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Abstract

We give a criterion of (micro-)kroneckerity of the linear Poisson pencil on g∗ related to an algebraic Nijenhuis operator N :g → g

on a finite-dimensional Lie algebra g. As an application we get a series of examples of completely integrable systems on semisimple
Lie algebras related to Borel subalgebras and a new proof of the complete integrability of the free rigid body system on gln.
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0. Introduction

This paper is devoted to a method of constructing completely integrable systems based on the micro-local theory
of bihamiltonian structures [2,7–10,18,23]. The main tool are the so-called micro-Kronecker bihamiltonian struc-
tures [23], which will be called Kronecker in this paper for short (in [10] the term Kronecker was used for the
micro-Kronecker structures with some additional condition of “flatness” which will not be essential in this paper).

A Kronecker bihamiltonian structure on a manifold M is a Poisson pencil {s1θ1 + s2θ2}(s1,s2)∈K2 , i.e. a two-
dimensional linear space over a base field K in the set of all Poisson structures on M , satisfying an additional condition
of the constancy of rank: rankC θs = const, s := (s1, s2) ∈ C

2 \ (0,0), θs := s1θ1 + s2θ2 (in the real case we should
pass to the complexification of the pencil). The kroneckerity condition is important due to the fact that it automatically
implies the existence (at least locally) on M of the complete involutive with respect to any bivector θs set of functions.
This set is functionally generated by the Casimir functions of the bivectors θs (see Proposition 2.4). Geometrically
this set corresponds to the intersection over s ∈ K

2 \ {(0,0)} of all symplectic leaves of maximal dimension of the
Poisson structures θs and the completeness of this set reflects the fact that this intersection is lagrangian in any fixed
symplectic leaf (see [8,18]).

The main result of this paper (Theorem 2.5) gives a criterion of kroneckerity for the Poisson pencils related to
diagonalizable algebraic Nijenhuis operators. An algebraic Nijenhuis operator N on a Lie algebra g (see [4,12], for
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example) is a linear operator N :g → g with the condition of the vanishing of the so-called Nijenhuis torsion (see
Definition 1.1). Given a linear operator N : (g, [,]) → (g, [,]), the condition of vanishing of its Nijenhuis torsion
guarantees that the infinithesimal part [,]N of the trivial deformation (Id+λN)−1[(Id+λN)·, (Id+λN)·] of the Lie
bracket [,] is again a Lie bracket. This new Lie bracket [,]N is automatically compatible with [,], thus any Nijenhuis
operator N “produces” the pencil of Lie brackets [,]s := s1[,] + s2[,]N and, consequently, the corresponding pencil
{θs

N }s∈K2 of the Lie–Poisson structures on g∗.
Let us look more closely at the problem of the kroneckerity of the Poisson pencil {θs

N }. It can be shown (Propo-
sition 1.2) that if N is Nijenhuis, (N − λ Id)−1[(N − λ Id)·, (N − λ Id)·] = [·,·]N − λ[·,·]. In particular, all the Lie
brackets [,]s are isomorphic to [,] except those corresponding to s = (s1, s2) with λ = −s1/s2 belonging to SpN , the
spectrum of N . Thus the problem of kroneckerity of {θs

N } (modulo some not very restrictive assumption on the codi-
mension of the set of singular coadjoint orbits of g, see (2.5.1)) reduces to the problem of calculating the dimension of
the coadjoint orbits of the exceptional brackets [,]N − λi[,], i = 1, . . . , n, where λ1, . . . , λn are the eigenvalues of N .
In fact, due to the semicontinuity of the function rank θs , in order to prove the kroneckerity it is sufficient to find for
any i a particular coadjoint orbit Oi of a Lie bracket [,]N − λi[,] such that dimOi = dimO , where O is the generic
coadjoint orbit of [,].

One possibility of finding the orbits Oi is the following. If N is a Nijenhuis operator, then N : (g, [,]N) → (g, [,])
is a homomorphism of Lie algebras [12]. Hence imN is a subalgebra of (g, [,]) and we have the Poisson inclusion
tN : ((imN)∗, θst) ↪→ (g∗, θN), where θst is the standard Lie–Poisson structure on (imN)∗ and θN corresponds to
[,]N . In particular, one can take Oi to be a symplectic leaf in ([im(N − λi Id)]∗, θst) ⊂ (g∗, θ(N−λi Id)) (the operator
N − λi Id is also Nijenhuis). Choosing Oi to be a generic coadjoint orbit and passing to codimensions we get the
following sufficient condition of kroneckerity: if ind im(N − λi Id) + codim im(N − λi Id) = indg for any i, where
ind stands for the index of a Lie algebra, i.e. the codimension of a generic coadjoint orbit, then the Poisson pencil
{θs

N } is Kronecker (cf. Corollary 2.6).
In general, however, this condition is not necessary because it may happen that the generic coadjoint orbits in

(imN)∗ are not generic in (g∗, θN). For example, take g = sl(2) = n− ⊕ b+, where b+ is the upper Borel subalgebra
and n− is the lower nilpotent subalgebra. Let N = Pn− be the projector to the first summand along the second one.
Then coadjoint orbits of imN are points, whereas the algebra (g, [,]N) is nonabelian and has also coadjoint orbits of
dimension 2.

So our main theorem generalizes the above mentioned sufficient condition and gives necessary and sufficient con-
ditions of the kroneckerity of the pencil {θs

N } (for a diagonalizable N ). The method of proof of this result consists
in showing that the above mentioned exceptional brackets are in fact semi-direct products and using the Raïs type
formulas for their indices.

We illustrate our method by two examples. First of them, a generalization of the example above, relates a complete
involutive set of functions on a semisimple split Lie algebra with the Nijenhuis operator P that is a projector onto the
lower nilpotent subalgebra along the upper Borel subalgebra (in fact we use operators of the form N = s1P + s2 Id,
all such operators generate the same Poisson pencil, see Section 4).

Note that for s1 = 2, s2 = −1 such N is a classical R-matrix in the sense of Semenov-Tian-Shansky [22]. However,
our method is essentially different, since it (1) exploits another modified bracket [·,·]N = [N · ,·]+ [·,N ·]−N [·,·] (in
the R-matrix approach [·,·]R = [R · ,·] + [·,R·]); (2) uses the whole pencil of brackets, generated by [·,·] and [·,·]N
(the R-matrix approach uses only [·,·]R); (3) is applicable to the generic coadjoint orbits (while R-matrix approach
generates involutive sets of functions on the orbits of dimension 2r = 2 indg). The reader is also referred to the
reference [12] for another application of algebraic Nijenhuis operators which are projectors. This application, related
with the so-called Kostant–Symes theorem, is also different from our since it produces involutive sets of functions on
the dual spaces to subalgebras of g.

Our second example (see Section 5), which in fact inspired this paper, uses the Lie algebra g = gln of n×n-matrices
and the operator N = LA of the left multiplication by a diagonal matrix A = diag(λ1, . . . , λn) ∈ g with λi �= λj , i �= j .
The corresponding modified commutator is of the form [x, y]N = xAy − yAx, x, y ∈ g, and was considered earlier
in [2] and [16] in the context of the free rigid body system on son. In these papers it was proved that the related
Euler vector field is hamiltonian with respect to the corresponding Lie–Poisson structure θN . It is also known that this
vector field is hamiltonian with respect to the standard Lie–Poisson structure θst on son with the hamiltonian function
Tr(Ax2). As a consequence of our method we get an alternative proof of the complete integrability of the analogue
of the n-dimensional free rigid body system on gln. The traditional proof, which goes back to the papers of Manakov
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[14] and Mishchenko–Fomenko [15] (see also [2]), uses the so-called method of the argument translation, i.e. the
pencil of the affine Poisson structures generated by the linear Poisson structure θst and the constant Poisson structure
θst|A. The complete involutive family of functions (which includes the function Tr(Ax2)) built by our method in fact
coincides with the family obtained by the method of the argument translation (see Proposition 5.3), however the two
families of functions are obtained differently and their equality is not seen at first glance. The proof of the equality
uses recurrence relations between two families.

In order to use our method for the proof of the integrability of “true” free rigid body (i.e. on son) one should
extend the method. Note that the pencil of brackets [x, y](N−λ Id) = x(A − λ Id)y − y(A − λ Id)x is correctly defined
on the subalgebra son ⊂ gln, although the Nijenhuis operator N does not preserve this subalgebra: Nson �⊂ son

(cf. Example 1.6 and Remark 1.7). One can consider the following generalization of this situation: let g be a Lie
algebra, k ⊂ g its subalgebra, N :g → g a Nijenhuis operator such that (N − λ Id)k again is a Lie subalgebra for any λ

(we do not require Nk ⊂ k). Then (N − λ Id)−1[(N − λ Id)·, (N − λ Id)·] is a Lie bracket on k which is equal to
[·,·]N |k − λ[·,·]|k =: [·,·]λ.

So one of the possible extensions of our method is the study of the kroneckerity of the pencils of the Lie–Poisson
structures related to the pencil of the brackets [·,·]λ. Another one is the consideration of the so-called weak Nijenhuis
operators [5], i.e. operators whose Nijenhuis torsion is a cocycle with the coefficients in the adjoint module. Such
operators also generate pencils of Lie–Poisson structures and the question of their kroneckerity seems reasonable and
can provide with new examples of completely integrable systems or new proofs of their complete integrability.

1. Algebraic Nijenhuis operators and pencils of Lie algebras

The following definition, which is basic for this paper, is taken from [12].

Definition 1.1. Let (g, [,]) be a finite-dimensional Lie algebra over a field K, where K stands for R or C. A linear
operator N :g → g is called Nijenhuis if

(1.1.1)[Nx,Ny] − N
([Nx,y] + [x,Ny]) + N2[x, y] = 0

for all x, y ∈ g.

The word “algebraic” in the titles of this section and the paper is used to distinguish the algebraic situation from
the geometric one, where Nijenhuis operators are the endomorphisms of the tangent bundle to a manifold. Since these
last will not be used in the paper we shall omit the term algebraic.

Given a Nijenhuis operator, it can be showed (see [12]) that the operation

(1.1.2)[,]N :g × g → g, [x, y]N := [Nx,y] + [x,Ny] − N [x, y], x, y ∈ g,

is again a Lie algebra bracket and moreover so is any linear combination [x, y]λ := [x, y]N −λ[x, y], λ ∈ K∪∞. This
fact also follows from the proposition below, which will be used for calculating the Casimir functions of the Poisson
pencil corresponding to the pencil of Lie algebras (g, [,]λ) and for other purposes.

Proposition 1.2. Let N be a Nijenhuis operator. Then the following equality holds for any x, y ∈ g and any λ /∈ SpN ,
where SpN stands for the spectrum of N :

(1.2.1)(N − λ Id)−1[(N − λ Id)x, (N − λ Id)y
] = [x, y]N − λ[x, y] = [x, y]λ.

Proof. It is straightforward:

(N − λ Id)−1[(N − λ Id)x, (N − λ Id)y
]

= (N − λ Id)−1([Nx,Ny] − λ
([Nx,y] + [x,Ny]) + λ2[x, y])

= (N − λ Id)−1(N
([Nx,y] + [x,Ny]) − N2[x, y] − λ

([Nx,y] + [x,Ny]) + λ2[x, y])

= (N − λ Id)−1((N − λ Id)
([Nx,y] + [x,Ny] − N [x, y]) − λ

(
N [x, y] − λ[x, y]))

= (N − λ Id)−1((N − λ Id)
([x, y]N − λ[x, y])) = [x, y]λ. �
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Now, the LHS of the proved equality is a Lie bracket for almost all λ, hence by continuity [,]λ is a Lie bracket for
all λ.

The next lemma together with results of [12] allow to give a description of Nijenhuis operators, which is complete
in the diagonalizable case.

Lemma 1.3. Let N be a Nijenhuis operator. Then N − λ Id is a Nijenhuis operator for any λ ∈ K ∪ ∞.

Proof. Let us note that by definition an invertible operator A is Nijenhuis if and only if A−1[Ax,Ay] = [x, y]A for
any x, y ∈ g. Now, by previous proposition for A := N − λ Id and for almost all λ we have

A−1[Ax,Ay] = [Nx,y] + [x,Ny] − N [x, y] − λ[x, y] = [x, y]A.

By continuity we conclude that N − λ Id is Nijenhuis for any λ. �
Proposition 1.4. Let g be a Lie algebra over C, let N be a Nijenhuis operator, and let g = g1 ⊕ · · · ⊕ gn be its
decomposition to root spaces. Then this decomposition has the following property: the subspace of the form gi1 ⊕
· · · ⊕ gik , i1 < · · · < ik , is a Lie subalgebra for any k < n (equivalently, gi + gj is a subalgebra for any i, j ).

Conversely, any direct decomposition of g to subspaces with the property above determines a diagonalizable Ni-
jenhuis operator uniquely up to a choice of the eigenvalues λ1, . . . , λn corresponding to the subspaces g1, . . . ,gn. In
particular, any decomposition g = g1 ⊕ g2 to two subalgebras determines a Nijenhuis operator.

Proof. Let N be Nijenhuis and let SpN = {λ1, . . . , λn}. By [12, Section 2.1] and by Lemma 1.2 the subspaces
gi = kerAri

i , ǧi := ⊕
j �=i gj = imA

ri
i are Lie subalgebras, where we put Ai := N − λi Id and ri is the Riesz index

of Ai , i.e. the smallest integer with the property that imA
ri
i = imA

ri+1
i = · · · , while imA

ri−1
i �= imA

ri
i . Obviously,

the restriction of a Nijenhuis operator to a subalgebra is again a Nijenhuis operator. So we can pass to N |ǧi
and repeat

the considerations above. By induction we get the desired property.
Now, let the decomposition g = g1 ⊕ · · · ⊕ gn be such that gi + gj is a subalgebra for any i, j . Define N by

N |gi
:= λi Idgi

, i = 1, . . . , n. By the bilinearity it is enough to prove equality (1.1.1) for x ∈ gi , y ∈ gj , 1 � i, j � n:

[Nx,Ny] − N
([Nx,y] + [x,Ny]) + N2[x, y]

= λiλj

([x, y]i + [x, y]j
) − N

(
λi

([x, y]i + [x, y]j
) + λj

([x, y]i + [x, y]j
)) + N

(
λi[x, y]i + λj [x, y]j

)

= λiλj

([x, y]i + [x, y]j
) − (

λ2
i [x, y]i + λiλj [x, y]j + λiλj [x, y]i + λ2

j [x, y]j
)

+ (
λ2

i [x, y]i + λ2
j [x, y]j

) = 0

(here we denote by [x, y]i the ith component of the element [x, y] with respect to the decomposition above). �
Some examples of Nijenhuis operators can be found in [12], another can be built using the second part of the

proposition above.
The fundamental example for this paper is as follows.

Example 1.5. Let g be an associative algebra and the Lie bracket be the commutator: [x, y] := xy − yx. Then the op-
erator La of left (associative) multiplication by an element a ∈ g is a Nijenhuis operator: [Lax,Lay]−La([Lax, y]+
[x,Lay])+L2

a[x, y] = axay − ayax − a(axy − yax + xay − ayx)+ a2(xy − yx) = 0. In particular, if g = gln is the
algebra of n×n-matrices we get important examples of: (a) nilpotent Nijenhuis operator if a ∈ gln is nilpotent; (b) di-
agonalizable Nijenhuis operator if a ∈ gln is diagonalizable. If a = diag(λ1, . . . , λn) ∈ gln is diagonal with λi �= λj

while i �= j , then the corresponding eigenspaces gi are equal to the Lie subalgebras of matrices whose all rows except
the ith one are the zero vectors.

It is easy to see that [x, y]La = xay − yax and the corresponding pencil of Lie brackets is of the form [x, y]λ =
x(a − λ)y − y(a − λ)x.

Now we want to remark that the last formula admits a generalization for a wider class of Lie algebras. Below we
shall give a construction of pencils of Lie brackets on a class of subalgebras of gln, which also come from a Nijenhuis
operator but this operator in a sense is an “outer” one.



486 A. Panasyuk / Differential Geometry and its Applications 24 (2006) 482–491
Example 1.6. Fix a matrix I ∈ gln and put gI := {B ∈ gln | BI + IB∗ = 0}, hI := {A ∈ gln | AI − IA∗ = 0}, where ∗
denotes some involution on gln such that (AB)∗ = B∗A∗ for any A,B ∈ gln. Then it is easy to see that gI is a Lie sub-
algebra in gln and that so is LAgI for any A ∈ hI : [B,C]I = BCI − CBI = −BIC∗ + CIB∗ = IB∗C∗ − IC∗B∗ =
−I ([B,C])∗, [AB,AC] = A(BAC − CAB), (BAC − CAB)I = −BAIC∗ + CAIB∗ = −BIA∗C∗ + CIA∗B∗ =
IB∗A∗C∗ − IC∗A∗B∗ = −I (BAC − CAB)∗, B,C ∈ gI . This shows that the formula [B,C]A := BAC − CAB

defines a new Lie bracket on gI . Since for any λ ∈ K we have A− λIn ∈ hI , where In is the unity matrix, the brackets
[,]A and [,] generate the pencil of Lie brackets [,]λ := [,](A−λIn) = [,]A − λ[,]. In general, this pencil is not generated
by an “inner” Nijenhuis operator because in general LAgI �= gI . However, the formula of Proposition 1.2 is still valid:
[B,C]λ = (A − λIn)

−1[(A − λIn)B, (A − λIn)C], B,C ∈ gI .

Remark 1.7. One can generalize this construction to the following one. Let N be a Nijenhuis operator on g and
let k ⊂ g be a Lie subalgebra such that (N − λ Id)k again is a Lie subalgebra for any λ. Then (N − λ Id)−1[(N −
λ Id)· , (N − λ Id)·] is a Lie bracket on k which is equal to [·,·]N |k − λ[·,·]|k =: [·,·]λ by Proposition 1.2. In particular,
[·,·]λ is a correctly defined pencil of Lie brackets on k.

2. Preliminaries on Poisson pencils and formulation of main results

All definitions below admit the real (C∞) and the complex (holomorphic) versions. However, for the purposes of
this paper we shall mainly need the last one. So all objects in the next two sections are complex analytic, M stands
for a connected manifold. We refer the reader to the book [6] for the preliminaries on Poisson structures.

Definition 2.1. A pair (θ1, θ2) of linearly independent bivector fields (bivectors for short) on a manifold M is called
Poisson if θs := s1θ1 + s2θ2 is a Poisson bivector for any s = (s1, s2) ∈ C2; the whole family of Poisson bivectors
{θs}s∈C2 is called a Poisson pencil or a bi-Poisson structure (or bihamiltonian structure).

A bi-Poisson structure {θs} (we shall often skip the parameter space in the notations) can be viewed as a two-
dimensional vector space of Poisson bivectors, the Poisson pair (θ1, θ2) as a basis in this space. Of course, the basis
can be changed.

Example 2.2. Let g be a Lie algebra over C with a Nijenhuis operator N . Denote by θ1, θ2 the canonical linear
Poisson bivectors (the so-called Lie–Poisson bivectors) on the dual space g∗ related to the Lie brackets [,] and [,]N ,
respectively. Then, since these brackets generate a pencil of Lie brackets, the pair θ1, θ2 is Poisson. The corresponding
Poisson pencil will be denoted by {θs

N }. In the real case we complexify g and N and then build the holomorphic
Poisson pencil on (gC)∗ as above.

The following definition is due to I. Zakharevich [23]

Definition 2.3. Let {θs} be a Poisson pencil on M . It is called Kronecker at a point x ∈ M if rankC θs
x is constant with

respect to s ∈ C
2 \ {0}. We say that {θs} is micro-Kronecker (Kronecker for short) if it is Kronecker at any point of

some open dense set in M .

The next proposition shows the importance of Kronecker Poisson pencils, which serve as a convenient formalism
allowing to construct and investigate completely integrable systems. For the proof see [2,18].

Proposition 2.4. Let {θs} be a Kronecker Poisson pencil on M . Assume that an open set U ⊂ M is such that the set
Zθs

(U) of Casimir functions for θs over U is complete (i.e. the common level sets of functions from Zθs
(U) coincide

with the regular part of the symplectic foliation of θs on U ) for any s �= 0. Then the set

Z{θs }(U) :=
∑

s �=0

Zθs

(U)

is a complete involutive set of functions for any θs �= 0, that is, the common level sets of functions from Z{θs }(U) form
a lagrangian foliation in any regular symplectic leaf of θs on U . (Here we understand the sum as the linear span of
an infinite family of linear subspaces of functions, which in fact is generated by some finite subfamily.)
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Now we are ready to formulate the main result of this paper which gives necessary and sufficient conditions of the
kroneckerity of the Poisson pencil {θs

N } built by means of a Nijenhuis operator N (see Example 2.2).
Given a homogeneous space G/H , where G ⊃ H are Lie groups, the Lie group H is naturally acting on it and since

the point eH , where e ∈ G is the neutral element, is stabilized by this action one can extend it to the linear action in the
cotangent space T ∗

eH (G/H). This representation of H is denoted by ρ and is called the coisotropy representation. Iden-

tifying TeH (G/H) with g/h we obtain the following formula: ρ :H → Aut((g/h)∗), h
ρ�→ t (g + h �→ Adh(g) + h),

where g ∈ g, h ∈ H and t (·) stands for the transposed operator. For any element a ∈ (g/h)∗ we introduce two num-
bers: inda, which is the index of the Lie algebra ha of the stabilizer Ha of a with respect to the coisotropy action, and
codima, which is the codimension of the orbit H · a of a with respect to the coisotropy action (recall that the index
of a Lie algebra is by definition the codimension of the generic coadjoint orbit).

Theorem 2.5. Let g be a Lie algebra over C and let N be a diagonalizable Nijenhuis operator with the spectrum
SpN = {λ1, . . . , λn}. Assume the following condition is satisfied:

(2.5.1)the complement to the set
⋃

λ∈C\SpN

(N − λ Id)(Singg∗) in g∗ contains an open dense set.

(Here we have denoted by Singg∗ the union of all coadjoint orbits of nonmaximal dimension. In particular, if g is
reductive, codim Singg∗ � 3 and the assumption above is satisfied.)

Put ǧi := im(N − λi Id), i = 1, . . . , n (ǧi are Lie algebras by Lemma 1.3 and by equality (1.1.1), see also Proposi-
tion 1.4).

Then the corresponding Poisson pencil {θs
N } is Kronecker if and only if one can find elements c1, . . . , cn, ci ∈

(g/ǧi )
∗, i = 1, . . . , n, such that for any i, 1 � i � n,

(2.5.2)ind ci + codim ci = indg,

where ind ci, codim ci are the corresponding numbers related to the coisotropy representation ρi : Ǧi → (g/ǧi )
∗, Ǧi

being the Lie subgroup of G with the Lie algebra ǧi .

The proof of this result is postponed to Section 3. Taking ci = 0, i = 1, . . . , n, we get the following corollary.

Corollary 2.6. Under the assumptions of Theorem 2.5, if for any i, 1 � i � n,

ind ǧi + codim ǧi = indg,

then the Poisson pencil {θs
N } is Kronecker.

The last part of this section is devoted to some definitions which are based on Ref. [11] and which will be used in
the proof of Theorem 2.5.

Let g = g1 ⊕ g2 be a Lie algebra which is a direct sum of its subalgebras g1,g2. Then the Lie bracket on g can be
decomposed as follows:

(2.6.1)[x, y] = [x1, y1]1 + ([x1, y2]1 + [x2, y1]1
) + ([x1, y2]2 + [x2, y1]2

) + [x2, y2]2,

where the indices refer to the corresponding projections onto g1 or g2. It turns out that the maps A1 :x1 �→
[x1, ·]2 :g1 → End(g2) and A2 :x2 �→ [x2, ·]1 :g2 → End(g1) are Lie algebra homomorphisms, where End(gi ) is the
Lie algebra of the endomorphisms of the vector space gi . The representations A1,A2 also satisfy some additional
conditions making them cocycles, which will be inessential for us. The formula above rewritten in terms of the pairs
of elements (x1, x2), xi ∈ gi , is the following:

(2.6.2)
[
(x1, x2), (y1, y2)

] = ([x1, y1] + A2(x2)y1 − A2(y2)x1, [x2, y2] + A1(x1)y2 − A1(y1)x2
)
.

In particular, if one put here A2 ≡ 0, one gets the formulas

(2.6.3)
[
(x1, x2), (y1, y2)

] = ([x1, y1],A1(x1)y2 − A1(y1)x2
)
,



488 A. Panasyuk / Differential Geometry and its Applications 24 (2006) 482–491
or

(2.6.4)[x, y] = [x1, y1]1 + ([x1, y2]2 + [x2, y1]2
)
,

in which one recognizes the multiplication in the semidirect product g1 ×A1 g2, where g2 is regarded as a vector space
(abelian Lie algebra).

Definition 2.7. We shall refer to the direct sum of Lie algebras g1 ⊕ g2 with the bracket (2.6.1) (or (2.6.2)) as to a
twilled Lie algebra. The same vector space with the multiplication (2.6.3) (or (2.6.4)) will be called the truncation of
the twilled Lie algebra.

3. Proof of the main result

Proof of Theorem 2.5. The idea of the proof is as follows. As we have already mentioned in the Introduction for-
mula (1.2.1) shows that almost all bivectors of the Poisson pencil {θs

N } built from the algebraic Nijenhuis operator N

are isomorphic, in particular have the same corank equal to the index of the algebra g. The exception are the bivectors
θ(−λi ,1), i = 1, . . . , n, corresponding to the eigenvalues λi of N and all that we need to control the corank of the whole
pencil is to control the rank of these bivectors which will be called exceptional. To this end we shall show that the Lie
brackets corresponding to the exceptional bivectors are semidirect products and we shall use the Raïs type formula for
the index of such algebras.

Let us fix i, 1 � i � n, and consider the Nijenhuis operator M := N − λi Id. Then the following formula describes
the deformed bracket corresponding to M (see [1,4,21]):

[x, y]M = M|−1
E1

[Mx,My]1 + [Mx,y]2 + [x,My]2 − M[x, y]2,

where we put for a moment E1 := ǧi = imM , E2 := gi = kerM and the subscripts refer to the projections onto E1
or E2. Note that the last term is zero. We claim that the bracket [,]M is the truncated bracket (see Definition 2.7)
corresponding to the twilled Lie algebra structure on g = E1 × E2 given by the bracket [,]L defined below.

Define a new Nijenhuis operator L on g by the formula L = M ◦ P1 + P2, where Pi stands for the projector
onto Ei , i = 1,2. In other words L acts as M on E1 and identically on E2. Now let [,]L stand for the deformed
bracket corresponding to L by formula (1.1.2). Then by (1.2.1) we have

[x, y]L = L−1[Lx,Ly] = L|−1
E1

P1[Lx,Ly] + P2[Lx,Ly]
= M|−1

E1

([Mx1,My1]1 + [Mx1, y2]1 + [x2,My1]1
) + [Mx1, y2]2 + [x2,My1]2 + [x2, y2]2.

Now, the truncated bracket equals M|−1
E1

[Mx1,My1]1 + [Mx1, y2]2 + [x2,My1]2 which coincides with [x, y]M and
the claim is proved.

Note that the twilled Lie algebras (ǧi × gi , [,]) and (ǧi × gi , [,]L) are isomorphic. Indeed, the isomorphism is
given by the operator L : (ǧi × gi , [,]L) → (ǧi × gi , [,]). This isomorphism is compatible with the truncations, i.e.
the corresponding truncated algebras also are isomorphic. In particular, in the considerations below concerning the
codimensions of the coadjoint orbits we can regard simply the semidirect products which are the truncations of the
twilled Lie algebras (ǧi × gi , [,]), i = 1, . . . , n.

Now we can use the standard facts about semidirect products, which we recall below. Given a semidirect product
g×ρ V of a Lie algebra g with a vector space V by means of a representation ρ, one can show (see [20], for example)
that: (1) any covector a ∈ V ∗ is contained in a set Va ⊂ (g ×ρ V )∗ which is a Poisson submanifold in (g ×ρ V )∗
isomorphic to T ∗G/Ga (here G,Ga are the Lie groups corresponding to the Lie algebras g,ga , where ga is the
stabilizer of a); (2) the coadjoint orbits contained in Va are isomorphic to the symplectic leaves of T ∗G/Ga , in
particular, the generic (in Va) orbits have codimension in Va equal to indga ; (3) the submanifold Va is of the form
g∗ × Oa , where Oa ⊂ V ∗ is the orbit of a in V ∗, in particular, codim(g×ρV )∗ Va = codimV ∗ Oa . Summarizing all
this, we can say that, given an element a ∈ V ∗, one can associate with it a coadjoint orbit Sa of (g ×ρ V )∗ such that
codim(g×ρV )∗ Sa = codimV ∗ Oa + indga . Taking a generic a we get the so-called Raïs formula [19]: ind(g ×ρ V )∗ =
codimV ∗ Oa + indga .

Now let us complete the proof of Theorem 2.5. We claim that the kroneckerity of the Poisson pencil {θs
N } is

equivalent to existing for any i, 1 � i � n, of a symplectic leaf Si of the bivector θ
(−λi ,1) such that codimSi =
N
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indg. Indeed, by formula (1.2.1) we have (N − λ Id)∗θ1 = θ
(−λ,1)
N for any λ /∈ SpN . Since Singg∗ is the union of

symplectic leaves of θ1 of nonmaximal dimension, the assumption (2.5.1) implies that on the open dense set mentioned
in it the corank of the bivectors θ

(−λ,1)
N ,λ /∈ SpN , is equal to indg. But these bivectors up to rescaling exhaust all

nonexceptional bivectors. Now it is clear that the kroneckerity is equivalent to the condition corank θ
(−λi ,1)
N = indg,

i = 1, . . . , n. On the other hand, in general indg � corank θ
(−λi ,1)
N � codimSi and we have proved the claim.

Now let us pick out a point ci ∈ (g/ǧi )
∗ � (gi )

∗ for any i = 1, . . . , n. By the considerations above this is equivalent
to picking out a symplectic leaf Si of the exceptional bivector θ(−λi ,1) such that codimg∗ Si = codimg∗

i
Oci

+ ind ǧ
ci

i ,

where Oci
is the Ǧi -orbit of ci in g∗

i and ǧ
ci

i is its stabilizer. �
4. First example: Kronecker Poisson pencils related to Borel subalgebras

Let g be a semisimple real or complex Lie algebra of rank r . If g is real, assume that it is split. Consider a Cartan
subalgebra h and the corresponding direct decompositions g = n− ⊕ b = n− ⊕ h ⊕ n+, where b,n−,n+ are the Borel
and the maximal nilpotent subalgebras respectively. Define a linear operator N :g → g by N |n− = λ1 Id, N |b = λ2 Id.
Then by Proposition 1.4 N is a Nijenhuis operator.

Theorem 4.1. The corresponding Poisson pencil {θs
N } is Kronecker.

Proof. We need to check that (g,N) satisfies the criterion of the kroneckerity, Theorem 2.5. Note that since g is
semisimple, codim Singg � 3 and condition (2.5.1) is satisfied and also indg = rankg.

Now we shall consider the corresponding coisotropy representations. Denote by N−,B the corresponding Lie
groups. Using the Killing form we obtain the following natural identifications: (g/b)∗ � n+, (g/n−)∗ � b− := n− ⊕
h, which are B- and N−-equivariant respectively. We need to find two elements c1 ∈ n+ and c2 ∈ b− satisfying
condition (2.5.2).

First take c1 := e, a principal nilpotent element [3,13]. Its stabilizer ge with respect to the adjoint action of g is an
abelian subalgebra of dimension r . Moreover, ge ⊂ n+, hence ge = be and ind c1 = r . The dimension of the adjoint
B-orbit of c1 equals dimn+, i.e. codim c1 = 0 and (2.5.2) is satisfied for c1.

Now let c2 := f ∈ h be a regular semisimple element. Then gf = h and n
f
− = gf ∩ n− = 0. Thus ind c2 = 0 and

the dimension of the N−-orbit of c2 in b− is dimn−, i.e. codim c2 = dimb− − dimn− = r . �
Remark 4.2. Let us exhibit what functions in involution we get on g∗ with the help of N (for general pair (g,N)).
Recall that they are generated by the Casimir functions of all bivectors of the pencil {θs

N } (see Proposition 2.4). By
formula (1.2.1) the Casimirs of θs

N , s = (s1, s2), are functionally generated by Cj((N −λ Id)−1x), j = 1, . . . , r , where

λ = −s1/s2 and C1, . . . ,Cr are the independent Casimirs of θ
(0,1)
N , i.e. the invariants of the coadjoint action of g. In

fact it is enough to choose a finite number of bivectors θ
si
N , si = (s1

i , s2
i ), i = 1, . . . , p, where p is sufficiently large, and

one can take −s1
i /s2

i to be not equal to the eigenvalues of N . Thus our family of functions in involution is functionally
generated by Cj ((s

2
i N + s1

i Id)−1x), j = 1, . . . , r , i = 1, . . . , p.
If C1, . . . ,Cr are polynomials as in the case of semisimple g, another way to obtain this family of functions is to

consider the coefficients of the expansion of Cj ((N − λ Id)−1x) in the powers of λ (or 1/λ).

Taking λ1 = 1, λ2 = −1 for the Nijenhuis operator N built above we obtain the following simple formula for the
resolvent: (N −λ Id)−1 = (1−λ2)−1(N +λ Id). In particular, for g = sln we can take the coefficients of the expansion
in λ of the following functions Tr((N + λ Id)x)k , k = 2, . . . , n (we have identified g and g∗ by means of the Killing
form). These functions form a complete involutive set on any adjoint orbit of maximal dimension. It is easy to see that
the following quadratic hamiltonians are in this family:

∑n
i=1 x2

ii ,
∑

i<j xij xji .

5. Second example: n-dimensional free rigid body and the method of argument translation

Theorem 5.1. Let g = gln be the Lie algebra of n × n-matrices and let N = LA be a Nijenhuis operator of left
multiplication by the diagonal matrix A = diag(λ1, . . . , λn) ∈ g with λi �= λj , i �= j .

Then the corresponding Poisson pencil {θs } is Kronecker.
N
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Proof. Obviously, the subalgebra ǧi for the Nijenhuis operator LA equals the set of matrices with the zero ith row,
hence codim ǧi = n. The proof follows from Corollary 2.6 and from the following lemma. �
Lemma 5.2. Let ǧi ⊂ g = gln be the Lie subalgebra of matrices with the zero ith row. Then ind ǧi = 0 (i.e. ǧi is
Frobenius).

Proof. We refer the reader to the reference [17], where the following fact is proved: the Lie algebra of the endomor-
phisms of a finite-dimensional vector space with the images in a fixed subspace of codimension 1 is Frobenius. �

Let us look at the functions in involution obtained from this example. By Remark 4.2 they can be function-
ally generated by the coefficients of the expansion of the functions Tr((N − λ Id)−1x)k , k = 1, . . . , n, in λ (we
have identified g and g∗ by means of the “trace” form). Let us rewrite the resolvent (N − λ Id)−1 in the form
−λ−1(Id− 1

λ
N)−1 = −λ−1 ∑∞

j=0
1
λj Nj . Write fkl for the coefficient of 1/λl in Tr(

∑∞
j=0

1
λj Njx)k . Recall also that

the so-called Manakov integrals hkl are the coefficients of λl in hλ
k(x) := 1

k
Tr(x + λA)k .

Proposition 5.3. The functions hkl , k = 1, . . . , n, l = 0, . . . , k − 1, and fkl , k = 1, . . . , n, l = 0, . . . , k − 1, generate
the same families of functions in involution.

Proof. We shall use the recursion relations satisfied by both the families.

Lemma 5.4. Let θ1, θ2 be the Lie–Poisson structures corresponding to the Lie brackets [,], [,]N on g respectively.
Then (1) θ1(hk+1,l+1) = θ2(hkl); (2) θ1(fk,l+1) = θ2(fkl).

Proof. To prove the first relation we adapt the proof of the analogous relation for g = son in [16]. We notice that
dxh

λ
k(x) = (x +λA)k−1 (here the matrix in the RHS is a functional via the “trace” form) and θ1|xx′ = [x, x′], θ2|xx′ =

xx′A − Ax′x (here θi is a map T ∗g∗ → T g∗ � g∗ Tr� g, x′ ∈ T ∗
x g∗ � g). Now it is straightforward to show that

θ1 dhλ
k+1 = λθ2 dhλ

k , which proves (1).
To show the second relation we use the fact that Tr((N − λ Id)−1x)k is a Casimir for θ2 − λθ1, i.e. (θ2 −

λθ1)(
∑

j
1
λj fkj ) = 0. Comparing the coefficients we get (2). �

Now we are ready to prove Proposition 5.3. We have the following two hierarchies of functions:

h10
h20 h21
h30 h31 h32
...

...
...

. . .

f10
f20 f11
f30 f21 f12
...

...
...

. . .

We shall use the induction on the number l of the column of the second table. It is easy to see that hk0 = 1
k

Trxk =
1
k
fk0. Now fix l and suppose the function fml , 1 � m � n, can be expressed as a function of hkj , j = 0, . . . , l,

k = 1, . . . , n. We should prove that fm,l+1, 1 � m � n, also can be expressed as a function of hkj , j = 0, . . . , l + 1,
k = 1, . . . , n. Indeed, since by the lemma above θ1(fm,l+1) = θ2(fml), this vector field can be expressed as a linear
combination of vector fields θ2(hkj ), j � l, which in turn are equal to θ1(hk+1,j+1). This shows that the function
fm,l+1 can be functionally expressed by the functions hkj , j = 0, . . . , l + 1, k = 1, . . . , n (the Casimirs of θ1 are
included in this family). �
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