polynomial time) with the GS property for MAX 3-SAT must be datadependentor
complete. Also, the 0–1 knapsack (TSP) result in this paper implies that any neighborhood
function (which canbecomputed inpolynomial time)with theGSproperty for 0–1knapsack
(TSP)must have size�(2n)(�(2n/3)) or else it must be data dependent, unless NP=co-NP
(P= NP).
The paper is organized as follows: Section 2 provides formal definitions for MAX 3-SAT,

0–1 knapsack and TSP. Section 3 give results on the size of data-independent neighborhood
functions for MAX 3-SAT, 0–1 knapsack and TSP with the smooth property. Section 4
provides concluding comments and directions for future research.

2. Definitions and background

Several discrete optimization problems are now formally described. Throughout
the paper, letx denote a non-negated literal andx̄ denote the corresponding negated
literal. Therefore, a truth assignmentt satisfies the literalx(x̄) if and only if t (x) =
T (t (x) = F).

MAX SAT. Givenm clauses, overn Boolean variablesX = {x1, x2, . . . , xn}, find a truth
assignmentt : X → {T,F} that maximizes the number of satisfied clauses.

MAX 3-SAT is a special case of MAX SAT in which each clause has exactly three
literals.
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Given a knapsack with a finite capacity and a (finite) collection of items, where each
item has two integers associated with it (i.e., size and value), the objective of 0–1 knapsack
is to identify a subset of items that fit into the knapsack and have highest value. Instances
of 0–1 knapsack are formulated with respect to the definition of a consistent optimization
problem.

0–1 knapsack.Given vectorss=(s(1), s(2), . . . , s(n)), v=(v(1), v(2), . . . , v(n)), where
s(i), v(i) ∈ Z+, and capacityB ∈ Z+, find the vectorx = (x1, x2, . . . , xn) ∈ {0,1}n that
maximizes the objective function−∑n

i=1 v(i)max{0,
∑n

i=1 xis(i) − B} + ∑n
i=1 xiv(i).

In this definition,s(i) denotes the size of itemi, v(i) denotes the value of itemi, and
B denotes the size of the knapsack. The term−∑n

i=1 v(i)max{0,
∑n

i=1 xis(i) − B} is a
penalty function that ensures that any solution of 0–1 knapsack, for which the collection of
items exceeds the size of the knapsack, will have a nonpositive objective function value.

Symmetric TSP is now formally stated.

Traveling salesman problem (TSP).Given a collection ofn cities {x1, x2, . . . , xn} and
distancesd(xi, xj ) for each pair of citiesxi andxj , wherexi �= xj , find a Hamiltonian
circuit (permutation of then cities,y1, y2 . . . , yn, where for eachi, yi = xj for somej and
yi �= yk for all i �= k) with smallest total length(d(y1, yn) + ∑n−1

i=1 d(yi, yi+1)).

3. Neighborhood results

This section gives results on the size of data-independent neighborhood functions for
MAX 3-SAT, 0–1 knapsack and TSP that have the smooth property. Theorem 1 implies
that the only data-independent neighborhood functions for MAX 3-SAT with the smooth
property are the complete neighborhood functions.

Theorem 1. If � is a data-independent neighborhood function with the smooth property
for MAX3-SAT, then, for each instance I of MAX3-SAT and truth assignment t overn�4
variables, �(I, t) consists of all truth assignments over the n variables, except for the truth
assignment t itself.

Proof. It is shown that forn�4 and truth assignmentst1, t2(t1 �= t2) over n Boolean
variables, there exists an instanceI with nvariables such thatt1 is the unique global optimum
andt2 is the unique solution with second best objective function value. This implies that
t1 ∈ �(I, t2) if � has the smooth property and the proof then follows sincet1, t2 are arbitrary.
Suppose that� is a data-independent neighborhood function andt1, t2 (t1 �= t2) are truth
assignments overn�4 Boolean variablesX={x1, x2, . . . , xn}. Given any truth assignment
t : X → {T,F} defineh(t, xi, xj , xk) to be the set of clauses over Boolean variablesxi , xj ,
andxk thatt satisfies. For example, ift (x1) = F, t (x2) = F, andt (x3) = F, then

h(t, x1, x2, x3) = {(x̄1, x̄2, x̄3), (x̄1, x̄2, x3), (x̄1, x2, x̄3), (x̄1, x2, x3),
(x1, x̄2, x̄3), (x1, x̄2, x3), (x1, x2, x̄3)}.
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Choosea, b, c ∈ Z+ (1�a, b, c�n) such thatt1(xa) �= t2(xa) anda �= b, a �= c, b �= c.
Define a set of clauses

C = h(t1, xa, xb, xc) ∪

 n⋃

i=1

n⋃
j=i+1

n⋃
k=j+1

(h(t1, xi, xj , xk) ∩ h(t2, xi, xj , xk))


 . (1)

By construction,t1 satisfies all the clauses inC. Also, t2 satisfies all clauses inC, except for
one clause inh(t1, xa, xb, xc). Let t : X → {T , F } be a truth assignment such thatt �= t1,
t �= t2. To show thatt does not satisfy as many clauses ast2, letp andq be positive integers
(1�p, q�n) such thatt (xp) �= t1(xp) andt (xq) �= t2(xq). Therefore, there are two cases
to consider.
Case1: If p �= q, then the truthassignmenttdoesnot satisfyoneclause inh(t1, xp, xq, xk)∩

h(t2, xp, xq, xk), wherek �= p andk �= q. It then follows thatt does not satisfy at least
n − 2 clauses inC.
Case2: If p=q, then the truthassignmenttdoesnot satisfyoneclause inh(t1, xp, xj , xk)∩

h(t2, xp, xj , xk), wherej �= p, k �= p, andj �= k. Therefore, the truth assignmentt does

not satisfy at least
(
n−1
2

)
clauses inC.

From Cases 1 and 2,t does not satisfy at leastn − 2 clauses ofC. Therefore,t1 is the
unique truth assignment that satisfies all clauses inC andt2 is the unique truth assignment
that satisfies all but one clause inC. �

The class MAX 3-SAT instances that can be specified according to (1) can be formulated
into a polynomially solvable sub-problem of MAX 3-SAT. Instances of the form given in
(1) can be recognized in polynomial time. Furthermore, given an instance of the form in
(1), the optimal solution (truth assignment that satisfies all of the clauses) can be found in
polynomial time. Therefore, Theorem 1 also holds for a polynomially solvable sub-problem
of MAX 3-SAT.
In contrast to the result for MAX 3-SAT, there exists a data-independent neighborhood

function with the smooth property for 0–1 knapsack that is not complete. The size of
data-independent neighborhood functions for 0–1 knapsack can be given as a function
of the number of possible items. Theorem 2 shows that there exists a data-independent
neighborhood function�K with the smooth property for 0–1 knapsack that has
size�(2n).

Theorem 2. There exists a data-independent neighborhood function with the GS property
for 0–1knapsack with size

f (n) =
{
2n − 2n/2+1 + n − k + 2 f or n even

2n − 2(n−1)/2 − 2(n+1)/2 + n − k + 2 f or n odd
f or n�1,

where n denotes the number of possible items.



D.E. Armstrong, S.H. Jacobson / Discrete Applied Mathematics 146 (2005) 233–243 239

Proof. Let n�1. Construct a neighborhood function� for 0–1 knapsack as follows: for
each instanceI overnBoolean variables,x ∈ {0,1}n, andx �= 0,

�K (I, x) = {0,1}n −
{

y ∈ {0,1}n :
n∑

i=1

yi − xi �2 and y − x ∈ {0,1}n
}
,

− {y ∈ {0,1}n : y �= 0 and x − y ∈ {0,1}n}.

Forx = 0, define�K (I, x) = {y = (y1, y2, . . . , yn) ∈ {0,1}n : ∑n
i=1 yi = 1}. Suppose that

x has exactlyk�1 elements equal to one. Then,|�K (I, x)| = 2n − 2n−k − 2k + n− k + 2.
The value of|�K (I, x)| is maximized when there arek = n/2 elements equal to one, forn
even, andk = (n − 1)/2 elements equal to one, forn odd. Givenx ∈ {0,1}n, x �= 0, if
there exists a solution with better objective function value (as defined in Section 2) thanx
in the set{y ∈ {0,1}n : y − x ∈ {0,1}n}, then there exists an improving solution tox in
the set{y ∈ {0,1}n : ∑n

i=1 xi − yi = 1 andy − x ∈ {0,1}n}. Also, if a solution in the set
{y ∈ {0,1}n : x − y ∈ {0,1}n} has objective function value greater thanx, then the solution
y=0has a better objective function value thanx. It then follows that�K has theGS property
(and hence the smooth property) since�K has no local optima, except for global optima.
�

Theorem 3 shows that the neighborhood function�K described in the proof of Theorem
2 is the minimal data-independent neighborhood function with the smooth property. There-
fore, Theorem 3 implies that a data-independent neighborhood function with the smooth
property for 0–1 knapsack must have size�(2n).

Theorem 3. Let�K be theneighborhood function for0–1knapsack that is given in the proof
ofTheorem2.If � is a data-independent neighborhood function such that�(I, x) ⊂ �K (I, x)
for somex ∈ {0,1}n (n�1) and instance I, then� does not have the smooth property.

Proof. The proof follows by showing that� does not have the smooth property. By def-
inition, any data-independent neighborhood function for 0–1 knapsack is independent of
the instanceI and depends only on the solutionx ∈ {0,1}n. Therefore, the neighborhood
of a solutiony for a data-independent neighborhood function� may be written as�(y).
Suppose thatx∗ ∈ {0,1}n such thatx∗ ∈ �K (x)− �(x). The proof follows by showing that
there exists an instance of 0–1 knapsack overn variables such thatx∗ has better objective
function value thanx and no other solution in�(x) has objective function value greater than
or equal tox. In the following, for anyy ∈ {0,1}n, define�(y) = {i : yi = 1}. There are
three possibilities for the solutionx∗.
Case1: x∗ − x ∈ {0,1}n and∑n

i=1 x
∗
i − xi = 1. Suppose that

∑n
i=1 xi = k. In this case,

let B = k + 1, v(i) = 2 for i ∈ �(x), v(i) = 1 for i /∈�(x), s(i) = 1 for i ∈ �(x∗), and
s(i)=B +1 for i /∈�(x∗). It then follows thatx∗ is the unique global optimum andx is the
unique solution with second best objective function value.
Case2: x∗ = 0. LetB = 1, v(i) = 1 for i = 1,2, . . . , n, ands(i) = 2 for i ∈ �(x) and

s(i)= 2n for i /∈�(x). Therefore, there is no solution in�(x) with better objective function
value thanx.
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Case3:x∗−x /∈ {0,1}n andx−x∗ /∈ {0,1}n. Letk1=|�(x∗)−�(x)|, k2=|�(x)−�(x∗)|,
k3 = k1 + k2 andk4 = |�(x∗) ∩ �(x)|. Also, let�(x∗) − �(x) = {�11, �12, . . . , �1k1} and
�(x) − �(x∗) = {�21, �22, . . . , �2k2}. Note thatk1, k2�1. Define the values and sizes for
the items as follows:

v(�11) = s(�11) = 2k3, v(�21) = s(�21) = 2k3−1 + 2
k1−1∑
i=1

2k1−i + 1,

v(�1i ) = s(�1i ) = 2k1−i+1 for i = 2,3, . . . , k1,

v(�2i ) = s(�2i ) = 2k3−i for i = 2,3, . . . , k2,

v(i) = s(i) = 2k3+2 for i ∈ �(x∗) ∩ �(x)

and

v(i) = 1, s(i) = B = k42
k3+2 + 2k3 +

k1−1∑
i=1

2k1−i for i /∈�(x∗) ∪ �(x).

For the remainder of the proof, letV (y) = ∑n
i=1 v(i)yi andS(y) = ∑n

i=1 s(i)yi for any
y ∈ {0,1}n. Then

V (x∗) = S(x∗) = k42
k3+2 + 2k3 +

k1−1∑
i=1

2k1−i

and

V (x) = S(x) = k42
k3+2 +

k2∑
i=1

2k3−i + 2
k1−1∑
i=1

2k1−i + 1

= k42
k3+2 + 2k3 +

k1−1∑
i=1

2k1−i − 1= V (x∗) − 1.

Now, x∗ and x will be shown to be the unique global optimum and unique solution
with second best objective function value, respectively. Suppose thaty ∈ {0,1}n such
thatV (y)�V (x) andS(y)�B, and show thaty = x∗ or y = x. For i ∈ �(x∗) ∩ �(x),
v(i) = 2k3+2>

∑k1
i=1 v(�1i ) + ∑k2

i=1 v(�2i ). Therefore,yi = 1 for all i ∈ �(x∗) ∩ �(x).
Furthermore, sinces(i)=B for i /∈�(x∗)∪�(x), thenyi =0 for all i /∈�(x∗)∪�(x). Since
V (y)�V (x), theny�11 =1 ory�21 =1. However, it is impossible thaty�11 = y�21 =1, since

this implies thatS(y)�k42k3+2 + 2k3 + 2k3−1 + 2
∑k1−1

i=1 2k1−i + 1>B. Therefore, there
are two possibilities:
Case3a:y�11=1 andy�21=0. In this case,y�2i =0 for all i=1,2, . . . , k2, since otherwise

S(y)�k42k3+2+2k3+2k3−k2 >B.Also, sinceV (y)�V (x)andv(�1i )�2 (i=1,2, . . . , k1),
theny�1i = 1 for all i = 1,2, . . . , k1. Therefore,y = x∗.
Case3b:y�11 =0 andy�21 =1. SinceV (y)�V (x) andv(�1i )�2k1−i (i =2,3, . . . , k1),

theny�2i = 1 for all i = 1,2, . . . , k2. Furthermore, ify�1i = 1 for somei = 1,2, . . . , k1,
thenS(y)�B + 1. Therefore,y = x. �
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Theorem 4 shows that for every reasonable neighborhood function of TSP, there exists
an instance of TSP withstrict local optima that are not global optima; hence TSP has no
reasonableneighborhood functionwith thesmoothproperty. Furthermore,Theorem4shows
that many exponentially sized and data-independent neighborhood functions do not have
the smooth property. The proof of Theorem 4 follows by starting with an arbitrary solution
� and choosing another solution�A′ (that is not a neighbor of�) from an exponential
set of solutionsA′ (Hamiltonian circuits) such that there does not exist any solution using
edges from only� and�A′ , except for the solutions� and�A′ themselves. The distances
between the cities are then defined so that�A′ and� are the unique global optimum and
unique second best solution (Hamiltonian circuit), respectively. For TSP, the size of data-
independent neighborhood functions can be given as a function of the number of citiesn in
an instance.

Theorem 4. If � is a data-independent neighborhood function for the TSP with the smooth
property, thenminx∈SOL(I ) |�(I, x)| = �(2n/3), where n denotes the number of cities.

Proof. The proof follows by showing that any data-independent neighborhood function�
for TSP such that|�(I,�)|<2�(n−2)/3� − 1, whereI is an (�5) city TSP instance, does
not have the smooth property. Let� be a data-independent neighborhood function for TSP
such that|�(I,�)|<2�(n−2)/3� −1 for someTSP instanceI with n (�5) cities and solution
�. Consider the collection of�(n − 2)/3� pairs of cities

� = {(i, i + 1) : i = 2+ 3k, k = 0,1, . . . , �(n − 2)/3� − 1}.
LetA={(ki, ki +1) : i=1,2, . . . , p} (whereki < ki+1 for i=1,2, . . . , p−1) be a subset
of sizep of the set� and define the solution (Hamiltonian circuit):

�A = 12. . . (k1− 1)(k1+ 1)k1(k1+ 2) . . . (k2− 1)(k2+ 1)k2(k2+ 2) · · · (kp − 1)(kp +
1)kp(kp + 2)(kp + 3) · · · n.
SupposeAandBare two non-empty subsets of� such thatA �= B, then�A �= �B . Also,

note thereare2�(n−2)/3�−1different non-empty subsetsof�.Without lossof generality, sup-
pose�=123. . . n. Since|�(I,�)|<2�(n−2)/3�−1, whereI denotes ann-city TSP instance,
choose a subsetA′ ⊂ � such that�A′ /∈ �(I,�). LetA′ = {(ki, ki + 1) : i = 1,2, . . . , p}
(whereki < ki+1 for i=1,2, . . . , p−1) for some positive integerp (1�p��(n−2)/3�).
Define the distance function

d(ki − 1, ki + 1) = d(ki, ki + 2) = 1 for all i = 1,2, . . . , p,

d(i, i + 1) = 1 for all i = 1,2, . . . , n − 1, i �= k1 − 1, d(n,1) = 1,

d(k1 − 1, k1) = 2.

Suppose that all of the remaining edges have length three. It then follows that the length of
� is n + 1 and the length of�A′ is n.
To complete the proof, to show that� is the unique solution of lengthn + 1 and�A′

is the unique solution of lengthn, suppose that there exists a solution�′ = x1x2 . . . xn of
length less than or equal ton + 1. Then, by the distance definition, every edge that is part
of solution�′ must be an edge on� or�A′ . Therefore,�′ =12. . . (k1−1)xk1xk1+1 . . . xn;
hence there are two possibilities:xk1 = k1 or xk1 = k1 + 1. If xk1 = k1, thenxk1+1 = k1 + 1
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since otherwise,xk1+1 = k1 + 2 and it is impossible to visit both citiesk1 + 1 andk1 + 3
using edges only on� or�A′ . Similarly, if xk1 = k1 + 1, thenxk1+1 = k1 since otherwise,
xk1+1= k1+ 2 and it is impossible to visit both citiesk1 andk1+ 3 by using edges only on
� or�A′ . Therefore,

�′ = 12. . . (k2 − 1)xk2 . . . xn or

�′ = 12. . . (k1 − 1)(k1 + 1)k1(k1 + 2) . . . (k2 − 1)xk2xk2+1 . . . xn.

Iteratively applying this argument results in�′ =� or�′ =�A′ . Therefore,� is the unique
solution of lengthn + 1 and�A′ is the unique solution of lengthn. Since�A′ /∈ �(I,�),
then� is a strict local optimum that is not a global optimum.�

Similar to Theorems 1 and 3, the class of instances used in the proof of Theorem 4
can be formulated into a polynomially solvable sub-problem. It follows that there exists
a polynomially solvable sub-problem of TSP such that a data-independent neighborhood
function�with the smoothpropertymust satisfyminx∈SOL(I )|�(I, x)|=�(2n/3). The results
in this section demonstrate a drawback of local search algorithms that use data-independent
neighborhood functions for MAX 3-SAT, 0–1 knapsack andTSP. These results also provide
a first step towards showing that a large class of NP-hard discrete optimization problems
has the property that every reasonable neighborhood function does not have the smooth
property.

4. Conclusions and directions for future research

A difficulty with local search algorithms is that neighborhood functions for NP-hard dis-
crete optimization problems typically have many (strict) local optima that are not global
optima. This paper shows that a large class of neighborhood functions for MAX 3-SAT, 0–1
knapsack and TSP do not have the smooth property. In particular, the complete neighbor-
hood functions are shown to be the only data-independent neighborhood functions with the
smooth property for MAX 3-SAT. The smallest data-independent neighborhood function
for 0–1 knapsack is proven to have size with the same order of magnitude as the solution
space size. Furthermore, the results demonstrate the minimal data-independent neighbor-
hood functions with the smooth property for 0–1 knapsack andMAX 3-SAT. Every reason-
able neighborhood function (andmany exponentially sized data-independent neighborhood
functions) for TSP is shown to not have the smooth property.
Directions for future research include studying the properties of data-independent neigh-

borhood functions for other discreteoptimizationproblems.Bydoing this, itmaybepossible
to develop a general proof that would show that every reasonable neighborhood function
for a large class of discrete optimization problems has at least one strict local optimum that
is not a global optimum. In particular, one future direction of research focuses on deter-
mining if transformations between discrete optimization problems can be used to show that
problems do not have reasonable neighborhood functions with the smooth property. That is,
developing transformations fromaproblem�A to a problem�B so that if problem�A does
not have a reasonable neighborhood function with the smooth property, then problem�B

does not have a reasonable neighborhood function with the smooth property. Armstrong
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and Jacobson[2] have defined a transformation between discrete optimization problems
that preserves semi-reasonable neighborhood functions in this manner. A semi-reasonable
neighborhood function is a neighborhood function that is independent of the problem data,
except that it may depend on the maximum absolute value of a number in an instance. It
would be useful to obtain similar results as reported in[2] for data-independent neighbor-
hood functions. The overall objective of this research is to develop an understanding of the
properties of neighborhood functions for discrete optimization problems.
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