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Weconsider a class of boundary value problems for linearmulti-term fractional differential
equations which involve Caputo-type fractional derivatives. Using an integral equation
reformulation of the boundary value problem, some regularity properties of the exact
solution are derived. Based on these properties, the numerical solution of boundary value
problemsbypiecewise polynomial collocationmethods is discussed. In particular,we study
the attainable order of convergence of proposed algorithms and showhow the convergence
rate depends on the choice of the grid and collocation points. Theoretical results are verified
by two numerical examples.
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1. Introduction

In this paper we study the convergence behavior of a collocation method for the numerical solution of linear boundary
value problems of the form

(Dαp
∗ y)(t) +

p−1
i=0

ai(t)(Dαi
∗
y)(t) = f (t), 0 ≤ t ≤ b, (1.1)

n0
j=0

αijy(j)(0) +

n1
j=0

βijy(j)(b1) = γi, 0 < b1 ≤ b, i = 0, . . . , n − 1, (1.2)

where

0 ≤ α0 < α1 < · · · < αp, n − 1 < αp ≤ n, n, p ∈ N := {1, 2, . . .},
0 ≤ n0 ≤ n − 1, 0 ≤ n1 ≤ n − 1, γi, αij, βij ∈ R := (−∞, ∞),

(1.3)

ai (i = 0, . . . , p − 1) and f are some given continuous functions from [0, b] into R. In (1.1) D0
∗

:= I is the identity operator
and Dα

∗
is the Caputo differential operator of order α > 0 defined by (see, e.g., [1])

(Dα
∗
y)(t) := (Dα(y − Qk−1[y]))(t), k − 1 < α ≤ k, k ∈ N, t > 0.
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Here

Qk−1[y](s) :=

k−1
i=0

y(i)(0)
i!

si

is the Taylor polynomial of degree k − 1 for y, centered at 0, and Dαy is the Riemann–Liouville fractional derivative of
order α:

(Dαy)(t) := (Jk−αy)(k)(t), k − 1 < α ≤ k, k ∈ N, t > 0,

with J0 := I and Jα , the Riemann–Liouville integral operator, defined for α > 0 by the formula

(Jαy)(t) :=
1

0(α)

 t

0
(t − s)α−1 y(s) ds, t > 0,

where Γ is the Euler gamma function. If α = k ∈ N then Dky = Dk
∗
y = y(k) where y(k) is the usual k-th order derivative of y.

It is well known (see, e.g., [2,3]) that Jα, α > 0, is linear, bounded and compact as an operator from L∞(0, b) into C[0, b],
and for any y ∈ L∞(0, b)

(Jαy)(k) ∈ C[0, b], (Jαy)(k)(0) = 0, α > 0, k = 0, . . . , ⌈α⌉ − 1, (1.4)

Jα Jβy = Jα+βy, α > 0, β > 0, (1.5)

Dβ Jαy = Dβ
∗
Jαy = Jα−βy, 0 < β ≤ α, (1.6)

where ⌈α⌉ is the smallest integer not less than α.
Fractional differential equations arise in various areas of science and engineering. In the last few decades the theory

and numerical analysis of fractional differential equations have received increasing attention (see, for example, [1,3–5]
and references cited in these books). Various existence and uniqueness results for boundary value problems of fractional
differential equations are obtained in many recent publications (see [1,6–10] and the references therein).

A great deal of papers are devoted to the numerical solution of initial value problems for fractional differential equations
(see, e.g., [1,11–16]). In contrast to this, only a few papers concern the numerical solution of boundary value problems
for fractional differential equations. Numerical schemes based on a shooting algorithm are discussed in [17] and some
algorithms based on the collocation method, piecewise polynomial collocation method and Haar wavelet method are
proposed in [18–20], respectively.

In the present paper, the numerical solution of linear boundary value problems (1.1), (1.2) by piecewise polynomial
collocation methods is under consideration. These methods have been shown to be efficient to solve integral equations,
integro-differential equations (see, e.g., [2,21–25]) and fractional initial value problems (see [16,26]). Our aim is to present
a complete analysis of the convergence of spline collocation solutions for problem (1.1), (1.2) in a situation where the
derivatives of the functions f (t) and ai(t) (i = 0, . . . , p − 1) may be unbounded at t = 0. Our approach is based on
some ideas and results of [16].

The remainder of the present paper is arranged as follows. In Section 2 we prove Theorem 2.1 which gives the estimates
for higher order derivatives of the exact solution of problem (1.1), (1.2). These estimates will play a key role in the
convergence analysis of proposed algorithms in Section 4. In Section 3 the description of a piecewise polynomial collocation
method is given. We use an integral equation reformulation of the problem and special non-uniform grids reflecting the
possible singular behavior of the exact solution. In Section 4 we prove the convergence of our method, derive global
convergence estimates and analyze a (global) superconvergence effect for a special choice of collocation points. The main
results of the paper are formulated in Theorems 4.1 and 4.2. Finally, in Section 5 the obtained theoretical results are verified
by two numerical examples.

2. Smoothness of the solution

An important question that arises by studying the attainable order of the convergence of a numerical method is the
question for the smoothness properties of the exact solution of a fractional differential equation. Some information about
the smoothness properties of the solution can be obtained by using asymptotic expansions of the solution in fractional
powers with respect to the independent variable (see, e.g., [1]).

In the present paperwe use another approach:we introduce aweighted space of smooth functions Cq,ν(0, b] (cf., e.g., [2])
and show that the derivative Dαp

∗ y of y, the solution of problem (1.1), (1.2), belongs to Cq,ν(0, b] (see Theorem 2.1). Here, by
Cq,ν(0, b] (q ∈ N, −∞ < ν < 1) we denote the set of continuous functions y : [0, b] → R which are q times continuously
differentiable in (0, b] and such that for all t ∈ (0, b] and i = 1, . . . , q the following estimates hold:

|y(i)(t)| ≤ c

1 if i < 1 − ν,
1 + | log t| if i = 1 − ν,

t1−ν−i if i > 1 − ν,



A. Pedas, E. Tamme / Journal of Computational and Applied Mathematics 236 (2012) 3349–3359 3351

where c = c(y) is a positive constant. Equipped with the norm

∥y∥q,ν := max
0≤t≤b

|y(t)| +

q
i=1

sup
0<t≤b


wi+ν−1(t) |y(i)(t)|


,

Cq,ν(0, b] is a Banach space. Here

wλ(t) :=


1 for λ < 0,
(1 + | log t|)−1 for λ = 0,
tλ for λ > 0.

Clearly,

Cq
[0, b] ⊂ Cq,ν(0, b] ⊂ Cm,µ(0, b] ⊂ C[0, b], q ≥ m ≥ 1, ν ≤ µ < 1. (2.1)

If a, v ∈ Cq,ν(0, b], q ∈ N, ν < 1, then (see [2]) av ∈ Cq,ν(0, b] and

∥av∥q,ν ≤ c ∥a∥q,ν∥v∥q,ν, (2.2)

with a positive constant c which is independent of a and v. Note that a function of the form y(t) = g1(t) tµ+g2(t) is included
in Cq,ν(0, b] if µ ≥ 1 − ν > 0 and gj ∈ Cq

[0, b], j = 1, 2.
Inwhat followsweuse an integral equation reformulation of the problem (1.1), (1.2) introducing anewunknown function

z := Dαp
∗ y. To reach the desirable reformulation (see (2.9)) let us consider an equation

Dαp
∗ y = z, n − 1 < αp ≤ n, n ∈ N, (2.3)

where z is an arbitrary function in C[0, b]. The solutions of Eq. (2.3) have the following form (see [1,3]):

y(t) = (Jαpz)(t) +

n−1
k=0

ck tk (2.4)

where ck ∈ R (k = 0, . . . , n − 1) are arbitrary constants. The function (2.4) satisfies the boundary conditions (1.2) if and
only if (see (1.4) and (1.6))

n0
j=0

αij j! cj +
n1
j=0

βij


(Jαp−jz)(b1) +

n−1
k=j

k!
(k − j)!

bk−j
1 ck


= γi, i = 0, . . . , n − 1.

We rewrite these equations in the form

n−1
j=0


j! αij +

j
k=0

βik
j!

(j − k)!
bj−k
1


cj = γi −

n1
j=0

βij(Jαp−jz)(b1), i = 0, . . . , n − 1, (2.5)

setting αij = 0 for j > n0 and βij = 0 for j > n1. Clearly, (2.5) is a linear system of equations with respect to c0, . . . , cn−1.
In the sequel we assume that the matrix M of the system (2.5) is regular. Observe that M is regular if and only if from all
polynomials y of degree n − 1 only y = 0 satisfies the conditions (1.2) with γi = 0, i = 0, . . . , n − 1.

LetM−1
= (pij)n−1

i,j=0 be the inverse ofM . UsingM−1 the solution of the system (2.5) can be written in the form

ck = dk −

n1
j=0

δkj(Jαp−jz)(b1), k = 0, . . . , n − 1,

where

dk :=

n−1
l=0

pkl γl, δkj :=

n−1
l=0

pkl βlj.

Thus, a solution y of Eq. (2.3) in the form

y = Gz + Q (2.6)

satisfies the conditions (1.2) if and only if

(Gz)(t) := (Jαpz)(t) −

n−1
k=0

tk
n1
j=0

δkj(Jαp−jz)(b1), 0 ≤ t ≤ b, (2.7)

Q (t) :=

n−1
k=0

dk tk. (2.8)
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Suppose now that y is a solution of the problem (1.1), (1.2) such thatDαp
∗ y ∈ C[0, b]. Then it follows from the observations

above that y has the form (2.6) where z = Dαp
∗ y ∈ C[0, b] and G and Q are given by the formulas (2.7) and (2.8), respectively.

Inserting (2.6) into (1.1), we see that z = Dαp
∗ y satisfies an equation of the form

z = Tz + g (2.9)

where

Tz := −

p−1
i=0

aiDαi
∗
Gz, g := f −

p−1
i=0

aiDαi
∗
Q . (2.10)

Conversely, it is easy to show that if z ∈ C[0, b] is a solution of Eq. (2.9) then y defined by (2.6) is a solution of the problem
(1.1), (1.2). In this sense Eq. (2.9) is equivalent to the boundary value problem (1.1), (1.2) and we can use it by constructing
of high order methods for the numerical solution of (1.1), (1.2).

Note that Dαi
∗ Gz and Dαi

∗ Q (i = 0, . . . , p − 1) in (2.10) can be found in the following way. Let vk(t) := tk, t > 0, k ∈

N0 := N ∪ {0}. Then (see, e.g., [1])

(Dαi
∗
vk)(t) =

0 if k = 0, . . . , ⌈αi⌉ − 1,
k!

0(1 + k − αi)
tk−αi if k ≥ ⌈αi⌉.

This together with (1.6), (2.7) and (2.8) yields that

(Dαi
∗
Gz)(t) =

(Jαp−αiz)(t) −

n−1
k=⌈αi⌉

k!
0(1 + k − αi)

tk−αi

n1
j=0

δkj(Jαp−jz)(b1) if 0 ≤ αi ≤ n − 1,

(Jαp−αiz)(t) if n − 1 < αi < n,

(2.11)

(Dαi
∗
Q )(t) =


n−1

k=⌈αi⌉

k!
0(1 + k − αi)

dktk−αi if 0 ≤ αi ≤ n − 1,

0 if n − 1 < αi < n,

(2.12)

where t ∈ [0, b]. In (2.11) we have

(Jαp−αiz)(t) =
1

0(αp − αi)

 t

0
(t − s)αp−αi−1 z(s) ds, i = 0, . . . , p − 1, (2.13)

(Jαp−jz)(b1) =
1

0(αp − j)

 b1

0
(b1 − s)αp−j−1 z(s) ds, j = 0, . . . , n1. (2.14)

On these observations we find that Eq. (2.9) is a linear Fredholm type integral equation of the second kind. Moreover, it
follows from (2.10)–(2.14) that the kernel of this equation may be weakly singular at s = t .

Theorem 2.1. Let (1.3) be true and assume that ai ∈ Cq,µ(0, b] (i = 0, . . . , p − 1) and f ∈ Cq,µ(0, b], where q ∈ N
and −∞ < µ < 1. Moreover, assume that the problem (1.1), (1.2) with f = 0 and γi = 0 (i = 0, . . . , n − 1) has in
C[0, b] only the trivial solution y = 0, and from all polynomials y of degree n − 1 only y = 0 satisfies the conditions (1.2) with
γi = 0, i = 0, . . . , n − 1.

Then boundary value problem (1.1), (1.2) possesses a unique solution y ∈ Cn−1
[0, b] such that Dαp

∗ y ∈ C[0, b]. For this
solution there holds Dαp

∗ y ∈ Cq,ν(0, b] where

ν := max{µ, ν1, ν2} (2.15)

with

ν1 := max{1 − αp + αi : αp − αi ∉ N, i = 0, . . . , p − 1},
ν2 := max{1 − ⌈αi⌉ + αi : αi < n − 1, αi ∉ N0, i = 0, . . . , p − 1}.

If for all indices i = 0, . . . , p − 1 we have αp − αi ∈ N then we may set ν1 to be equal to any number which is less than 1.
Analogously, if we have αi ∈ N0 for all indices i = 0, . . . , p − 1 such that αi < n − 1 then we may set ν2 to be equal to any
number less than 1.

Proof. Let us consider Eq. (2.9) which is equivalent to the problem (1.1), (1.2). From (2.12) it follows that if αi ∈ N0 or
αi > n − 1 then (see (2.1)) Dαi

∗ Q ∈ Cq
[0, b] ⊂ Cq,ν(0, b] with arbitrary q ∈ N and ν < 1. If αi ∉ N0 and 0 < αi < n − 1

then Dαi
∗ Q ∈ Cq,1−⌈αi⌉+αi(0, b] ⊂ Cq,ν2(0, b]. This together with (2.2) and (2.10) yields that g ∈ Cq,ν̃(0, b] ⊂ Cq,ν(0, b] with

ν̃ := max{µ, ν2} and ν defined by (2.15). Thus, the forcing function g in Eq. (2.9) belongs to Cq,ν(0, b].



A. Pedas, E. Tamme / Journal of Computational and Applied Mathematics 236 (2012) 3349–3359 3353

Further, it follows from [2] that Jαp−αi (i = 0, . . . , p−1) is linear and compact as operator from Cq,ν(0, b] into Cq,ν(0, b].
Linear functionals Jαp−j

1 : Cq,ν(0, b] → R, j = 0, . . . , n1, defined by Jαp−j
1 z := (Jαp−jz)(b1) are bounded and consequently

compact in Cq,ν(0, b]. Using (2.2) we obtain that T defined by (2.10) is linear and compact as an operator from Cq,ν(0, b]
into Cq,ν(0, b]. Since the homogeneous equation z = Tz has in Cq,ν(0, b] ⊂ C[0, b] only the trivial solution z = 0, it follows
from the Fredholm alternative theorem that Eq. (2.9) has a unique solution z ∈ Cq,ν(0, b]. Consequently, the problem (1.1),
(1.2) possesses a unique solution y = Gz + Q ∈ Cn−1

[0, b] such that Dαp
∗ y = z ∈ Cq,ν(0, b] ⊂ C[0, b]. �

Remark 2.1. If in Eq. (1.1) ai ∈ Cq
[0, b] (i = 0, . . . , p − 1) and f ∈ Cq

[0, b] where q ∈ N then in Theorem 2.1 we may set
ν := max{ν1, ν2}.

Remark 2.2. If Eq. (1.1) has the form

Dα1
∗
y(t) + a0(t)y(t) = f (t), 0 ≤ t ≤ b, n − 1 < α1 < n, n ∈ N, (2.16)

then the boundary value problem (2.16), (1.2) is equivalent to Eq. (2.9) with Tz = −a0Gz and g = f − a0Q . Under the
assumptions of Theorem 2.1 with p = 1 we now obtain that the problem (2.16), (1.2) possesses a unique solution y such
that Dα1

∗ y ∈ Cq,ν(0, b] with ν := max{µ, 1 − α1}.

Remark 2.3. We already mentioned above that Eq. (2.9) can be considered as a Fredholm integral equation with a kernel
K(t, s)whichmay have a weak singularity at s = t . Let [0, b1] (see (1.2)) be the interval of integration in (2.9) and let z(t) be
the solution to (2.9) for 0 ≤ t ≤ b1. In this case the derivatives of z(t) as the derivatives of the solution of a weakly singular
Fredholm integral equation might be singular at the endpoints t = 0 and t = b1 of the interval [0, b1] (see, e.g., [21]).
However, it follows from Theorem 2.1 that the derivatives of z(t) have no singularities at t = b1 and, if b > b1, then z(t)
has a smooth extension from [0, b1] to [0, b]. A numerical confirmation to this effect (to Theorem 2.1) will be given by
Example 5.1 (see also [17]).

3. Spline collocation method

Let N ∈ N and let ΠN := {t0, . . . , tN} be a partition (a graded grid) of the interval [0, b] with the grid points

tj := b


j
N

r

, j = 0, 1, . . . ,N, (3.1)

where the grading exponent r ∈ R, r ≥ 1. If r = 1, then the grid points (3.1) are distributed uniformly; for r > 1 the points
(3.1) are more densely clustered near the left endpoint of the interval [0, b].

For given integer k ≥ 0 by S(−1)
k (ΠN) is denoted the standard space of piecewise polynomial functions:

S(−1)
k (ΠN) :=


v : v|(tj−1,tj) ∈ πk, j = 1, . . . ,N


.

Here v|(tj−1,tj) is the restriction of v : [0, b] → R onto the subinterval (tj−1, tj) andπk denotes the set of polynomials of degree
not exceeding k. Note that the elements of S(−1)

k (ΠN) may have jump discontinuities at the interior points t1, . . . , tN−1 of
the grid ΠN .

In every interval [tj−1, tj], j = 1, . . . ,N , we definem ∈ N collocation points tj1, . . . , tjm by formula

tjk := tj−1 + ηk(tj − tj−1), k = 1, . . . ,m, j = 1, . . . ,N, (3.2)

where η1 . . . , ηm are some fixed (collocation) parameters which do not depend on j and N and satisfy

0 ≤ η1 < η2 < · · · < ηm ≤ 1. (3.3)

We look for an approximate solution yN of the boundary value problem (1.1), (1.2) in the form

yN = GzN + Q (3.4)

where G and Q are defined by (2.7) and (2.8), respectively, and zN ∈ S(−1)
m−1(ΠN)(m,N ∈ N) is determined by the following

collocation conditions:

zN(tjk) = (TzN)(tjk) + g(tjk), k = 1, . . . ,m, j = 1, . . . ,N. (3.5)

Here g, T and tjk are defined by (2.10) and (3.2), respectively. If η1 = 0, then by zN(tj1) we denote the right limit
limt→tj−1,t>tj−1 zN(t). If ηm = 1, then zN(tjm) denotes the left limit limt→tj,t<tj zN(t). Conditions (3.5) have an operator
equation representation

zN = PNTzN + PNg (3.6)

with an interpolation operator PN = PN,m : C[0, b] → S(−1)
m−1(ΠN) defined for any v ∈ C[0, b] by the following conditions:

PNv ∈ S(−1)
m−1(ΠN), (PNv)(tjk) = v(tjk), k = 1, . . . ,m, j = 1, . . . ,N. (3.7)
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The collocation conditions (3.5) form a system of equations whose exact form is determined by the choice of a basis in
S(−1)
m−1(ΠN). If η1 > 0 or ηm < 1 then we can use the Lagrange fundamental polynomial representation:

zN(t) =

N
λ=1

m
µ=1

cλµϕλµ(t), t ∈ [0, b], (3.8)

where ϕλµ(t) := 0 for t ∉ [tλ−1, tλ] and

ϕλµ(t) :=

m
i=1,i≠µ

t − tλi
tλµ − tλi

for t ∈ [tλ−1, tλ], µ = 1, . . . ,m, λ = 1, . . . ,N.

Then zN ∈ S(−1)
m−1(ΠN) and zN(tjk) = cjk, k = 1, . . . ,m, j = 1, . . . ,N . Searching the solution of (3.5) in the form (3.8), we

obtain a system of linear algebraic equations with respect to the coefficients cjk = zN(tjk):

cjk =

N
λ=1

m
µ=1

(Tϕλµ)(tjk)cλµ + g(tjk), k = 1, . . . ,m, j = 1, . . . ,N. (3.9)

Note that this algorithm can be used also in the case if in (3.3) η1 = 0 and ηm = 1. In this case we have tjm = tj+1,1 =

tj, cjm = cj+1,1 = zN(tj) (j = 1, . . . ,N − 1), and hence in the system (3.9) there are (m− 1)N + 1 equations and unknowns.

4. Convergence analysis

In order to investigate the convergence of our method we need the following result from [16].

Lemma 4.1. Let z ∈ Cq,ν(0, b], where −∞ < ν < 1 and q := m + min{m, ⌈α⌉}, with some m ∈ N and α ∈ R, α ≥ 0.
Moreover, assume that a quadrature approximation 1

0
F(x) dx ≈

m
k=1

wk F(ηk) (4.1)

with the knots {ηk} satisfying (3.3) and appropriate weights {wk} is exact for all polynomials of degree q − 1. Then, for all values
of the grid parameter r ∈ [1, ∞) in (3.1), we have

∥Jα(z − PNz)∥∞ ≤ c

EN(m, α, ν, r) if 0 ≤ α < 1,
ΘN(m + α, ν, r) if 1 ≤ α ≤ m,
ΘN(2m, ν, r) if α ≥ m.

(4.2)

Here c is a constant which is independent of N, PN is given by (3.7) and

EN(m, α, ν, r) :=



N−r(1+α−ν) for 1 ≤ r <
m + α

1 + α − ν
,

N−m−α(1 + logN) for r =
m + α

1 + α − ν
= 1,

N−m−α for r =
m + α

1 + α − ν
> 1

or r >
m + α

1 + α − ν
,

(4.3)

ΘN(q, ν, r) :=


N−r(2−ν) for 1 ≤ r <

q
2 − ν

,

N−q(1 + logN) for r =
q

2 − ν
≥ 1,

N−q for r >
q

2 − ν
,

(4.4)

∥v∥∞ := sup
0<t<b

|v(t)|, v ∈ L∞(0, b).

Remark 4.1. In the case α = 0 the estimate (4.2) coincides with the corresponding result from [2]. Note that in this case we
can choose the weights w1, . . . , wm so that the quadrature approximation (4.1) is exact for all polynomials of degreem− 1
for arbitrary parameters η1, . . . , ηm satisfying (3.3).
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Armed with Lemma 4.1 we can prove the convergence of our method and study the attainable order of convergence for
arbitrary collocation parameters η1, . . . , ηm satisfying (3.3).

Theorem 4.1. Let m ∈ N and assume that the collocation points (3.2)with grid points (3.1) and arbitrary parameters η1, . . . , ηm
satisfying (3.3) are used. Let (1.3) be true and assume that ai ∈ C[0, b] (i = 0, . . . , p − 1) and f ∈ C[0, b]. Moreover, assume
that the problem (1.1), (1.2) with f = 0 and γi = 0 (i = 0, . . . , n − 1) has in C[0, b] only the trivial solution y = 0, and from
all polynomials y of degree n − 1 only y = 0 satisfies the conditions (1.2) with γi = 0, i = 0, . . . , n − 1.

Then problem (1.1), (1.2) has a unique solution y ∈ Cn−1
[0, b] such that Dαp

∗ y ∈ C[0, b]. Moreover, there exists an integer N0

such that for all N ≥ N0 Eq. (3.6) possesses a unique solution zN ∈ S(−1)
m−1(ΠN) and

∥y − yN∥∞ → 0 as N → ∞ (4.5)

where yN is defined by (3.4).
If, in addition, ai ∈ Cm,µ(0, b], (i = 0, . . . , p − 1) and f ∈ Cm,µ(0, b] with µ < 1, then for all N ≥ N0 and r ≥ 1 the

following error estimate holds:

∥y − yN∥∞ ≤ c EN(m, 0, ν, r). (4.6)

Here c is a constant which is independent of N and EN and ν are defined by (2.15) and (4.3), respectively.

Proof. Since T definedby (2.10) is linear and compact as an operator from L∞(0, b) intoC[0, b] (see the proof of Theorem2.1)
and Eq. z = Tz has in C[0, b] only the trivial solution z = 0, Eq. (2.9) has a unique solution z ∈ C[0, b]. Consequently, the
problem (1.1), (1.2) possesses a unique solution y = Gz + Q ∈ Cn−1

[0, b] such that Dαp
∗ y = z ∈ C[0, b]. Using a standard

argument (see, e.g., [2,26]), we obtain that there exists an integerN0 such that forN ≥ N0 the operators I−PNT are invertible
in L∞(0, b), Eq. (3.6) possesses a unique solution zN ∈ S(−1)

m−1(ΠN) and

∥(I − PNT )−1
∥L(L∞(0,b),L∞(0,b)) ≤ c, N ≥ N0. (4.7)

Here the constant c does not depend on N and by L(L∞(0, b), L∞(0, b)) is denoted the Banach space of bounded linear
operators from L∞(0, b) into L∞(0, b). From (2.9) and (3.6) we get that

(I − PNT )(z − zN) = z − PNz, N ≥ N0,

and consequently,

∥z − zN∥∞ ≤ c ∥z − PNz∥∞, N ≥ N0, (4.8)

where c does not depend on N . As Jαp−j
∈ L(L∞(0, b), C[0, b]), j = 0, . . . , n1, then, due to (2.6), (3.4), (2.7) and (4.8),

∥y − yN∥∞ = ∥G(z − zN)∥∞ ≤ c∥z − zN∥∞ ≤ c1 ∥z − PNz∥∞, N ≥ N0, (4.9)

where c and c1 are some constants not depending on N . Since ∥z − PNz∥∞ → 0 for every z ∈ C[0, b] as N → ∞ (see [2]),
we have justified the convergence (4.5).

If ai ∈ Cm,µ(0, b] (i = 0, . . . , p− 1) and f ∈ Cm,µ(0, b] then from Theorem 2.1 it follows that z ∈ Cm,ν(0, b]. Taking into
account Remark 4.1, the estimate (4.6) follows from (4.2) and (4.9) with α = 0. �

Remark 4.2. Theorems 2.1 and 4.1 give a basis for showing the well-posedness of fractional boundary value problems
(1.1), (1.2) and for studying the numerical stability of proposed algorithms. Traditionally, a problem is called well-posed,
if the following three conditions for this problem are fulfilled: (1) a solution exists, (2) the solution is unique and (3) the
solution depends on the given data in a continuous way. The first two aspects have already been discussed in Section 2 (see
Theorem 2.1); the third one requires further attention. Here some instructions can be found from [1]. Finally, in studying
the numerical stability of the method (3.4), (3.6), the uniform boundedness of the norms of operators (I − PNT )−1 will play
a key role, see (4.7).

It follows from Theorem 4.1 that in the case of sufficiently smooth ai (i = 0, . . . , p − 1) and f , using sufficiently large
values of the grid parameter r , for method (3.4), (3.6) by every choice of collocation parameters 0 ≤ η1 < · · · < ηm ≤ 1 a
convergence of order O(N−m) can be expected. In the following we show that by a careful choice of parameters η1, . . . , ηm
it is possible to establish a faster convergence of this method.

Theorem 4.2. Let the following conditions be fulfilled:

(i) PN = PN,m (N,m ∈ N) is defined by (3.7) where the interpolation nodes (3.2) with grid points (3.1) and parameters
(3.3) are used;

(ii) the problem (1.1), (1.2) satisfies the assumptions of Theorem 2.1 with q := m + min{m, ⌈αp − β⌉} where β :=

max{αp−1, n1};
(iii) the quadrature approximation (4.1) is exact for all polynomials of degree q − 1.



3356 A. Pedas, E. Tamme / Journal of Computational and Applied Mathematics 236 (2012) 3349–3359

Then problem (1.1), (1.2) has a unique solution y ∈ Cn−1
[0, b] with Dαp

∗ y ∈ Cq,ν(0, b], there exists an integer N0 such that,
for N ≥ N0, Eq. (3.6) possesses a unique solution zN ∈ S(−1)

m−1(ΠN) and the following error estimate holds:

∥y − yN∥∞ ≤ c

EN(m, αp − β, ν, r) for 0 < αp − β < 1,
ΘN(m + αp − β, ν, r) for 1 ≤ αp − β ≤ m,
ΘN(2m, ν, r) for αp − β ≥ m.

(4.10)

Here c is a positive constant not depending on N, r ∈ [1, ∞) is the grading exponent of the grid (see (3.1)) and ν, yN , EN and
ΘN are defined by (2.15), (3.4), (4.3) and (4.4), respectively.

Proof. Due to Theorem2.1 Eq. (2.9) has a unique solution z = Dαp
∗ y ∈ Cq,ν(0, b] ⊂ C[0, b] and problem (1.1), (1.2) possesses

a unique solution y = Gz+Q ∈ Cn−1
[0, b]with G and Q defined by (2.7) and (2.8), respectively. It follows from Theorem 4.1

that there exists an integer N0 such that for N ≥ N0 Eq. (3.6) has a unique solution zN ∈ S(−1)
m−1(ΠN). Let

ẑN := TzN + g, N ≥ N0, (4.11)

where T and g are defined by (2.10). From (3.6) and (4.11) we obtain that PN ẑN = zN and therefore

ẑN(tjk) = zN(tjk), k = 1, . . . ,m, j = 1, . . . ,N.

Substituting zN = PN ẑN into (4.11) we see that ẑN is a solution of the equation

ẑN = TPN ẑN + g, N ≥ N0. (4.12)

From (2.9) and (4.12) it follows the identity

(I − TPN)(z − ẑN) = T (z − PNz), N ≥ N0. (4.13)

Since

(I − TPN)−1
= I + T (I − PNT )−1PN , N ≥ N0,

and ∥PN∥L(C[0,b],L∞(0,b)) ≤ c (see [2]), we get with help of (4.13), (4.7), (2.10) and (2.11) for N ≥ N0 that

∥z − ẑN∥∞ ≤ c ∥T (z − PNz)∥∞

≤ c1
p−1
i=0

∥Jαp−αi(z − PNz)∥∞ + c2
n1
j=0

|Jαp−j(z − PNz)(b1)|,

with some constants c, c1 and c2 which do not depend on N . Using (1.5) and the boundedness of Jα, α > 0, we obtain for
N ≥ N0 the following estimates:

∥Jαp−αi(z − PNz)∥∞ ≤ c ∥Jαp−αp−1(z − PNz)∥∞, i = 0, . . . , p − 1,
|Jαp−j(z − PNz)(b1)| ≤ ∥Jαp−j(z − PNz)∥∞

≤ c ∥Jαp−n1(z − PNz)∥∞, j = 0, . . . , n1,

with c not depending on N . Therefore (see (4.2)),

∥z − ẑN∥∞ ≤ c ∥Jαp−β(z − PNz)∥∞

≤ c1

EN(m, αp − β, ν, r) if 0 < αp − β < 1,
ΘN(m + αp − β, ν, r) if 1 ≤ αp − β ≤ m,
ΘN(2m, ν, r) if αp − β ≥ m

(4.14)

where β = max{αp−1, n1} and the constants c and c1 do not depend on N . Further, for N ≥ N0 we have z − zN =

(z − PNz) + PN(z − ẑN) and thus

∥y − yN∥∞ = ∥G(z − zN)∥∞ ≤ ∥G(z − PNz)∥∞ + c ∥z − ẑN∥∞,

where the constant c does not depend on N . This together with (2.7), (4.2) and (4.14) yields the estimate (4.10). �

5. Numerical examples

In this section, we present some numerical experiments to demonstrate the accuracy of the spline collocation method
(3.4), (3.6) and compare the actual convergence rate with the theoretical estimates (4.10) and (4.14).
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Table 5.1
Results for the problem (5.1).

N r = 1 r = 2 r = 2.5
εN ϱN εN ϱN εN ϱN

4 3.62 · 10−2 1.44 1.45 · 10−2 4.65 3.17 · 10−2 4.71
8 1.96 · 10−2 1.85 3.62 · 10−3 3.99 5.67 · 10−3 5.59

16 1.01 · 10−2 1.94 1.03 · 10−3 3.51 9.53 · 10−4 5.95
32 5.14 · 10−3 1.97 2.80 · 10−4 3.68 1.63 · 10−4 5.83
64 2.59 · 10−3 1.98 7.38 · 10−5 3.80 2.94 · 10−5 5.56

128 1.30 · 10−3 1.98 1.91 · 10−5 3.87 5.23 · 10−6 5.62
256 6.52 · 10−4 2.00 4.88 · 10−6 3.91 9.25 · 10−7 5.66

N ε̂N ϱ̂N ε̂N ϱ̂N ε̂N ϱ̂N

4 6.81 · 10−3 3.47 9.49 · 10−3 3.84 1.67 · 10−2 3.66
8 2.78 · 10−3 2.45 1.87 · 10−3 5.07 3.64 · 10−3 4.58

16 1.04 · 10−3 2.67 3.47 · 10−4 5.40 7.39 · 10−4 4.93
32 3.78 · 10−4 2.75 6.32 · 10−5 5.48 1.45 · 10−4 5.09
64 1.36 · 10−4 2.79 1.16 · 10−5 5.48 2.78 · 10−5 5.21

128 4.83 · 10−5 2.81 2.11 · 10−6 5.47 5.24 · 10−6 5.31
256 1.71 · 10−5 2.82 3.83 · 10−7 5.51 9.72 · 10−7 5.39

Example 5.1. We first consider the following boundary value problem:

(D0.5
∗

y)(t) + a0(t)y(t) = f (t), y(0) + y(1) = 2, 0 ≤ t ≤ 2, (5.1)

where

a0(t) := t0.5, f (t) :=
2

0(1.5)
t0.5 + 2 t1.5.

This is a special problem of (1.1), (1.2) with n = p = 1, α1 = 0.5, α0 = 0, b = 2, b1 = 1, n0 = n1 = 0, α00 = β00 = 1
and γ0 = 2. Clearly, a0, f ∈ Cq,ν(0, 2] with ν = 0.5 and arbitrary q ∈ N.

To solve (5.1) by (3.4), (3.6) we set z := D0.5
∗

y. Then it follows from (2.6)–(2.8) that y(t) = (Gz)(t) + 1, where
(Gz)(t) = (J0.5z)(t) − 0.5 (J0.5z)(1), 0 ≤ t ≤ 2. For z we have Eq. (2.9) with Tz = −a0Gz and g = f − a0. Approximations
zN ∈ S(−1)

m−1(ΠN) for m = 2 and N ∈ N to the solution z of Eq. (2.9) on the interval [0, 2] are found by (3.5) using
m = 2 and (3.2) with η1 = (3 −

√
3)/6, η2 = 1 − η1, the knots of the Gaussian quadrature formula (4.1). Actually,

zN(tjk) = ẑN(tjk) = cjk (k = 1, 2, j = 1, . . . ,N) and zN(t) for t ∈ [0, 2] are determined by (3.8) and (3.9), respectively. After
that the approximate solution yN for the problem (5.1) has been found by the formula yN(t) = (GzN)(t) + 1, 0 ≤ t ≤ 2.

In Table 5.1 some results of numerical experiments for different values of the parameters N and r are presented. The
errors εN and ε̂N in Table 5.1 are calculated as follows:

εN := max
j=1,...,N

max
k=0,...,10

|y(τjk) − yN(τjk)|,

ε̂N := max
j=1,...,N

max
k=1,2

|z(tjk) − ẑN(tjk)| = max
j=1,...,N

max
k=1,2

|z(tjk) − zN(tjk)|,
(5.2)

where τjk := tj−1 +k(tj − tj−1)/10, k = 0, . . . , 10, j = 1, . . . ,N (the grid points tj and collocation points tjk are determined
by (3.1) and (3.2), respectively). In (5.2) we have taken into account that the exact solution of (5.1) is y = 2 t and thus
z = D0.5

∗
y = (2/0(1.5)) t0.5. The ratios

ϱN :=
εN/2

εN
, ϱ̂N :=

ε̂N/2

ε̂N
, (5.3)

characterizing the observed convergence rate, are also presented.
Since αp = α1 = 0.5, β = max{αp−1, n1} = 0 and ν = 0.5 we obtain from (4.10) and (4.14) that, for sufficiently

large N ,

max{εN , ε̂N} ≤ c

N−r if 1 ≤ r < 2.5,
N−2.5 if r ≥ 2.5.

(5.4)

Due to (5.4) the ratios ϱN and ϱ̂N for r = 1, r = 2 and r = 2.5 ought to be approximatively 2, 4 and 22,5
≈ 5, 66,

respectively. As we can see from Table 5.1 the estimate (4.10) expresses well enough the actual rate of convergence of yN to
y (only the decrease of ε̂N to 0 is for r = 1 and r = 2 somewhat faster than we would expect by the estimate (4.14)).
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Table 5.2
Results for the problem (5.5).

N r = 1 r = 2 r = 2.5
εN ϱN εN ϱN εN ϱN

4 3.64 · 10−4 5.07 1.57 · 10−4 11.82 2.99 · 10−4 9.52
8 6.99 · 10−5 5.20 1.31 · 10−5 11.95 2.29 · 10−5 13.08

16 2.12 · 10−5 3.29 1.35 · 10−6 8.70 1.80 · 10−6 12.70
32 7.25 · 10−6 2.93 1.65 · 10−7 8.18 1.86 · 10−7 9.66
64 2.52 · 10−6 2.87 2.28 · 10−8 7.25 2.46 · 10−8 7.57

128 8.89 · 10−7 2.84 3.41 · 10−9 6.69 3.79 · 10−9 6.54
256 3.14 · 10−7 2.83 5.36 · 10−10 6.35 6.33 · 10−10 5.99

N ε̂N ϱ̂N ε̂N ϱ̂N ε̂N ϱ̂N

4 1.74 · 10−2 1.85 4.91 · 10−3 3.56 3.98 · 10−3 4.64
8 9.32 · 10−3 1.87 1.31 · 10−3 3.74 7.94 · 10−4 5.01

16 4.91 · 10−3 1.90 3.40 · 10−4 3.86 1.49 · 10−4 5.34
32 2.55 · 10−3 1.92 8.65 · 10−5 3.93 2.69 · 10−5 5.52
64 1.31 · 10−3 1.94 2.18 · 10−5 3.96 4.81 · 10−6 5.60

128 6.70 · 10−4 1.96 5.48 · 10−6 3.98 8.54 · 10−7 5.63
256 3.40 · 10−4 1.97 1.37 · 10−6 3.99 1.51 · 10−7 5.65

Example 5.2. Secondly we consider the following boundary value problem for the Bagley–Torvik equation:

y′′(t) + (D1.5
∗

y)(t) + y(t) = f (t), y(0) = 1, y(1) = 2, 0 ≤ t ≤ 1, (5.5)

where

f (t) :=
15
4

t0.5 +
15
8

√
π t + t2.5 + 1.

Let z := y′′. Then a solution of the problem (5.5) is given by the formula y(t) = (Gz)(t) + 1 + t where (Gz)(t) =

(J2z)(t) − t(J2z)(1) and z satisfies Eq. (2.9) in which Tz = −Gz − J0.5z and g(t) = f (t) − 1 − t . The values zN(tjk) =

cjk (k = 1, 2, j = 1, . . . ,N, N ∈ N) are calculated by (3.9) using m = 2, η1 = (3 −
√
3)/6, η2 = 1 − η1 and b = b1 = 1.

After that the approximation yN to the solution y of (5.5) has been found by the formula yN(t) = (GzN)(t) + 1 + t .

In Table 5.2 the errors εN , ε̂N and the ratios ϱN , ϱ̂N determined by (5.2) and (5.3) are presented. Also in this case we have
used the exact solution y = t2.5 + 1 of the problem (5.5) and its second derivative z = y′′

= 3.75t0.5. Since in this example
α2 = 2, β = 1.5 and ν = 0.5 we get from (4.10) and (4.14) the estimate (5.4), too. Thus, we would expect that our method
for r = 1, r = 2 and r = 2.5 would have order 2, 4 and 22.5

≈ 5.66, respectively. These expectations are confirmed by the
results in Table 5.2. Actually, we see from Table 5.2, that for this example the estimate (4.14) is in good accordance with the
actual rate of the convergence of ẑN to z, but the convergence of yN to y is for r = 1 and r = 2 faster than it is predicted by
the estimate (4.10).
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