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We consider a three-component reaction–diffusion system with a reaction rate parameter,
and investigate its singular limit as the reaction rate tends to infinity. The limit problem
is given by a free boundary problem which possesses three regions separated by the free
boundaries. One component vanishes and the other two components remain positive in
each region. Therefore, the dynamics is governed by a system of two equations.
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1. Introduction

The study of the evolution of species in natural environments is one of the most exciting problems. According to the
Gause’s principle of competitive exclusion, two competing species cannot coexist under strong competition. The migration
or the spatial distribution changes the situation and then species can coexist due to the segregation of their habitats.

Recently, many researchers have studied these problems from a mathematical viewpoint. One of the mathematical tools
to deal with them is so-called fast reaction limit or reaction–diffusion system approximation. Many systems are considered
in this context (see [9] and references therein). Dancer, Hilhorst, Mimura and Peletier [3] considered the Lotka–Volterra
competition–diffusion system including a large parameter k:

(LV)k
{

ut = d1�u + λu(1 − u) − kuv in Q := Ω × (0, T ),

vt = d2�v + μv(1 − v) − kuv in Q

with Neumann boundary conditions and non-negative initial conditions, where Ω is a smooth domain of R
N (N ∈ N). Here,

λ,μ,d1,d2 and T are positive constants. The solution pair (u, v) represents densities of two competing species and k is an
interspecific competition rate. They showed that the two species are spatially segregated as k tends to infinity and that the
interface between two habitats is governed by a Stefan-type free boundary problem.

We encounter the following natural question: How can we extend this result to the case of the three or more component
systems? A possible extension is the Lotka–Volterra competition–diffusion system with three species:

(LV3)k

⎧⎨⎩
ut = d1�u + μ1u(1 − u) − k(v + w)u in Q ,

wt = d2�v + μ2 v(1 − v) − k(w + u)v in Q ,

wt = d2�w + μ3 w(1 − w) − k(u + v)w in Q ,
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Fig. 1. The reaction limit sets. The limit problems are (a) the two-phase Stefan problem without latent heat or the one-phase Stefan problem, (b) the two-
phase Stefan problem, (c) the two-phase Stefan problem, (d) the porous medium equation, (e) a nonlinear-diffusion equation, (f) our problem, (g) Shigesada–
Kawasaki–Teramoto cross-diffusion system, (h) open problem.

where μi � 0 for i = 1,2,3. Hilhorst, Iida, Mimura and Ninomiya [7] have treated 2m-component systems including (LV3)k

and showed that the species segregate as k tends to infinity. However, they did not derive any explicit limit problem.
In this paper we consider a different type of extension of (LV)k , namely the three-component system as follows:

(RD)k

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂u

∂t
= d1�u + f1(u, v, w) − kuv w in Q ,

∂v

∂t
= d2�v + f2(u, v, w) − kuv w in Q ,

∂ w

∂t
= d3�w + f3(u, v, w) − kuv w in Q ,

∂u

∂ν
= ∂v

∂ν
= ∂ w

∂ν
= 0 on ∂Ω × (0, T ),

u(·,0) = uk
0, v(·,0) = vk

0, w(·,0) = wk
0 in Ω,

where f i are given functions, ν is the unit outward normal vector to the boundary ∂Ω , and uk
0, vk

0 and wk
0 are non-negative

initial functions.
In order to derive the limit problem, we begin by examining (LV)k and its limiting equation as k tends to infinity. Letting

k → ∞ in

ut

k
= d1

k
�u + 1

k
λu(1 − u) − uv,

we can expect that

0 = uv

if u, ut and �u are bounded with respect to k. Hence, the dynamics is restricted to the following one-dimensional set:

ALV = {
(u,0) | u � 0

} ∪ {
(0, v) | v � 0

}
.

This set ALV consists of equilibria of the fast reaction system:{
ut = −kuv,

vt = −kuv.

We call the equilibria of the fast reaction system a reaction limit set. The reaction limit set ALV of (LV)k is shown in Fig. 1(a).
The set consists of two axis. The solution diffuses with the diffusion coefficient d1 on {(u,0) | u � 0}, while it does with
the coefficient d2 on {(0, v) | v � 0}. The flux is discontinuous across the corner in ALV. This may indicate the presence of a
free boundary in the limit problem. Indeed, it was proved that the limiting system as the reaction rate k tends to infinity is
represented by the one-phase Stefan problem for the case d1 > 0, d2 = 0 in [5] and that the limit equation can be described
by the two-phase Stefan problem without latent heat for the case d1,d2 > 0 in [3]. Similar reaction limit sets are also
observed in [8] and [2] and the corresponding limit problems are given by the two-phase Stefan problem without latent
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heat and the one-phase Stefan problem. Hilhorst, Iida, Mimura and Ninomiya [6] proposed the following three-component
reaction–diffusion system:⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∂u

∂t
= d1�u + f1(u) − ku(1 − w) in Q ,

∂v

∂t
= d2�v + f2(v) − kv w in Q ,

∂ w

∂t
= ku(1 − w) − kv w in Q

(1.1)

with initial data satisfying 0 � u0, v0, w0 � 1. The reaction limit set of (1.1) is shown in Fig. 1(b). We can observe that it
consists of two ALVs. This suggests us that the limit problem is the two-phase Stefan problem with positive latent heat. In
fact, this was proved in [6]. Murakawa [13] also proved that the solution of the system⎧⎪⎨⎪⎩

∂u

∂t
= d�u + f1(u) − k

(
u − β(u + v)

)
in Q ,

∂v

∂t
= k

(
u − β(u + v)

)
in Q

(1.2)

converges to that of the two-phase Stefan problem when β(r) = d1 max{r − 1,0} + d2 min{r,0} (r ∈ R). The corresponding
reaction limit set of (1.2) is illustrated in Fig. 1(c). The shapes of the reaction limit sets of (b) and (c) are based on a
combination of two sets of Fig. 1(a). Although the number of components of the original system (1.1) is different from that
of (1.2), the limits are represented by the same problem. Thus, the reaction limit sets must play an important role in singular
limit analysis. It is shown in [13] that the porous medium equation is also approximated by (1.2) when β(r) = |r|m−1r (r ∈ R)

for some m > 1. The reaction limit set is shown in Fig. 1(d). Bothe and Hilhorst [1] considered a reversible chemical reaction
between two mobile species, and studied the limit to an instantaneous reaction:⎧⎪⎨⎪⎩

∂u

∂t
= d1�u − k

(
rA(u) − rB(v)

)
in Q ,

∂v

∂t
= d2�v − k

(
rB(u) − rA(v)

)
in Q

(1.3)

(see [1] for the detailed assumptions of rA and rB ). The reaction limit set of (1.3) is given in Fig. 1(e) for a usual choice
of rA and rB . They proved that the limit problem becomes a single nonlinear-diffusion equation and that the nonlinear
diffusivities in the limit problems are determined by the reaction limit sets. We note that the reaction limit sets in both
cases (d) and (e) are smooth curves contrary to (a)–(c), so the diffusivities are given by smooth functions.

All of the above examples illustrate the importance of the shapes of reaction limit sets in presuming the limit prob-
lems. Since these reaction limit sets are one-dimensional, the limit problems in all these examples are represented by
single nonlinear-diffusion equations. The existence of corners or non-smooth points in the reaction limit set indicates the
appearance of interfaces, because they create the discontinuity of the flux, which exhibits the interfaces.

Now we go back to our problem. The reaction limit set of (RD)k is

ARD = {
(0, v, w) | v � 0, w � 0

} ∪ {
(u,0, w) | u � 0, w � 0

} ∪ {
(u, v,0) | u � 0, v � 0

}
(see Fig. 1(f) for its shape). From the above observations, we can imagine the limit problem of the system (RD)k as k tends
to infinity. Since the reaction limit set ARD is a two-dimensional surface, the limit problem will consist of two equations,
which will be proved in Theorem 3.2. Moreover, ARD has corners, which may imply the appearance of interfaces in the
limit problem. Actually, we will prove this in Theorems 1.1 and 4.1.

There are few results dealing with two- or multi-dimensional reaction limit sets. Iida et al. [10] studied Shigesada–
Kawasaki–Teramoto cross-diffusion system [15]. For a deeper understanding of the cross-diffusion mechanism, they replaced
cross-diffusion by a different way of avoiding the congestion of the other species. Then, they proposed a three-component
reaction–diffusion system and showed that its solution approximates the solution of the cross-diffusion system. (For more
general cases, see [11,14].) In their study, the reaction limit set {(u, v, w) | (1 − w)v = uw} is a two-dimensional smooth
set as in Fig. 1(g).

We note that the reaction limit set of (LV3)k consists of three lines as in Fig. 1(h) and is neither associated with a
one-dimensional curve nor with a two-dimensional surface by continuous map. This prevents us from being able to derive
the explicit expression of the limit problem. Thus we consider the limit problem of (RD)k instead of (LV3)k .

In the following, we present our main result, that is, the convergence of the solution (uk, vk, wk) of (RD)k and the limit
problem. Define

Ω1(t) := {
x ∈ Ω | v(x, t) > 0, w(x, t) > 0

}
,

Ω2(t) := {
x ∈ Ω | w(x, t) > 0, u(x, t) > 0

}
,

Ω3(t) := {
x ∈ Ω | u(x, t) > 0, v(x, t) > 0

}
,
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Q i :=
⋃

t∈(0,T )

Ωi(t) (i = 1,2,3).

Then

Ωi(t) ∩ Ω j(t) = ∅ (i 	= j).

We also denote the interfaces by

Γ1(t) := ∂Ω2(t) ∩ ∂Ω3(t) ∩ Ω,

Γ2(t) := ∂Ω3(t) ∩ ∂Ω1(t) ∩ Ω,

Γ3(t) := ∂Ω1(t) ∩ ∂Ω2(t) ∩ Ω.

Throughout this paper, the following assumptions are imposed on the initial data and on the given functions f i :

(H1) The initial data uk
0, vk

0, wk
0 ∈ C(Ω) satisfy

0 � uk
0, vk

0, wk
0 � M,

uk
0 ⇀ u0, vk

0 ⇀ v0, wk
0 ⇀ w0 weakly in L2(Ω) as k → ∞

for some positive constant M and for some functions u0, v0, w0 ∈ L∞(Ω).
(H2) There exist C1-functions f̃ i (i = 1,2,3) such that for all s = (s1, s2, s3) ∈ R

3+ ,

f i(s) = f̃ i(s)si,

f̃ i(s) � 0 if si � M.

Under these assumptions, there exists a unique solution of (RD)k (see [12]).
We now state our main result.

Theorem 1.1. Assume that (H1) and (H2) hold. Let (uk, vk, wk) be the solution of (RD)k. Then, there are subsequences {ukn }, {vkn }
and {wkn } of {uk}, {vk} and {wk}, respectively, and functions u, v, w such that

ukn → u, vkn → v, wkn → w

strongly in L2(Q ), a.e. in Q , and weakly in L2(0, T ; H1(Ω)) as kn tends to infinity. Moreover, assume that each of Γi(t) (i = 1,2,3)

defined as above is an (N − 1)-dimensional smooth hypersurface or the empty set, and Γi(t) (i = 1,2,3) and ∂Ω do not intersect each
other for 0 � t � T , and Q i are (piecewise) smooth, and u0 v0 w0 = 0. If the functions u, v and w are smooth on Q 1 , Q 2 and Q 3 , then
(Γ1,Γ2,Γ3, u, v, w) is the solution of the following free boundary problem:⎧⎪⎨⎪⎩

∂v

∂t
= d2�v + f2(0, v, w),

∂ w

∂t
= d3�w + f3(0, v, w),

in Q 1, (1.4)

⎧⎪⎨⎪⎩
∂ w

∂t
= d3�w + f3(u,0, w),

∂u

∂t
= d1�u + f1(u,0, w),

in Q 2, (1.5)

⎧⎪⎨⎪⎩
∂u

∂t
= d1�u + f1(u, v,0),

∂v

∂t
= d2�v + f2(u, v,0),

in Q 3, (1.6)

⎧⎨⎩
v = w = 0 on Γ1,

w = u = 0 on Γ2,

u = v = 0 on Γ3,

(1.7)

d2
∂v|Q 3

∂n1
+ d3

∂ w|Q 2

∂n1
= 0, d1

(
∂u|Q 3

∂n1
− ∂u|Q 2

∂n1

)
= d2

∂v|Q 3

∂n1
on Γ1, (1.8)

d3
∂ w|Q 1

∂n2
+ d1

∂u|Q 3

∂n2
= 0, d2

(
∂v|Q 1

∂n2
− ∂v|Q 3

∂n2

)
= d3

∂ w|Q 1

∂n2
on Γ2, (1.9)

d1
∂u|Q 2 + d2

∂v|Q 1 = 0, d3

(
∂ w|Q 2 − ∂ w|Q 1

)
= d1

∂u|Q 2 on Γ3, (1.10)

∂n3 ∂n3 ∂n3 ∂n3 ∂n3
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∂u

∂ν
= ∂v

∂ν
= ∂ w

∂ν
= 0 on ∂Ω, (1.11)

u(·,0) = u0, v(·,0) = v0, w(·,0) = w0 in Ω, (1.12)

where ni are unit normal vectors on Γi(t) oriented from Ω j(t) to Ωk(t) for (i, j,k) ∈ {(1,2,3), (2,3,1), (3,1,2)}.

Three types of free boundaries appear in the limit problem. Furthermore, the dynamics is governed by a system of
equations in each region separated by the free boundaries. The intersection of the three axes {(0,0, w) | w � 0}, {(u,0,0) |
u � 0} and {(0, v,0) | v � 0} on ARD might imply the existence of triple (or multiple) junctions. This theorem excludes the
multiple junction points by assumption, but these points are included in the limit problem in a weak sense. We will present
numerical simulations later on.

Remark 1.2. If the diffusion coefficients satisfy the additional conditions (see (H3) or (H4) in Section 3.2), we can show the
uniqueness of the weak solution of the limiting equation. Therefore this theorem holds for the full sequence (uk, vk, wk)

without taking subsequences.

Remark 1.3. Assume that f3(u, v,1) = 0 and that w0(x) = 1 for x ∈ Ω . Then w(x, t) = 1 for t � 0, x ∈ Ω . In this case, the
problem (RD)k coincides with (LV)k . Therefore, Theorem 1.1 is an extension of the result by Dancer et al. [3].

This paper is organized as follows. Several a priori estimates are provided in Section 2. We show that (uk, vk, wk)

converges to the solution of a weak form of the limiting system (1.4)–(1.12) in Section 3. We can prove the uniqueness of
the weak solution under the additional conditions. Moreover, the rate of convergence is obtained. In Section 4, we derive
the strong form of the limit problem. Section 5 gives the simulations of two examples.

2. Some basic properties

Before proving the convergence results, we first show several basic inequalities for the solutions (uk, vk, wk).

Lemma 2.1. Let (uk, vk, wk) be a solution of (RD)k. Then, there exists a positive constant C1 independent of k such that

0 � uk, vk, wk � M in Q , (2.1)∫ ∫
Q

uk vk wk dx dt � C1

k
. (2.2)

Proof. Let us define

L1(u) := ut − d1�u − f1(u, v, w) + kuv w,

L2(v) := vt − d2�v − f2(u, v, w) + kuv w,

L3(w) := wt − d3�w − f3(u, v, w) + kuv w.

Since Li(0) = 0 and Li(M) � 0 for i = 1,2,3, the assertion (2.1) follows from the maximum principle. Integration of the
equation for uk in Q yields

k

∫ ∫
Q

uk vk wk dx dt =
∫
Ω

(
uk

0 − uk(·, T )
)

dx +
∫ ∫
Q

f1
(
uk, vk, wk)dx dt.

The boundedness of f1 on [0, M]3 and (2.1) imply the desired estimate. �
The following lemma follows from a similar argument to that of [3].

Lemma 2.2. The functions uk, vk and wk are uniformly bounded with respect to k in L2(0, T ; H1(Ω)).

Proof. Multiplying the equation for uk by uk and integrating by parts on Ω , we have

1

2

d

dt

∫
Ω

(
uk)2

dx + d1

∫
Ω

∣∣∇uk
∣∣2

dx =
∫
Ω

f1
(
uk, vk, wk)uk dx − k

∫
Ω

(
uk)2

vk wk dx.

Integrating on (0, T ) and using Lemma 2.1 yield∥∥uk
∥∥

2 1 � C2
L (0,T ;H (Ω))
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for some positive constant C2 independent of k. Thus, we have verified the result for uk . The estimates for vk and wk can
be obtained similarly. �

Next, we consider a function zk = (zk
1, zk

2) = (vk − uk, wk − uk) which appears when we eliminate the terms involving k
from (RD)k . The functions satisfy

∂zk
1

∂t
= d2�vk − d1�uk + f2

(
uk, vk, wk) − f1

(
uk, vk, wk) in Q , (2.3)

∂zk
2

∂t
= d3�wk − d1�uk + f3

(
uk, vk, wk) − f1

(
uk, vk, wk) in Q , (2.4)

∂

∂ν

(
d2 vk − d1uk) = ∂

∂ν

(
d3 wk − d1uk) = 0 on ∂Ω × (0, T ),

zk
1(·,0) = vk

0 − uk
0, zk

2(·,0) = wk
0 − uk

0 in Ω.

Lemma 2.3. The functions zk
1 , zk

2 are uniformly bounded with respect to k in H1(0, T ; H1(Ω)∗).

Proof. Multiplying (2.3) by ζ ∈ L2(0, T ; H1(Ω)) and integrating it over Q by parts yield

T∫
0

〈
∂zk

1

∂t
, ζ

〉
dt = −d2

T∫
0

〈∇vk,∇ζ
〉
dt + d1

T∫
0

〈∇uk,∇ζ
〉
dt

+
T∫

0

〈
f2

(
uk, vk, wk) − f1

(
uk, vk, wk), ζ 〉

dt. (2.5)

Here, 〈·,·〉 denotes both the inner product in L2(Ω) and the duality pairing between H1(Ω)∗ and H1(Ω). Applying the
Cauchy–Schwarz inequality to (2.5) and using Lemma 2.2, we see that there exists a positive constant C3 independent of k
such that∣∣∣∣∣

T∫
0

〈
∂zk

1

∂t
, ζ

〉
dt

∣∣∣∣∣ � C3‖ζ‖L2(0,T ;H1(Ω)).

Namely, we have∥∥zk
1

∥∥
H1(0,T ;H1(Ω)∗) � C3,

which concludes the statement for zk
1. The same argument gives the estimate for zk

2. �
We introduce several auxiliary functions to state the limiting equation. Set

I := {
(z1, z2) ∈ R

2 | z1 > 0, z2 � 0
}
,

II := {
(z1, z2) ∈ R

2 | z1 � 0, z1 < z2
}
,

III := {
(z1, z2) ∈ R

2 | z2 < 0, z1 � z2
}
,

and define for z = (z1, z2) ∈ R
2

ϕ(z) :=
⎧⎨⎩

0 if z ∈ I,

z1 if z ∈ II,

z2 if z ∈ III,

γ1(z) := −ϕ(z), γ2(z) := z1 − ϕ(z), γ3(z) := z2 − ϕ(z),

φ1(z) := d2γ2(z) − d1γ1(z) = d2z1 + (d1 − d2)ϕ(z),

φ2(z) := d3γ3(z) − d1γ1(z) = d3z2 + (d1 − d3)ϕ(z).

The functions γi satisfy the following useful relations.
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Lemma 2.4. The following properties hold for all non-negative real numbers u, v and w:∣∣u − γ1(v − u, w − u)
∣∣3 � uv w, (2.6)∣∣v − γ2(v − u, w − u)
∣∣3 � uv w, (2.7)∣∣w − γ3(v − u, w − u)
∣∣3 � uv w. (2.8)

Proof. Set

z = (z1, z2) = (v − u, w − u).

If z ∈ I , i.e., z1 = v − u > 0 and z2 = w − u � 0, then 0 � u � v , 0 � u � w . Hence,∣∣u − γ1(z)
∣∣3 = |u − 0|3 � uv w,∣∣v − γ2(z)
∣∣3 = ∣∣v − (v − u)

∣∣3 � uv w,∣∣w − γ3(z)
∣∣3 = ∣∣w − (w − u)

∣∣3 � uv w.

If z ∈ II, that is, z1 = v − u � 0 and z2 − z1 = w − v > 0, then 0 � v � u, 0 � v � w . Therefore, we have∣∣u − γ1(z)
∣∣3 = ∣∣u + (v − u)

∣∣3 � uv w,∣∣v − γ2(z)
∣∣3 = |v − 0|3 � uv w,∣∣w − γ3(z)
∣∣3 = ∣∣w − (w − u) + (v − u)

∣∣3 � uv w.

Similarly, if z ∈ III, then 0 � w � u, 0 � u � v and consequently,∣∣u − γ1(z)
∣∣3 = ∣∣u + (w − u)

∣∣3 � uv w,∣∣v − γ2(z)
∣∣3 = ∣∣v − (v − u) + (w − u)

∣∣3 � uv w,∣∣w − γ3(z)
∣∣3 = |w − 0|3 � uv w.

Thus, the proof is complete. �
This lemma and Lemma 2.1 give the estimates on the solutions.

Lemma 2.5. There exists a positive constant C4 independent of k such that∥∥uk − γ1
(
zk)∥∥

L3(Q )
+ ∥∥vk − γ2

(
zk)∥∥

L3(Q )
+ ∥∥wk − γ3

(
zk)∥∥

L3(Q )

+ ∥∥(
d2 vk − d1uk) − φ1

(
zk)∥∥

L3(Q )
+ ∥∥(

d3 wk − d1uk) − φ2
(
zk)∥∥

L3(Q )
� C4k−1/3.

Proof. From Lemma 2.4, we get for all (x, t) ∈ Q∣∣uk(x, t) − γ1
(
zk(x, t)

)∣∣3 � uk(x, t)vk(x, t)wk(x, t),∣∣vk(x, t) − γ2
(
zk(x, t)

)∣∣3 � uk(x, t)vk(x, t)wk(x, t),∣∣wk(x, t) − γ3
(
zk(x, t)

)∣∣3 � uk(x, t)vk(x, t)wk(x, t),

which together with Lemma 2.1 implies that⎧⎪⎪⎨⎪⎪⎩
∥∥uk − γ1

(
zk

)∥∥
L3(Q )

� C1/3
1 k−1/3,∥∥vk − γ2

(
zk

)∥∥
L3(Q )

� C1/3
1 k−1/3,∥∥wk − γ3

(
zk

)∥∥
L3(Q )

� C1/3
1 k−1/3.

(2.9)

By (2.9) we have∥∥(
d2 vk − d1uk) − φ1

(
zk)∥∥

L3(Q )
= ∥∥(

d2 vk − d1uk) − (
d2γ2

(
zk) − d1γ1

(
zk))∥∥

L3(Q )

� d2
∥∥vk − γ2

(
zk)∥∥

L3(Q )
+ d1

∥∥uk − γ1
(
zk)∥∥

L3(Q )

� (d1 + d2)C1/3k−1/3.
1
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Similarly, we obtain∥∥(
d3 wk − d1uk) − φ2

(
zk)∥∥

L3(Q )
� (d1 + d3)C1/3

1 k−1/3,

which completes the proof. �
3. Convergence to a nonlinear-diffusion system

The arguments in the previous section suggest that (uk, vk, wk) − (γ1(zk), γ2(zk), γ3(zk)) converges to zero as k tends to
infinity. Thus we can expect from (2.3) and (2.4) that the limit functions (z1, z2) of (zk

1, zk
2) satisfy the following nonlinear-

diffusion system:

(ND)

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

∂z1

∂t
= �φ1(z) + F1(z) in Q ,

∂z2

∂t
= �φ2(z) + F2(z) in Q ,

∂φ1(z)

∂ν
= ∂φ2(z)

∂ν
= 0 on ∂Ω × (0, T ),

z(·,0) = z0 in Ω,

where z0 := (v0 − u0, w0 − u0) and

F1(z) := f2
(
γ1(z), γ2(z), γ3(z)

) − f1
(
γ1(z), γ2(z), γ3(z)

)
,

F2(z) := f3
(
γ1(z), γ2(z), γ3(z)

) − f1
(
γ1(z), γ2(z), γ3(z)

)
.

In this section, we show this expectation in a weak sense. To this end, we define a weak solution of (ND).

Definition 3.1. A function z ∈ L∞(Q )2 is a weak solution of (ND) with an initial datum z0 ∈ L∞(Ω)2 if it satisfies φi(z) ∈
L2(0, T ; H1(Ω))2 and

T∫
0

〈
zi,

∂ζi

∂t

〉
dt + 〈

z0i, ζi(·,0)
〉 = T∫

0

〈∇φi(z),∇ζi
〉
dt −

T∫
0

〈
Fi(z), ζi

〉
dt (3.1)

for all functions ζ = (ζ1, ζ2) ∈ H1(Q )2 with ζi(·, T ) = 0 and for i = 1,2.

In Section 3.1, we establish the existence of the weak solution of (ND). The uniqueness of the weak solution is discussed
in Section 3.2.

3.1. Convergence

We present our result on the convergence.

Theorem 3.2. Assume that (H1) and (H2) hold. Let (uk, vk, wk) be the solution of (RD)k. Then, there exist a weak solution z =
(z1, z2) ∈ (L∞(Q ) ∩ L2(0, T ; H1(Ω)) ∩ H1(0, T ; H1(Ω)∗))2 of (ND) and subsequences {ukn }, {vkn } and {wkn } of {uk}, {vk} and
{wk}, respectively, such that

ukn → γ1(z), vkn → γ2(z), wkn → γ3(z)

strongly in L2(Q ), a.e. in Q , and weakly in L2(0, T ; H1(Ω)),

zkn
1 := vkn − ukn → z1, zkn

2 := wkn − ukn → z2

strongly in L2(Q ), a.e. in Q , and weakly in L2(0, T ; H1(Ω)) and H1(0, T ; H1(Ω)∗) as kn tends to infinity.

Proof. By virtue of Lemmas 2.1–2.3 and the compactness of the embedding L2(0, T ; H1(Ω)) ∩ H1(0, T ; H1(Ω)∗) ⊂
L2(Q ) [16, Theorem 2.1], there exist subsequences {ukn }, {vkn }, {wkn } and {zkn } and functions u∗ , v∗ , w∗ ∈ L∞(Q ) ∩
L2(0, T ; H1(Ω)) and z∗ ∈ (L∞(Q ) ∩ H1(0, T ; H1(Ω)∗) ∩ L2(0, T ; H1(Ω)))2 such that

0 � u∗, v∗, w∗ � M a.e. in Q ,

u∗v∗w∗ = 0 (3.2)

and
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ukn ⇀ u∗, vkn ⇀ v∗, wkn ⇀ w∗ weakly in L2(0, T ; H1(Ω)
)
,

zkn → z∗ strongly in L2(Q )2, a.e. in Q ,

and weakly in L2(0, T ; H1(Ω)
)2

and H1(0, T ; H1(Ω)∗
)2

as kn tends to infinity. It follows from the Lipschitz continuities of γi (i = 1,2,3) and φi (i = 1,2) that γi(zkn ) and φi(zkn )

also converge to γi(z∗) and φi(z∗) strongly in L2(Q ) and a.e. in Q , respectively. Lemma 2.5 implies that ukn , vkn and
wkn converge to γ1(z∗), γ2(z∗) and γ3(z∗) strongly in L2(Q ) and a.e. in Q , respectively, also u∗ = γ1(z∗), v∗ = γ2(z∗),
w∗ = γ3(z∗), d2 v∗ − d1u∗ = φ1(z∗) and d3 w∗ − d1u∗ = φ2(z∗) a.e. Since f i (i = 1,2,3) are Lipschitz continuous, we see that
f i(ukn , vkn , wkn ) converge to f i(γ1(z∗), γ2(z∗), γ3(z∗)) strongly in L2(Q ) and a.e. in Q as kn tends to infinity.

Next, we show that z∗ is a weak solution of (ND). Taking ζ ∈ H1(Q ) with ζ(·, T ) = 0 in (2.5) and integrating by parts
yield

T∫
0

〈
zk

1,
∂ζ

∂t

〉
dt + 〈

vk
0 − uk

0, ζ(·,0)
〉

=
T∫

0

〈∇(
d2 vk − d1uk),∇ζ

〉
dt −

T∫
0

〈
f2

(
uk, vk, wk) − f1

(
uk, vk, wk), ζ 〉

dt.

Passing to the limit along the subsequences, we have

T∫
0

〈
z∗

1,
∂ζ

∂t

〉
dt + 〈

z01, ζ(·,0)
〉 = T∫

0

〈∇φ1
(
z∗),∇ζ

〉
dt −

T∫
0

〈
F1

(
z∗), ζ 〉

dt.

Analogously, we deduce from (2.4) that

T∫
0

〈
z∗

2,
∂ζ

∂t

〉
dt + 〈

z02, ζ(·,0)
〉 = T∫

0

〈∇φ2
(
z∗),∇ζ

〉
dt −

T∫
0

〈
F2

(
z∗), ζ 〉

dt

for all functions ζ ∈ H1(Q ) with ζ(·, T ) = 0. Thus, we observe that z∗ is a weak solution of (ND). �
If the weak solution of (ND) is unique, then we do not need to take subsequences in Theorem 3.2. Indeed, we will prove

the uniqueness of the weak solutions under some assumptions on the diffusion coefficients in the following subsection.

3.2. Uniqueness of the weak solutions of the limiting system (ND)

Here and in the next subsection, we impose the following conditions on the diffusion coefficients.

(H3) d1 is the largest number among d j ( j = 1,2,3) and⎧⎨⎩ (d1 − d2)
2 < 4d2d3, (d1 − d3)

2 < 4d2d3,

√
d2d3(d1 − d2) < d2d3 + (d1 − d2)

2

4
− (d1 − d3)

2

4
; (3.3)

or

(H4) d1 = d2.

Assumption (H3) looks rather complicated, but it is satisfied if

1
max d j < di � max d j (i = 1,2,3).
2 j=1,2,3 j=1,2,3
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We deduce from (3.3) that there exist positive constants αi (i = 1, . . . ,4) satisfying⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

d2 − d1 − d3

2α1
> 0, d3 − (d1 − d3)α1

2
> 0,

d2 − d1 − d2

2α2
> 0, d3 − (d1 − d2)α2

2
> 0,

d2 − d1 − d2

2α3
− d1 − d3

2α4
> 0,

d3 − (d1 − d2)α3

2
− (d1 − d3)α4

2
> 0.

(3.4)

Indeed the existence of α1 and α2 immediately follows from the first two inequalities of (3.3). The last two inequalities
of (3.4) imply that

(d1 − d3)

2d2 − (d1−d2)
α3

< α4 <
2d3 − (d1 − d2)α3

d1 − d3
.

The inequalities (3.3) guarantee the existence of α3 and α4.
Assumption (H4) implies that the system (ND) is weakly coupled. These assumptions are necessary to show the unique-

ness in our proof. We postpone to future work the problem of relaxing these assumptions.

Theorem 3.3. Suppose that (H1) and (H2) hold. Moreover, we assume that (H3) or (H4) is satisfied. Let z and z̄ be weak solutions
of (ND) with initial data z0 and z̄0 , respectively. Then there exists a positive constant C5 independent of the data such that

‖z − z̄‖L2(Q )2 +
∥∥∥∥∥

t∫
0

(
φ(z) − φ(z̄)

)
dτ

∥∥∥∥∥
L∞(0,T ;H1(Ω))2

� C5‖z0 − z̄0‖L2(Ω)2 .

Theorem 3.3 guarantees the uniqueness of the weak solutions of (ND) and that {uk}, {vk} and {wk} converge to γ1(z),
γ2(z) and γ3(z) respectively as k tends to infinity if (H3) or (H4) holds.

To show Theorem 3.3, we need to estimate

A = A(z, z̄) := (z1 − z̄1)
(
φ1(z) − φ1(z̄)

) + (z2 − z̄2)
(
φ2(z) − φ2(z̄)

)
,

Ã = Ã(z, z̄) := (z2 − z̄2)
(
φ2(z) − φ2(z̄)

)
.

We present the following lemma.

Lemma 3.4. If (H3) holds, then there exists a positive constant C6 such that

A(z, z̄) � C6|z − z̄|2
for all z, z̄ ∈ R

2 .
If (H4) holds, then there exist positive constants C7 and C8 such that

Ã(z, z̄) � C7|z2 − z̄2|2 − C8|z1 − z̄1|2
for all z, z̄ ∈ R

2 .

Proof. Using ϕ defined in Section 2, we can rewrite A as

A = d2|z1 − z̄1|2 + (d1 − d2)(z1 − z̄1)
(
ϕ(z) − ϕ(z̄)

)
+ d3|z2 − z̄2|2 + (d1 − d3)(z2 − z̄2)

(
ϕ(z) − ϕ(z̄)

)
= d2|z1 − z̄1|2 + d3|z2 − z̄2|2 + B,

where

B := (d1 − d2)(z1 − z̄1)
(
ϕ(z) − ϕ(z̄)

) + (d1 − d3)(z2 − z̄2)
(
ϕ(z) − ϕ(z̄)

)
.

First we assume (H3). If z, z̄ ∈ I , then we have B = 0 and

A = d2|z1 − z̄1|2 + d3|z2 − z̄2|2.
If z ∈ I and z̄ ∈ II, that is, z1 > 0, z2 � 0, z̄1 � 0, z̄2 > z̄1, then
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B = (d1 − d2)(z1 − z̄1)(−z̄1) + (d1 − d3)(z2 − z̄2)(−z̄1)

� −(d1 − d3)|z2 − z̄2||z1 − z̄1|,
which implies

A � d2|z1 − z̄1|2 + d3|z2 − z̄2|2 − (d1 − d3)|z1 − z̄1||z2 − z̄2|
�

(
d2 − (d1 − d3)/(2α1)

)|z1 − z̄1|2 + (
d3 − (d1 − d3)α1/2

)|z2 − z̄2|2, (3.5)

where α1 is a positive constant satisfying (3.4).
Similarly we can treat the case where z ∈ I and z̄ ∈ III, i.e., z1 > 0, z2 � 0, z̄2 < 0, z̄2 < z̄1. Since

B = (d1 − d2)(z1 − z̄1)(−z̄2) + (d1 − d3)(z2 − z̄2)(−z̄2)

� −(d1 − d2)|z1 − z̄1||z2 − z̄2|,
we obtain

A �
(
d2 − (d1 − d2)/(2α2)

)|z1 − z̄1|2 + (
d3 − (d1 − d2)α2/2

)|z2 − z̄2|2 (3.6)

with a positive constant α2 as in (3.4).
Since

B = (d1 − d2)(z1 − z̄1)(z1 − z̄1) + (d1 − d3)(z2 − z̄2)(z1 − z̄1)

� (d1 − d2)|z1 − z̄1|2 − (d1 − d3)|z1 − z̄1||z2 − z̄2|
for the case where z, z̄ ∈ II, we have (3.5).

If z ∈ II and z̄ ∈ III, that is, z1 � 0, z1 < z2, z̄2 < 0, z̄1 � z̄2, then

z2 − z1 � z̄1 − z1 + z2 − z̄2, z̄1 − z̄2 � z̄1 − z1 + z2 − z̄2.

Therefore, we have

B = (d1 − d2)(z1 − z̄1)(z1 − z̄2) + (d1 − d3)(z2 − z̄2)(z1 − z̄2)

= (d1 − d2)|z1 − z̄1|2 + (d1 − d2)(z1 − z̄1)(z̄1 − z̄2)

+ (d1 − d3)|z2 − z̄2|2 + (d1 − d3)(z2 − z̄2)(z1 − z2)

� (d1 − d2)|z1 − z̄1|2 − (d1 − d2)|z1 − z̄1|
(|z1 − z̄1| + |z2 − z̄2|

)
+ (d1 − d3)|z2 − z̄2|2 − (d1 − d3)|z2 − z̄2|

(|z1 − z̄1| + |z2 − z̄2|
)

= −(d1 − d2 + d1 − d3)|z1 − z̄1||z2 − z̄2|.
Then taking α3 and α4 as in (3.4) implies

A �
(
d2 − (d1 − d2)/(2α3) − (d1 − d3)/(2α4)

)|z1 − z̄1|2
+ (

d3 − (d1 − d2)α3/2 − (d1 − d3)α4/2
)|z2 − z̄2|2.

If z, z̄ ∈ III, then

B � (d1 − d3)|z2 − z̄2|2 − (d1 − d2)|z1 − z̄1||z2 − z̄2|,
which implies (3.6).

Since A(z, z̄) = A(z̄, z), we have shown the first statement of the lemma.
Next, we show the last statement under the assumption (H4). We note that

Ã(z, z̄) = d3|z2 − z̄2|2 + (d1 − d3)(z2 − z̄2)
(
ϕ(z) − ϕ(z̄)

)
.

If z, z̄ ∈ I or z ∈ I , z̄ ∈ III or z ∈ III, z̄ ∈ I or z, z̄ ∈ III, then Ã � min{d1,d3}|z2 − z̄2|2. In the other cases, we can obtain

Ã � d3|z2 − z̄2|2 − |d1 − d3||z1 − z̄1||z2 − z̄2| � d3

2
|z2 − z̄2|2 − (d1 − d3)

2

2d3
|z1 − z̄1|2,

which completes the proof. �
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Proof of Theorem 3.3. From Definition 3.1, the weak solutions z and z̄ satisfy

−
T∫

0

〈
zi − z̄i,

∂ζi

∂t

〉
dt +

T∫
0

〈∇(
φi(z) − φi(z̄)

)
,∇ζi

〉
dt

= 〈
z0i − z̄0i, ζi(·,0)

〉 + T∫
0

〈
Fi(z) − Fi(z̄), ζi

〉
dt (3.7)

for all functions ζ = (ζ1, ζ2) ∈ H1(Q )2 with ζi(·, T ) = 0 and for i = 1,2. Take

ζi(x, t) =

⎧⎪⎪⎨⎪⎪⎩
t0∫

t

(
φi

(
z(x, τ )

) − φi
(
z̄(x, τ )

))
dτ for 0 � t < t0,

0 for t0 � t � T ,

where t0 is an arbitrary point in (0, T ). The first term of the left-hand side of (3.7) is

−
T∫

0

〈
zi − z̄i,

∂ζi

∂t

〉
dt =

t0∫
0

〈
zi − z̄i, φi(z) − φi(z̄)

〉
dt. (3.8)

The second term of the left-hand side of (3.7) can be estimated easily as follows:

T∫
0

〈∇(
φi(z) − φi(z̄)

)
,∇ζi

〉
dt = 1

2

∥∥∥∥∥∇
t0∫

0

(
φi(z) − φi(z̄)

)
dt

∥∥∥∥∥
2

L2(Ω)

. (3.9)

Substituting (3.8) and (3.9) into (3.7), we have

t0∫
0

〈
zi − z̄i, φi(z) − φi(z̄)

〉
dt + 1

2

∥∥∥∥∥∇
t0∫

0

(
φi(z) − φi(z̄)

)
dt

∥∥∥∥∥
2

L2(Ω)

= 〈
z0i − z̄0i, ζi(·,0)

〉 + T∫
0

〈
Fi(z) − Fi(z̄), ζi

〉
dt

� Lφ‖z0i − z̄0i‖L2(Ω)

t0∫
0

∥∥z(τ ) − z̄(τ )
∥∥

L2(Ω)2 dτ

+ L F Lφ

t0∫
0

t∫
0

∥∥z(τ ) − z̄(τ )
∥∥

L2(Ω)2

∥∥z(t) − z̄(t)
∥∥

L2(Ω)2 dτ dt,

where Lφ and L F are the Lipschitz constants of φ and F , respectively. Using the Schwarz inequality yields

t0∫
0

〈
zi − z̄i, φi(z) − φi(z̄)

〉
dt + 1

2

∥∥∥∥∥∇
t0∫

0

(
φi(z) − φi(z̄)

)
dt

∥∥∥∥∥
2

L2(Ω)

�
L2
φ T

2β1
‖z0i − z̄0i‖2

L2(Ω)
+ (L F Lφ)2T

2β2

t0∫
0

‖z − z̄‖2
L2(0,t;L2(Ω))2 dt

+ β1 + β2

2
‖z − z̄‖2

L2(0,t0;L2(Ω))2 , (3.10)

where βi (i = 1,2) are positive constants specified later.
Now, we prove the theorem in the case where (H3) holds. Lemma 3.4 implies

2∑
i=1

t0∫ 〈
zi − z̄i, φi(z) − φi(z̄)

〉
dt =

t0∫
A(z, z̄)dt � C6‖z − z̄‖2

L2(0,t0;L2(Ω))2 . (3.11)
0 0
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Choose positive constants βi satisfying β1 + β2 = C6/2. Summing (3.10) over i = 1,2 and using (3.11), we have

C6

2
‖z − z̄‖2

L2(0,t0;L2(Ω))2 + 1

2

2∑
i=1

∥∥∥∥∥∇
t0∫

0

(
φi(z) − φi(z̄)

)
dt

∥∥∥∥∥
2

L2(Ω)

�
L2
φ T

2β1
‖z0 − z̄0‖2

L2(Ω)
+ (L F Lφ)2T

β2

t0∫
0

‖z − z̄‖2
L2(0,t;L2(Ω))2 dt.

The desired estimate follows from the above inequality and the Gronwall lemma when (H3) holds.
Next, we consider the case where (H4) is satisfied instead of (H3). Since d1 = d2, φ1(s) = d1s1 for all s ∈ R

2, and so

t0∫
0

〈
z1 − z̄1, φ1(z) − φ1(z̄)

〉
dt = d1‖z1 − z̄1‖2

L2(0,t0;L2(Ω))
.

By (3.10) with i = 1, we have

d1‖z1 − z̄1‖2
L2(0,t0;L2(Ω))

+ 1

2

∥∥∥∥∥∇
t0∫

0

(
φ1(z) − φ1(z̄)

)
dt

∥∥∥∥∥
2

L2(Ω)

�
L2
φ T

2β1
‖z01 − z̄01‖2

L2(Ω)
+ (L F Lφ)2T

2β2

t0∫
0

‖z − z̄‖2
L2(0,t;L2(Ω))2 dt

+ β1 + β2

2
‖z − z̄‖2

L2(0,t0;L2(Ω))2 . (3.12)

For i = 2, we deduce from Lemma 3.4 and (3.10) with β1, β2 replaced by β3, β4 that

C7‖z2 − z̄2‖2
L2(0,t0;L2(Ω))

+ 1

2

∥∥∥∥∥∇
t0∫

0

(
φ2(z) − φ2(z̄)

)
dt

∥∥∥∥∥
2

L2(Ω)

� C8‖z1 − z̄1‖2
L2(0,t0;L2(Ω))

+ L2
φ T

2β3
‖z02 − z̄02‖2

L2(Ω)

+ (L F Lφ)2T

2β4

t0∫
0

‖z − z̄‖2
L2(0,t;L2(Ω))2 dt + β3 + β4

2
‖z − z̄‖2

L2(0,t0;L2(Ω))2 .

Substituting (3.12) into the above inequality yields

C7‖z2 − z̄2‖2
L2(0,t0;L2(Ω))

+ 1

2

∥∥∥∥∥∇
t0∫

0

(
φ2(z) − φ2(z̄)

)
dt

∥∥∥∥∥
2

L2(Ω)

�
C8L2

φ T

2d1β1
‖z01 − z̄01‖2

L2(Ω)
+ C8(L F Lφ)2T

2d1β2

t0∫
0

‖z − z̄‖2
L2(0,t;L2(Ω))2 dt

+ C8(β1 + β2)

2d1
‖z − z̄‖2

L2(0,t0;L2(Ω))2 + L2
φ T

2β3
‖z02 − z̄02‖2

L2(Ω)

+ (L F Lφ)2T

2β4

t0∫
0

‖z − z̄‖2
L2(0,t;L2(Ω))2 dt + β3 + β4

2
‖z − z̄‖2

L2(0,t0;L2(Ω))2

� C9‖z0 − z̄0‖2
L2(Ω)

+ C10

t0∫
0

‖z − z̄‖2
L2(0,t;L2(Ω))2 dt

+
(

C8(β1 + β2) + β3 + β4
)

‖z − z̄‖2
L2(0,t0;L2(Ω))2 , (3.13)
2d1 2
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where C9 and C10 are positive constants independent of the solutions. By (3.12) and (3.13) we obtain

‖z − z̄‖2
L2(0,t0;L2(Ω))2 + 1

2d1

∥∥∥∥∥∇
t0∫

0

(
φ1(z) − φ1(z̄)

)
dt

∥∥∥∥∥
2

L2(Ω)

+ 1

2C7

∥∥∥∥∥∇
t0∫

0

(
φ2(z) − φ2(z̄)

)
dt

∥∥∥∥∥
2

L2(Ω)

� C11‖z0 − z̄0‖2
L2(Ω)

+ C12

t0∫
0

‖z − z̄‖2
L2(0,t;L2(Ω))2 dt

+
(

β1 + β2

2d1
+ C8(β1 + β2)

2d1C7
+ β3 + β4

2C7

)
‖z − z̄‖2

L2(0,t0;L2(Ω))2

for positive constants C11 and C12 independent of the solutions. If we choose positive constants β j ( j = 1, . . . ,4) satisfying

β1 + β2

2d1
+ C8(β1 + β2)

2d1C7
+ β3 + β4

2C7
< 1,

then the last statement follows from the Gronwall lemma for the case where (H4) holds. �
3.3. Rate of convergence

Using similar arguments to those in the previous subsection, we can estimate the rate of convergence when (H3) or (H4)
holds.

Theorem 3.5. Suppose that (H1) and (H2) hold and that (H3) or (H4) is satisfied. Let (uk, vk, wk) be a solution of (RD)k with an
initial datum (uk

0, vk
0, wk

0) and z a weak solution of (ND) with an initial datum z0 . Put zk = (zk
1, zk

2) := (vk − uk, wk − uk) and

φk = (φk
1, φ

k
2) := (d2 vk − d1uk,d3 wk − d1uk). Then there exists a positive constant C13 independent of k such that∥∥γ1(z) − uk

∥∥
L2(Q )

+ ∥∥γ2(z) − vk
∥∥

L2(Q )
+ ∥∥γ3(z) − wk

∥∥
L2(Q )

+ ∥∥z − zk
∥∥

L2(Q )2

+
∥∥∥∥∥

t∫
0

(
φ(z) − φk)dτ

∥∥∥∥∥
L∞(0,T ;H1(Ω))2

� C13
(∥∥z0 − zk

0

∥∥
L2(Ω)2 + k−1/3).

Proof. We prove the theorem in the case where (H3) is satisfied. We use the following notations: for t ∈ (0, T )

ez(t) := ∥∥z − zk
∥∥2

L2(0,t;L2(Ω))2 ,

eγ (t) := ∥∥γ1(z) − uk
∥∥2

L2(0,t;L2(Ω))
+ ∥∥γ2(z) − vk

∥∥2
L2(0,t;L2(Ω))

+ ∥∥γ3(z) − wk
∥∥2

L2(0,t;L2(Ω))
.

Using the definition of γ1 and Lemma 2.5, we have∥∥γ1(z) − uk
∥∥

L2(0,t;L2(Ω))
�

∥∥γ1(z) − γ1
(
zk)∥∥

L2(0,t;L2(Ω))
+ ∥∥γ1

(
zk) − uk

∥∥
L2(0,t;L2(Ω))

�
√

5
∥∥z − zk

∥∥
L2(0,t;L2(Ω))2 + C4k−1/3,

which implies∥∥γ1(z) − uk
∥∥2

L2(0,t;L2(Ω))
� 10

∥∥z − zk
∥∥2

L2(0,t;L2(Ω))2 + 2C2
4k−2/3.

Similar calculations for γ2(z) − vk and γ3(z) − wk yield

eγ (t) � 30ez(t) + 6C2
4k−2/3. (3.14)

Since ∥∥φ1(z) − φk
1

∥∥
L2(0,t;L2(Ω))

� d1
∥∥γ1(z) − uk

∥∥
L2(0,t;L2(Ω))

+ d2
∥∥γ2(z) − vk

∥∥
L2(0,t;L2(Ω))

,∥∥φ2(z) − φk
2

∥∥
L2(0,t;L2(Ω))

� d1
∥∥γ1(z) − uk

∥∥
L2(0,t;L2(Ω))

+ d3
∥∥γ3(z) − wk

∥∥
L2(0,t;L2(Ω))

,

we note that∥∥φi(z) − φk
i

∥∥2
L2(0,t;L2(Ω))

� 2d2
1eγ (t)

for i = 1,2.
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We see, from Definition 3.1 and (2.3) and (2.4), that z and zk satisfy

−
T∫

0

〈
zi − zk

i ,
∂ζi

∂t

〉
dt +

T∫
0

〈∇(
φi(z) − φk

i

)
,∇ζi

〉
dt

= 〈
z0i − zk

0i, ζi(·,0)
〉 + T∫

0

〈
Fi(z) − F k

i , ζi
〉
dt (3.15)

for all functions ζ ∈ H1(Q )2 with ζi(·, T ) = 0 and for i = 1,2. Here, we define F k
1 := f2(uk, vk, wk) − f1(uk, vk, wk), F k

2 :=
f3(uk, vk, wk) − f1(uk, vk, wk).

Set

ζi(x, t) =

⎧⎪⎪⎨⎪⎪⎩
t0∫

t

(
φi

(
z(x, τ )

) − φk
i (x, τ )

)
dτ for 0 � t < t0,

0 for t0 � t � T ,

where t0 is an arbitrary point in (0, T ). The first term of the left-hand side of (3.15) is

−
T∫

0

〈
zi − zk

i ,
∂ζi

∂t

〉
dt =

t0∫
0

〈
zi − zk

i , φi(z) − φi
(
zk)〉dt +

t0∫
0

〈
zi − zk

i , φi
(
zk) − φk

i

〉
dt.

Lemma 3.4 or (3.11) implies

2∑
i=1

t0∫
0

〈
zi − zk

i , φi(z) − φi
(
zk)〉dt � C6

∥∥z − zk
∥∥2

L2(0,t0;L2(Ω))2 = C6ez(t0).

Using (3.14), we have

2∑
i=1

t0∫
0

〈
zi − zk

i , φi(z) − φi
(
zk)〉dt � C6

60
eγ (t0) − C2

4 C6

10
k−2/3 + C6

2
ez(t0).

By Lemma 2.5 we also have

2∑
i=1

t0∫
0

〈
zi − zk

i , φi
(
zk) − φk

i

〉
dt �

2∑
i=1

∥∥zi − zk
i

∥∥
L2(0,t0;L2(Ω))

∥∥φ
(
zk) − φk

i

∥∥
L2(0,t0;L2(Ω))

� C6

4
ez(t0) + C2

4 |Ω|1/3T 1/3

C6
k−2/3.

The second term of the left-hand side of (3.15) can be rewritten as

T∫
0

〈∇(
φi(z) − φk

i

)
,∇ζi

〉
dt = 1

2

∥∥∥∥∥∇
t0∫

0

(
φi(z) − φk

i

)
dt

∥∥∥∥∥
2

L2(Ω)

.

Collecting these inequalities yields

−
2∑

i=1

T∫
0

〈
zi − zk

i ,
∂ζi

∂t

〉
dt +

2∑
i=1

T∫
0

〈∇(
φi(z) − φk

i

)
,∇ζi

〉
dt

� C6

60
eγ (t0) + C6

4
ez(t0) + 1

2

2∑
i=1

∥∥∥∥∥∇
t0∫

0

(
φi(z) − φk

i

)
dt

∥∥∥∥∥
2

L2(Ω)

−
2∑(

C2
4 C6

10
+ C2

4 |Ω|1/3T 1/3

C6

)
k−2/3. (3.16)
i=1
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Next, we consider the right-hand side of (3.15). By the definition of φk
i , we also get

〈
z0i − zk

0i, ζi(·,0)
〉
�

60d2
1T

C6

∥∥z0i − zk
0i

∥∥2
L2(Ω)

+ C6

120
eγ (t0). (3.17)

In view of the Lipschitz continuities of f i , the last term of (3.15) can be estimated as follows:

T∫
0

〈
Fi(z) − F k

i , ζi
〉
dt =

t0∫
0

〈 t∫
0

(
Fi

(
z(τ )

) − F k
i (τ )

)
dτ ,φi

(
z(t)

) − φk
i (t)

〉
dt

� C14

t0∫
0

eγ (t)dt + C6

240
eγ (t0), (3.18)

where C14 is a positive constant independent of k. Collecting (3.15)–(3.18) yields

eγ (t0) + ez(t0) +
2∑

i=1

∥∥∥∥∥∇
t0∫

0

(
φi(z) − φk

i

)
dt

∥∥∥∥∥
2

L2(Ω)

� C15

(
2∑

i=1

∥∥z0i − zk
0i

∥∥2
L2(Ω)

+ k−2/3 +
t0∫

0

eγ (t)dt

)
,

where C15 is a constant independent of k. From the Gronwall inequality, the desired estimate is obtained.
Combining the above proof with the ideas in the proof of Theorem 3.3, we obtain the result in the case where (H4)

holds.

4. Free boundaries

In the previous section, we have studied the weak solutions of (ND). By (3.2), free boundaries appear in the strong sense
of the limit problem (ND) as k tends to infinity. In this section, we examine conditions on the free boundaries. Let z be a
weak solution of (ND). Set three regions:

Ω1(t) := {
x ∈ Ω | γ2

(
z(x, t)

)
> 0, γ3

(
z(x, t)

)
> 0

}
,

Ω2(t) := {
x ∈ Ω | γ3

(
z(x, t)

)
> 0, γ1

(
z(x, t)

)
> 0

}
,

Ω3(t) := {
x ∈ Ω | γ1

(
z(x, t)

)
> 0, γ2

(
z(x, t)

)
> 0

}
.

We also define Q i , Γi(t) and Γi (i = 1,2,3) as in Section 1. To avoid some difficulties such as the appearance of multiple
junctions among Γi , we introduce Γ̃i and S as follows:

Γ̃1 :=
⎧⎨⎩(x, t) ∈ Γ1

∣∣∣∣∣
there is a neighbourhood D of (x, t) such that

D = (Q 2 ∪ Q 3 ∪ Γ1) ∩ D

and Γ1 is an (N − 1)-dimensional smooth hypersurface in D

⎫⎬⎭ .

The interfaces Γ̃2 and Γ̃3 are similarly defined. Thus, Γ̃i do not include multiple junction points. We recall the definition
of ni , which is the unit normal vector on Γi(t) oriented from Ω j(t) to Ωk(t) for (i, j,k) ∈ {(1,2,3), (2,3,1), (3,1,2)}. Let S
be a set of all points (x, t) ∈ ∂Ω × (0, T ) so that there exists a normal segment at (x, t) which is located in Ωi(t) for some
i ∈ {1,2,3}.

Now, we are ready to state our result.

Theorem 4.1. Assume that (H2) holds. Let z be a weak solution of (ND) with an initial datum z0 ∈ L∞(Ω)2 . Suppose that the functions
u = γ1(z), v = γ2(z) and w = γ3(z) are smooth on Q 1 , Q 2 and Q 3 . Also assume that Q i are (piecewise) smooth. Then, u, v and w
satisfy (1.4)–(1.7) and

d2
∂v|Q 3

∂n1
+ d3

∂ w|Q 2

∂n1
= 0, d1

(
∂u|Q 3

∂n1
− ∂u|Q 2

∂n1

)
= d2

∂v|Q 3

∂n1
on Γ̃1, (4.1)

d3
∂ w|Q 1 + d1

∂u|Q 3 = 0, d2

(
∂v|Q 1 − ∂v|Q 3

)
= d3

∂ w|Q 1 on Γ̃2, (4.2)

∂n2 ∂n2 ∂n2 ∂n2 ∂n2
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d1
∂u|Q 2

∂n3
+ d2

∂v|Q 1

∂n3
= 0, d3

(
∂ w|Q 2

∂n3
− ∂ w|Q 1

∂n3

)
= d1

∂u|Q 2

∂n3
on Γ̃3, (4.3)

∂u

∂ν
= ∂v

∂ν
= ∂ w

∂ν
= 0 on S, (4.4)

u(·,0) = γ1(z0), v(·,0) = γ2(z0), w(·,0) = γ3(z0) in Ω. (4.5)

Proof. The conditions (1.7) and (4.5) follow immediately from the definitions of Γi and u, v, w . The boundary condition in
(ND) and the definition of φi imply

d1
∂u

∂ν
= d2

∂v

∂ν
= d3

∂ w

∂ν

on ∂Ω × (0, T ). Noticing that u = 0 in Q 1, v = 0 in Q 2 and w = 0 in Q 3 yields (4.4).
Next, we show that v , w satisfy (1.4). Since z1 = v , z2 = w and u = 0 in Q 1, it follows from Definition 3.1 that for all

ζ ∈ C∞
0 (Q 1)∫ ∫

Q 1

(
∂v

∂t
− d2�v − f2(0, v, w)

)
ζ dx dt = 0,

∫ ∫
Q 1

(
∂ w

∂t
− d3�w − f3(0, v, w)

)
ζ dx dt = 0,

which imply (1.4). The same arguments lead us to Eqs. (1.5) and (1.6) satisfied in Q 2 and Q 3.
Finally, we derive the free boundary conditions (4.1)–(4.3). For (x1, t1) ∈ Γ̃1, there is a cylinder D = B(x1, r) × (t1 − r,

t1 + r) ⊂ Q such that D = (Q 2 ∪ Q 3 ∪ Γ1) ∩ D and Γ1 is a smooth hypersurface in D . Noting that z1 = −u, φ1(z) = −d1u
in Q 2 and z1 = v − u, φ1(z) = d2 v − d1u in Q 3, we deduce from Definition 3.1 for i = 1 that

−
∫ ∫
D∩Q 2

u
∂ζ

∂t
dx dt +

∫ ∫
D∩Q 3

(v − u)
∂ζ

∂t
dx dt

= −d1

∫ ∫
D∩Q 2

∇u · ∇ζ dx dt +
∫ ∫
D∩Q 3

∇(d2 v − d1u) · ∇ζ dx dt

+
∫ ∫
D∩Q 2

f1(u,0, w)ζ dx dt −
∫ ∫
D∩Q 3

(
f2(u, v,0) − f1(u, v,0)

)
ζ dx dt

for all functions ζ ∈ C∞
0 (D). On the other hand, since v = 0 on Γ1, we have

∫ ∫
D∩Q 3

(
v
∂ζ

∂t
+ ∂v

∂t
ζ

)
dx dt =

t1+r∫
t1−r

d

dt

∫
B(x1,r)∩Ω3(t)

vζ dx dt = 0.

Moreover, ∫ ∫
(D∩Q 2)∪(D∩Q 3)

(
u

∂ζ

∂t
+ ∂u

∂t
ζ

)
dx dt = 0.

Therefore, we find∫ ∫
D∩Q 2

(
∂u

∂t
− d1�u − f1(u,0, w)

)
ζ dx dt −

∫ ∫
D∩Q 3

(
∂v

∂t
− d2�v − f2(u, v,0)

)
ζ dx dt

+
∫ ∫
D∩Q 3

(
∂u

∂t
− d1�u − f1(u, v,0)

)
ζ dx dt

= −d1

∫ ∫
∂u|Q 2

∂n1
ζ dx dt −

∫ ∫ (
d2

∂v|Q 3

∂n1
− d1

∂u|Q 3

∂n1

)
ζ dx dt
D∩Γ1 D∩Γ1
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for all ζ ∈ C∞
0 (D). It follows from (1.5) and (1.6) that

d1

(
∂u|Q 3

∂n1
− ∂u|Q 2

∂n1

)
= d2

∂v|Q 3

∂n1

on D ∩ Γ1. Analogously, we deduce from Definition 3.1 for i = 2 that

d1

(
∂u|Q 2

∂n1
− ∂u|Q 3

∂n1

)
= d3

∂ w|Q 2

∂n1

on D ∩ Γ1. Hence, we get (4.1). We can obtain (4.2) and (4.3) in similar fashion. Thus, we conclude the proof. �
Proof of Theorem 1.1. Theorem 1.1 immediately follows from Theorems 3.2 and 4.1. �
5. Numerical experiments

In this section, we carry out numerical simulations. First, we deal with the competition system of Lotka–Volterra type:⎧⎨⎩
f1(u, v, w) = u(1 − u − 2v − w),

f2(u, v, w) = v(1 − u − v − 2w),

f3(u, v, w) = w(1 − 2u − v − w).

(5.1)

The system of the ordinary differential equations⎧⎨⎩
ut = f1(u, v, w),

vt = f2(u, v, w),

wt = f3(u, v, w)

(5.2)

which corresponds to the diffusion-free system with k = 0 possesses the following equilibria:

E = {
(0,0,0), (1,0,0), (0,1,0), (0,0,1), (1/4,1/4,1/4)

}
.

Two equilibria (0,0,0) and (1/4,1/4,1/4) are unstable under the flow by (5.2) and the other three equilibria (1,0,0),
(0,1,0), (0,0,1) are stable. The numerical results are drawn in Fig. 2. We used d1 = d2 = d3 = 10−4 and k = 105. The
figures in the first, second and third rows denote the profiles of solutions uk , vk and wk , respectively. In order to make
sure of our theoretical results, we painted the regions with different colors (Fig. 3) in the last row in Fig. 2. Three stable
equilibria of (5.2) are on the reaction limit set ARD in Section 1. Moreover, the numerical solutions uk , vk and wk in Fig. 2
look as if only one species survives at each point. However, Theorem 1.1 implies that only one component converges to zero
at each point as k tends to infinity. We can observe that this is true from the numerical point of view. The domain Ω is
divided into three regions after they diffuse enough, that is, one of the components goes to zero and others are positive at
each point except for points on the interfaces.

Ei, Ikota and Mimura in [4] studied the following system:⎧⎨⎩
ut = d1�u + kf1(u, v, w),

vt = d2�v + kf2(u, v, w),

wt = d3�w + kf3(u, v, w).

It turns out that the reaction limit set of this system is E . In this case, the solution converges to one of the three stable
equilibria in each point. Thus, only one species can survive in each habitat.

Next, we consider the following example:⎧⎨⎩
f1(u, v, w) = u(1 − u − 0.2v − 0.6w),

f2(u, v, w) = v(1 − 0.6u − v − 0.2w),

f3(u, v, w) = w(1 − 0.2u − 0.6v − w).

(5.3)

The corresponding system (5.2) possesses the following equilibria:

E = {
(0,0,0), (1,0,0), (0,1,0), (0,0,1),

(0,10/11,5/11), (5/11,0,10/11), (10/11,5/11,0), (5/9,5/9,5/9)
}
.

The equilibrium (5/9,5/9,5/9) is stable for the flow by (5.2) and the others are unstable. More precisely, since the eigen-
values of the linearized matrix of (5.2) near (5/9,5/9,5/9) are −1 and (−3 ± √

3i)/9, most orbits of (5.2) rotate around
the axis (1,1,1) and converge to the stable equilibrium. Fig. 4 shows numerical solutions (uk , vk , wk) with k = 0. On the
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Fig. 2. Numerical solutions of (RD)k with (5.1).

Fig. 3. Colors for approximated regions which correspond to Ω1(t) (salmon), Ω2(t) (yellow green) and Ω3(t) (royal blue) respectively. (For interpretation of
the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 4. Numerical solutions of (RD)k with (5.3) and k = 0.

other hand, the stable equilibrium (5/9,5/9,5/9) does not belong to the reaction limit set ARD. On the plane {w = 0}, for
example, the system is reduced to{

ut = u(1 − u − 0.2v),
vt = v(1 − 0.6u − v),
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Fig. 5. Numerical solutions of (RD)k with (5.3).

which is a two-component system of mono-stable type. Three equilibria

(0,10/11,5/11), (5/11,0,10/11), (10/11,5/11,0)

are stable on the reaction limit set. Since these equilibria on the reaction limit set correspond to the coexistence of the
species, we can expect the spiral waves with the coexistence. Actually by numerics we can observe the spiral waves as in
Fig. 5. In this simulation, we can clearly see the discontinuities of the flux across the free boundaries.
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