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Diffusion in Cytoplasm: Effects of Excluded Volume Due to Internal
Membranes and Cytoskeletal Structures

Igor L. Novak,* Pavel Kraikivski, and Boris M. Slepchenko*
Richard D. Berlin Center for Cell Analysis and Modeling, Department of Cell Biology, University of Connecticut Health Center, Farmington,
Connecticut

ABSTRACT The intricate geometry of cytoskeletal networks and internal membranes causes the space available for diffusion
in cytoplasm to be convoluted, thereby affecting macromolecule diffusivity. We present a first systematic computational study of
this effect by approximating intracellular structures as mixtures of random overlapping obstacles of various shapes. Effective
diffusion coefficients are computed using a fast homogenization technique. It is found that a simple two-parameter power law
provides a remarkably accurate description of effective diffusion over the entire range of volume fractions and for any given
composition of structures. This universality allows for fast computation of diffusion coefficients, once the obstacle shapes and
volume fractions are specified. We demonstrate that the excluded volume effect alone can account for a four-to-sixfold reduction
in diffusive transport in cells, relative to diffusion in vitro. The study lays the foundation for an accurate coarse-grain formulation
that would account for cytoplasm heterogeneity on a micron scale and binding of tracers to intracellular structures.
INTRODUCTION

Realistic models of macromolecular diffusion in cells have

been recently of renewed interest (1,2) in the light of in vivo

experiments that involve naturally fluorescent proteins

(3–5). Tracer molecules in the cell diffuse in a crowded envi-

ronment filled with other solutes and large intracellular struc-

tures, such as cytoskeletal meshwork and internal membranes

(6). Even in the absence of intracellular structures, diffusion of

a tracer in the cytosol is affected by macromolecular and

hydrodynamic interactions and therefore constitutes a compli-

cated many-body problem (7). Remarkably, its solution for

repulsive interactions is formulated in terms of the self-diffu-

sion of individual particles with a diffusion coefficient cor-

rected for macromolecular crowding and hydrodynamic

effects (2,8,9); we denote this coefficient, which describes

diffusion in cytosol free of intracellular structures, by D0.

Note that D0 is different from the diffusion coefficient in

a dilute aqueous solution, Din vitro.

Diffusion of a tracer is further hindered by cellular struc-

tures that are largely immobile, i.e., cytoskeleton, endo-

plasmic reticulum (ER), and other internal membranes

(10). This is due to increased path lengths and potential

binding interactions (diffusion may also slow down due to

an increase in viscosity in the proximity of a structure).

The increase in path length, sometimes termed the effect of

excluded volume, is the focus of this article. Both in vitro

studies (11) and experiments where inert particles were

microinjected into living cells (12–15) indicate that the

excluded volume effect can be significant. A possible role

of intracellular structures as diffusion barriers in forming

cAMP microdomains is discussed in Rich et al. (16).
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Macromolecular diffusion in a convoluted space is notori-

ously difficult to describe; in fact, it is legitimate to ask

whether Fick’s law and the notion of an effective diffusion

coefficient is applicable to diffusive fluxes in a disordered

medium (17). The issue can be addressed by analyzing time

dependence of the mean-squared displacement, hx2(t)i, for

a particle undergoing random walks in an occluded space

(the angular brackets denote ensemble averaging). One such

numerical experiment with randomly distributed spherical

obstacles is described in Fig. 1 (see Methods for computation

details). In agreement with earlier Monte Carlo studies of

diffusion on lattices (18) and experiments with diffusion in

gels (11), hx2(t)i is linear on a sufficiently large spatial scale:

hx2i f t (inset in Fig. 1 b). This is a signature of normal

diffusion with an effective diffusion coefficient Deff ¼
limt/Nhx2i/(6t).

For inaccessible volume fractions in a biologically rele-

vant range, f ¼ 0.1–0.5 (10), effective diffusion takes place

on the length scale l determined approximately by the

average distance between obstacles and the tracer size:

l z 0.1–0.5 mm (19–21) (see also Fig. 2, a and c, and below

for detailed discussion of spatial scales). In the proximity of

the percolation limit fc (a minimum inaccessible volume

fraction at which the tracer is trapped by obstacles), l

diverges as (fc � f)�0.88 (22), and for f R fc, hx2i is no

longer f t (anomalous diffusion) (17). For large tracers,

the inaccessible volume can be greater than the volume occu-

pied by obstacles (Fig. 3): for example, for the tracer

diffusing amid filaments, the inaccessible volume is approx-

imately four times the volume of the filaments, if the diam-

eters of the tracer and the filaments are equal. The increase

in inaccessible volume can bring the system to a percolation

limit. Indeed, anomalous diffusion of 0.3-mm granules has

been observed in actin meshwork with a volume density of

~1%, virtually impermeable for particles of this size (23,24).
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In this article, we analyze how microgeometry of intracel-

lular structures affects Deff. Determining an effective prop-

erty of a composite medium is a classical problem that dates

back to Poisson, Faraday, Clausius and Mossotti, and Lor-

entz and Lorenz, who studied effective magnetic, dielectric,

and optical properties of heterogeneous materials (25). The

problem of computing Deff for a medium with obstacles is

mathematically equivalent to determining the effective

conductivity, seff, of a conductor with dielectric inclusions,

FIGURE 1 Monte Carlo simulations of particle tracking. (a) Schematic of

diffusion of a tracer amid random spherical obstacles; (b) Three diffusive

regimes demonstrated by a log-log plot of hx2(t)i of a tracer for high obstacle

number density: I, unobstructed diffusion; II, intermediate (anomalous)

behavior; and III, normal effective diffusion. Simulation parameters are

described in Methods. (Inset) Same dependence in linear scales.

FIGURE 2 Actin filaments and ER, simulated and in vivo. (a) Electron

micrograph of actin filaments in a keratocyte (adapted from (21)). (b) Repre-

sentation of cytoskeletal filaments by long thin cylinders (aspect ratio c ¼
100, excluded volume fraction f ¼ 0.0636). (c) Optical section of ER of

the unfertilized sea urchin eggs, courtesy of Mark Terasaki (confocal depth

is 2–3 mm; see (20) for experimental details). (d) Modeling of ER sheets by

random three-dimensional disks (aspect ratio c ¼ 0.125, excluded volume

fraction f ¼ 0.2926). As in confocal sectioning, the image was obtained

by combining z sections from a 2.5 mm-thick slice. Note that the bright lines

in the image are not short filaments, but rather cumulative projections of

disks nearly orthogonal to the confocal plane.
where seff is the analog of the transformed effective diffusion

coefficient ~Deff ¼ ð1� fÞDeff (25,26). In 1873, Maxwell

solved for the conductivity of a dilute suspension of spheres

and found seff¼ s0(1� 1.5f). This result was generalized to

other shapes of inclusions (27): seff ¼ s0(1 � af), where

a differs from 1.5, depending on the shape and spatial posi-

tioning of inclusions (for example, a ¼ 5/3 in the case of

randomly oriented long cylinders). Numerical approaches

to computing a for irregular shapes have been discussed in

Douglas and Garboczi (28). The dilute solution approxima-

tion does not apply to f in the range typical for intracellular

structures (26). Extension to larger f for spheres, derived

with an effective-medium approximation (29), yields

seff ¼ s0(1 � f)3/2. A general form of this power law,

seff ¼ s0(1 � f)m, known as Archie’s law (30), has been

shown empirically to be a useful approximation for some natural

composites. Still, this law breaks down when the shape of obsta-

cles differ significantly from spherical. Overall, no general

solution has been found for this classical problem (25,31).

This study presents the first systematic numerical

approach to the problem in the context of effective diffusion

in cells. The Monte Carlo method used to obtain the results

of Figs. 1 and 4 is conceptually simple, but is prohibitively

expensive for a comprehensive study. We have developed

FIGURE 3 Diffusion of a tracer of finite size among obstacles of volume v
modeled as diffusion of a point particle among effective obstacles of volume

v0. The increase in obstacle size equals the tracer radius. Even if the real

obstacles do not overlap, the effective ones may partially intersect.
Biophysical Journal 97(3) 758–767
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a fast algorithm based on the concept of homogenization

(32). Details of the algorithm, along with representation of

intracellular geometry, are described in the Model, below.

We have found that for random overlapping obstacles,

a simple two-parameter power law provides a remarkably

accurate description of the excluded volume effect over the

entire range of volume fractions and obstacle shapes (see

Results). This universality allows for fast computation of

effective diffusion coefficients, once the shapes of obstacles

and their excluded volume fractions are specified. Estimates

obtained for obstacles characteristic of intracellular struc-

tures demonstrate that the excluded volume effect is a major

factor that accounts for most reduction in diffusivity in cells,

relative to diffusion in vitro. In the Discussion, the results are

compared with experimental data.

MODEL

Irregular geometry of intracellular structures is approximated

by sets of randomly positioned, overlapping obstacles, the

approach known as a Swiss-cheese model (33). Cytoskeletal

filaments are mimicked by long thin cylinders (Fig. 2 b),

whereas thin flat disks approximate sheetlike regions of

internal membranes (Fig. 2 d). Disks and cylinders are the

shapes with limiting values of the aspect ratio c ¼ h /2r,

equal to 0 and N, respectively (r is radius of the cylinder

and h is its height). In studying the effect of obstacle shape

on Deff, we also consider cylinders with intermediate aspect

ratios, as well as spheres. By allowing the obstacles to inter-

sect, deformable and branching structures are conveniently

modeled by means of rigid objects of simple shapes

(Fig. 2, b and d). In addition, when the finite size of a tracer

is taken into account through a corresponding increase in the

FIGURE 4 Deff(f)/D0 for random spheres, from Monte Carlo simulations

(solid dots with error bars) and by the homogenization method with

different number of obstacles per unit cell. (Inset) Deff(f)/D0 in the vicinity

of fc ¼ 0.955.
Biophysical Journal 97(3) 758–767
obstacle size, the resulting effective obstacles may intersect,

at least partially (Fig. 3). Structural disorder, typical of the

intracellular environment, is achieved by placing and orient-

ing obstacles randomly in space.

In the Swiss-cheese model, with no restrictions on over-

lapping of obstacles, the fraction of inaccessible volume is

f ¼ 1 � exp(�V), where V is the sum of volumes of indi-

vidual obstacles per unit volume. The relation is derived in

Supporting Material, along with an interpolation formula

for the case where only partial intersection is allowed. For

identical obstacles, V ¼ nv0, where v0 is the volume of one

obstacle and n is the obstacle number density. Inversely, V
can be expressed in terms of f: nv0 ¼ ln[(1 � f)�1]. For

a cytoskeletal network, an estimate of an average distance

between the obstacles is � r=
ffiffiffiffiffiffiffi
nv0
p

(see derivation in Sup-

porting Material) and yields ~0.05 mm for r ¼ 5 nm (10)

and f ¼ 0.01 (34). For the disks, a similar estimate yields

the distance ~h/(nv0) z 0.2 mm for h ¼ 0.1 mm and f ¼
0.4 (10).

These estimates agree with experimental findings (Fig. 2, a
and c) and give an idea about a length scale for which the

concept of the effective diffusion coefficient is applicable.

Indeed, the log-log plot of hx2(t)i for spherical obstacles

(Fig. 1 b) exhibits three distinct diffusive regimes observed

at different length- and timescales. The first is unobstructed

diffusion in the space between neighboring obstacles. It is

observed on a scale of less than the average distance between

the obstacles, i.e., at submicron lengths. Once the tracer hits

the obstacle, it enters an intermediate (anomalous) diffusive

regime where hx2(t)i is no longer f t. Yet on a larger length

scale, the mean-squared displacement becomes again linear in

time, signifying re-emergence of normal diffusion character-

ized by Deff. Simulations for other shapes and on lattices (18)

yield similar results, which also agree with the experimental

data (11). An important observation that follows from the

Monte Carlo studies is that when f is not too close to the

percolation threshold, normal diffusion resumes on lengths

that are comparable to several average distances between

the obstacles: at these lengths, the current and initial positions

of the tracer are no longer correlated. From estimates of char-

acteristic mesh sizes of intracellular structures, we conclude

that the concept of an effective diffusion coefficient holds

on a micron scale.

Existence of two distinctly different spatial scales allows

one to compute Deff based on the principle of homogeniza-

tion (32,25). The method is an alternative to microscopic

particle tracking mimicked by Monte Carlo simulations

and is equivalent to determining effective diffusion coeffi-

cients from Fick’s law: the steady-state diffusive flux is

measured as a function of the concentration difference main-

tained between the opposite sides of a large rectangular box.

Mathematically, homogenization is an asymptotic analysis

that utilizes a small parameter, the ratio of micro- and

macro-length scales, to obtain accurate effective characteris-

tics of the medium (35). We used this approach to develop
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a numerical algorithm for computing Deff more efficiently

than from stochastic simulations. The algorithm, described

in Methods, made it possible to perform extensive numerical

studies of various factors that affect Deff.

The homogenization technique was originally formulated

for composites with periodic microstructures (36). Consider a

periodic arrangement of identical obstacles in a large rectan-

gular box U with the free space U1 in it and f¼ 1� jU1j/jUj.
The spatial periods a1, a2, and a3 in respective Cartesian

directions are such that the ratio

3 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2

1 þ a2
2 þ a2

3

q
=
ffiffiffiffiffiffiffi
jUj3

p

is small: 3� 1. The diffusion coefficient,

D3ðxÞ ¼
D0; if x˛U1

0; otherwise
;

�

oscillates with the same periods.

Steady-state diffusive fluxes in U are determined by the

tracer distribution u3(x), found by solving the equation

divðD3ðxÞVu3Þ ¼ 0; (1)

with the Dirichlet boundary conditions maintaining mis-

match of the tracer concentrations at the opposite sides of U.

The idea behind homogenization is that when 3 / 0, u3(x)

converges to a homogenized distribution u0(x) that satisfies

a macroscopic diffusion equation similar to Eq. 1. Note

that u0(x) is defined only in free space (as is u3(x)), so that

the macroscopic density is u0(x) ¼ (1�f) u0(x) (26); also,

the effective diffusion coefficient is generally a tensor

because periodic structures of asymmetric obstacles are

anisotropic. Therefore, the macroscopic diffusion equation is

div
�
DeffVu0

�
¼ div

�
Deffð1� fÞVu0

�
¼ div

�
~DeffVu0

�
¼ 0:

(2)

The tensor ~Deff ¼ ~Deff; ijg
�

, (i,j ¼ 1, 2, 3), is obtained by

means of multiscale analysis (25) that takes advantage of

the smallness of 3 in Eq. 1 (see Supporting Material for

details). The result is that ~Deff; ij are expressed in terms of

auxiliary functions wi(x) (i ¼ 1, 2, 3) defined in the unit

cell u ¼ (0, a1)x(1, a2)x(1, a3) and determined by solving

divðD3ðxÞðV wiðxÞ þ eiÞÞ ¼ 0; i ¼ 1; 2; 3 (3)

in u with periodic boundary conditions; ei, i¼ 1, 2, 3, are the

orts co-linear with the edges of u (and U). Then,

~Deff; ij ¼
D0

juj

Z
u1

ðVwiðxÞ þ eiÞ
�
VwjðxÞ þ ej

�
dx; (4)

where u1 is the free space in u (see Supporting Material for

derivation). Then, for isotropic periodic structures, the actual

effective diffusion coefficient Deff (f) is
The concept of homogenization can be extended to random

structures where stochastic homogeneity is the analog of

periodicity (25). This is done by approximating a disordered

medium with a periodic one, where the unit cell u includes

N randomly placed obstacles; N should be sufficient to yield,

for a given number density of obstacles n, a statistically

stationary Deff. In practical terms, the question is how many

obstacles per unit cell, N ¼ n juj, would yield a sufficiently

accurate approximation of Deff/D0 (say, with an absolute error

of 0.01). The value N might not be necessarily large for

biologically relevant n, since the tracer achieves normal

diffusion after bypassing only few obstacles. In the pro-

ximity of the percolation limit, however, N must be large, as

the free space breaks into weakly connected large linear

clusters.

To estimate an appropriate N, the homogenization method

was applied to randomly placed spheres. The values of

Deff, N (f), computed for N ¼ 50, 100, 200, and 400

(Fig. 4), compare well with Deff (f) obtained from the Monte

Carlo simulations (see Methods for simulation details). Even

with N as small as 50, the homogenization method yields

sufficiently accurate results. In this study, we used N ~

2500 to obtain Deff with the absolute error <0.02.

METHODS

Monte Carlo simulations

Stochastic trajectories of N tracers, xi(t), i¼ 1,., N, are generated in a suffi-

ciently large box with randomly placed obstacles. The position of a tracer is

advanced with a fixed time step Dt,

xiðt þ DtÞ ¼ xiðtÞ þ xi

ffiffiffiffiffiffiffiffiffiffiffi
6DDt
p

ði ¼ 1; 2; 3Þ;
where xi are random vectors uniformly distributed in [�1,1]3 and D is the

diffusion coefficient in free space. If the tracer collides with an obstacle,

new trials are performed to find a position in the accessible space. Monte

Carlo integration is used to evaluate f. The mean-squared displacement is

computed as

�
x2ðtÞ

�
¼ ð1=NÞ

XN

i¼ 1

ðxið0Þ � xiðtÞÞ2:

Results were obtained for D¼ 1 mm2/s with Dt¼ 10�6–10�7 s and N> 104.

Accuracy of results is limited by computational cost: error bars in Fig. 4

reflect both the statistical error due to finite N and the truncation error due

to finite t.

Homogenization algorithm

The algorithm, based on Eqs. 3–5, involves solving Eq. 3 and a subsequent

evaluation of diagonal values of ~Deff (Eq. 4). A Poisson solver for solving

Eq. 3 with periodic boundary conditions has been implemented in

VCell (37,38). A three-dimensional geometry, generated automatically

from a set of obstacles by a custom-written code, was entered in VCell as

Deff ¼
D0

ð1� fÞjuj

Z
u1

ðVw1ðxÞ þ e1Þ2dx: (5)
Biophysical Journal 97(3) 758–767
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a z stack of two-dimensional images. Because the structure of randomly

arranged obstacles is expected to be isotropic, ~Deff was computed as
~Deff ¼ ð1=3ÞTrð~DeffÞ ¼ ð1=3Þ

P3
i¼1

~Dii with ~Dii evaluated according to

Eq. 4. For details of the algorithm as well as its validation and error analysis,

see Supporting Material.

Fitting of Eq. 6 to computed values of ~Deff was done by seeking, through

variations of fc, an optimal linear fit of logð~DeffðfÞÞ as a function of

log(1�f/fc); the line slope then yields parameter m. The least-squares fitting

to a linear function was performed with the Excel optimization solver

(Microsoft, Richmond, WA).

Computation time

All computations were done on an Altix 3700 (SGI, Fremont, CA) with

a 1.6 GHz Itanium II CPU. The Monte Carlo method required an average

of 100 hours per point in Fig. 4, whereas the homogenization method takes

only half an hour for a datapoint of comparable accuracy.

RESULTS

In this section, we show that the excluded volume effect of

a mixture of random obstacles of varying shapes can be under-

stood in terms of effective diffusion occluded by a system of

overlapping spheres. This universality allows one to estimate

the effective diffusion coefficient for a mixture of structures

with shapes and composition characteristic of the intracellular

environment.

The dependence ~Deff (f) is described accurately
by a two-parameter power law

The dependence Deff (f) in Fig. 4 is complicated. Linear at

small volume fractions, it decreases more rapidly for f >
0.5 before inflecting near the percolation threshold (inset in

Fig. 4). However, when presented in terms of ~DeffðfÞ, the

function assumes a simpler form (Fig. 5) resembling a power

function, ~DeffðfÞfðfc � fÞm. This function is predicted by

percolation theory, but only near the percolation limit.

Remarkably, our data for ~DeffðfÞ are fitted well by the

two-parameter power law,

~Deff=D0 ¼ ð1� f=fcÞm; (6)

over the entire range of volume fractions and for all shapes!

(Interestingly, the same function approximates well the

effective conductance of a variety of binary metal-insulator

mixtures over a wide range of f (39).)

For spheres, the best fit is with fc ¼ 0.955 5 0.025,

m ¼ 1.47 5 0.03 and the fitting error of z0.003 (the fitting

error is the average difference between the power law of

Eq. 6—shown by solid line in Fig. 5—and the datapoints).

The results for fc and m agree with the previously published

data: fc ¼ 0.9699 5 0.0003 (40) (similar values were also

reported in (41)) and m ¼ 1.6 5 0.2 (42). For overlapping

circles, another example with known parameter values,

fc ¼ 0.6763 (43) and m ¼ 1.3 5 0.1 (33,44) (see also

(45,46)), ~DeffðfÞ from our numerical experiments is best

approximated by Eq. 6 with fc ¼ 0.672 5 0.025 and
Biophysical Journal 97(3) 758–767
m ¼ 1.35 5 0.05; an average error of fit is 0.01 (Fig. S3).

The insets in Fig. 5 and Fig. S3 demonstrate linearity of

log10ð~Deff=D0Þ as a function of log10(1 � f/fc); this illus-

trates applicability of Eq. 6 over the entire range of f.

Equation 6 describes ~DeffðfÞ equally well for shapes other

than spherical (Fig. 6 and Fig. 7 a). Overall, our numerical

results indicate that Eq. 6 accurately describes ~DeffðfÞ for

the Swiss-cheese model, over a wide range of f and for all

obstacle shapes. When recalculated in terms of the actual

effective diffusion coefficient Deff, the equation takes the

form

Deff=D0 ¼
ð1� f=fcÞ

m

1� f
: (7)

From a technical viewpoint, describing ~DeffðfÞ and Deff (f)

by two-parameter functions greatly simplifies computations

for arbitrary shapes. It follows from a dilute limit expansion

that m ¼ a � fc, and the problem reduces to determining

a and fc. The value of a can be accurately estimated by

computing the transformed effective diffusion coefficient

for some small volume fraction f1. For this, diagonal values

of ~Deffðf1Þ are computed based on Eqs. 3 and 4 for one

obstacle placed at the center of a unit cube; then

a ¼ f�1
1 ð1� Trð~Deffðf1ÞÞ=3D0Þ. A few other values of

~Deff for different volume fractions f are required to determine

fc from fitting to Eq. 6 (see Methods for details).

Effect of structure shape on Deff

A spectrum of shapes, from prolate to oblate, has been

studied with the use of cylinders of varying aspect ratios c

(see Model for definition). For all of them, the effective

diffusion coefficients are accurately described by Eqs. 6

FIGURE 5 ~DeffðfÞ=D0 for random spheres obtained with N ¼ 2560

(symbols) and fitted by Eq. 6 (solid curve). (Inset) Logð~Deff=D0Þ plotted

as a function of log(1 � f/fc); best linear fit is obtained with fc ¼ 0.955.
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and 7; corresponding values of fc and m are summarized in

Table 1. The results for elongated cylinders, shown in Fig. 6,

are essentially independent of the aspect ratio: the curves ob-

tained for c ¼ 1, 4, and 16 are barely distinguishable. More-

over, fc and m for long cylinders are close to those obtained

for spheres. Therefore, diffusion of a tracer through a network

of cytoskeletal filaments is fully determined by the fraction

of inaccessible volume.

The situation is qualitatively different for oblate obstacles,

represented in our numerical experiments by disks with

small aspect ratios. Here, the dependencies Deff (f) differ

significantly for different values of c (Fig. 7 a): thinner disks

are more efficient, relative to the occupied volume, in

impeding the tracer. In fact, for sufficiently small c, the

excluded volume fraction is no longer a meaningful param-

eter for describing effective diffusion, because both the

volume fraction and the percolation threshold change

FIGURE 6 ~DeffðfÞ=D0 for random cylinders (N ¼ 2560) fitted by Eq. 6.

(Inset) Corresponding Deff(f)/D0 fitted by Eq. 7.
synchronously with the aspect ratio. It is intuitively clear

that the actual space shielded by the disk is essentially equi-

dimensional, with a linear size of approximately the disk

radius, r. Indeed, we have found that under the scaling trans-

formation r* ¼ k(c)r, the dependencies ~DeffðfÞ for disks

collapse onto the dependence ~Deffðf�Þ for spheres with the

equivalent volume fraction f* calculated as

f� ¼ 1� ð1� fÞ2k3ðcÞ=3c
(8)

(see Supporting Material for derivation). The quality of

collapse is illustrated in Fig. 7 b for c ¼ 1/4, 1/16, and,

1/32. The corresponding values of k(c), along with k(1/250),

are given in Table S1. This remarkable universality suggests

a method for estimating Deff (f) for a mixture of shapes, with

spheres effectively replacing objects of varying shapes. The

method is used in subsequent sections.

Finally, we estimate Deff of a subnanometer molecule

diffusing 1), through a network of cytoskeletal filaments

and 2), in the presence of the sheetlike ER. In this case,

the inaccessible volume equals the volume of the structure

(for larger particles, see Effect of Tracer Size). For cytoskel-

etal filaments, Eq. 7 with the long-cylinder parameters, m ¼
1.58 and fc ¼ 0.942, and f z 0.1 yields Deff z 0.93 D0,

indicating only a minor effect. One can also ask how dense

the cytoskeletal network should be to slow a small molecule

by 90%. To find the corresponding f, we solve Eq. 7 with

Deff/D0 ¼ 0.1 and the m and fc, as above. The result, f z
0.89, corresponds to extremely tight packing, with the

cytosol occupying only 11% of volume.

TABLE 1 Parameters m and fc for various shapes (aspect

ratios c)

Aspect ratio, c m fc

16 1.58 0.942

4 1.56 0.953

1 1.54 0.946

0.25 1.79 0.925

0.0625 2.66 0.74

0.03125 3.44 0.59

Sphere 1.47 0.955
FIGURE 7 Randomly distributed disks. (a) ~DeffðfÞ=D0

for c¼ 1/4, 1/16 (N¼ 2560) and c¼ 1/32 (N¼ 320), fitted

by Eq. 6. (Inset) Corresponding Deff(f)/D0 fitted by Eq. 7;

(b) collapse of ~Deff; disksðfÞ=D0 onto ~Deff; spheresðf�Þ=D0

with f* defined by Eq. 8 and for k(c) from Table S1.
Biophysical Journal 97(3) 758–767
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The sheets of ER can be modeled as oblate objects. Disks

with an aspect ratio of c ¼ 1/32 and a thickness of h ¼
100 nm have a diameter 2r ¼3.2 mm, not an unreasonable

number (Fig. 2 c). The parameters of the power law for

this aspect ratio are m ¼ 3.44 and fc ¼ 0.59 (Table 1), and

for f ¼ 0.1, as in the previous example, Eq. 7 yields

Deff z 0.59 D0. We conclude that the internal membranes

have a major impact on the effective tracer diffusion.

Mixture of shapes

Membrane organelles and cytoskeleton can both be present

in the same micron-scale volume unit. Therefore, it is neces-

sary to be able to describe effective diffusion for a mixture of

shapes. The question then arises whether Eq. 6 can describe
~Deff for a mixed structure and if so, how to express the

mixture parameters m and fc in terms of the parameters for

individual forms.

Our numerical experiments show that Eq. 6 does hold for

structures composed of different shapes. Fig. 8 a shows

results of one such experiment, where ~DeffðfÞ is computed

for a mixture of cylinders (c ¼ 4) and disks (c ¼ 1/16)

with equal individual volumes and number densities. In

general, a mixture of obstacles of two different shapes and

sizes is defined by the individual volumes, v1 and v2, and

the number densities, n1 and n2 of the components. Numer-

ical experiments, in which all of these parameters were

varied independently, have shown that if the sizes are of

the same order of magnitude, the effective diffusion coeffi-

cient of a tracer depends on the ratio V1/V2 h n1v1/n2v2,

rather than on individual parameters. In this case, diffusion

in the mixture is fully characterized by phase fractions,

f1 ¼ V1/(V1 þ V2) and f2 ¼ V2/(V1 þ V2), f1 þ f2 ¼ 1, and

by parameters m1, fc,1 and m2, fc,2 for pure forms. We

measured percolation thresholds for two-shape mixtures of

varying composition and found that the dependence on indi-

vidual fractions is essentially linear, fc z fc,1f1 þfc,2f2.

Fig. 8 b presents results for the mixtures of cylinders

(shape 1) and disks (shape 2) with the aspect ratios of 4

and 1/16, respectively.
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To determine the exponent m(f2) for the mixture of a given

composition (f1, f2), note that m(f2) ¼ a(f2) � fc(f2), where

a is the slope of ~DeffðfÞ=D0 in the dilute limit, and in which

overlapping of obstacles is negligible. This then results in

a linear superposition,

aðf2Þza1f1 þ a2f2 ¼
�
m1=fc;1

�
f1 þ

�
m2=fc;2

�
f2;

and back-substitution yields

mðf2Þz
�
1 þ f2

�
fc;2 � fc;1

�	
fc;1

�
m1f1

þð1þ f1ðfc;1 � fc;2Þ=fc;2Þm2f2:

We can now estimate Deff of a tracer for a mixture of struc-

tures with shapes and composition characteristic of the

intracellular environment. From the data available for hepa-

tocytes (10), f z 0.44. For small tracers, the effect of cyto-

skeleton can be ignored (see discussion of the effect of the

cytoskeleton on large tracers below). Organelle shapes can

be classified as oblate and spheroidlike, with the correspond-

ing volumes being in proportion 3:5, respectively (10). We

therefore model the excluded space as a mixture of overlap-

ping disks (shape 1) and spheres (shape 2) with f¼ 0.44 and

V1/ V2¼ 0.6 (f1¼ 0.375 and f2¼ 0.625). Assuming c¼ 1/32

for the disks, the corresponding percolation threshold of the

mixture is fc ¼ 0.818 and the exponent is m ¼ 2.58. Then,

from Eq. 7, Deff z 0.24 D0. Thus, effective diffusion of

a small tracer in the cytoplasm is predicted to be four times

slower than that in the extracts free of intracellular organelles.

An alternative way of estimating Deff in this case is to use

the disk-to-sphere mapping, as described above. Accord-

ingly, disks can be replaced with spheres, so that

~DeffðfÞjmixture ¼ ~Deffðf�Þjspheres

with

f� ¼ 1� ð1� fÞf2 þ
2k3ðcÞ

3c
f1

(see Supporting Material for derivation). For f1 ¼ 0.375,

f2 ¼ 0.625, and f ¼ 0.44 as above, and k(1/32) ¼ 0.578,

f* z 0.716. Then, using the sphere parameters, m2 ¼ 0.955
FIGURE 8 Mixture of shapes. (a) ~DeffðfÞ=D0 for the

mixture of cylinders (c ¼ 4) and disks (c ¼ 1/16) with

phase fractions f1 ¼ f2 ¼ 0.5, fitted by Eq. 6 (solid line).

(Inset) Corresponding Deff(f)/D0 fitted by Eq. 7. (b) Perco-

lation threshold fc for the cylinder-disk mixture as a func-

tion of disk fraction, f2. Error bars reflect the difference

between values obtained by fitting to Eq. 6 and determined

directly from sampling an appropriate interval of f with

steps Df z 0.01–0.02.
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and fc,2 ¼1.47, ~DeffðfÞ ¼ ð1� f� =fc;2Þm2 z0:13D0 and

DeffðfÞ ¼ ~DeffðfÞ=ð1� fÞ ¼ 0:23D0. Thus, both methods

yield similar estimates of the effective diffusion coefficient

in the cytoplasm.

Effect of tracer size

The tracer size has little or no effect on diffusion in the pres-

ence of oblate objects with small aspect ratios (membrane

sheets). Although thicker membranes occupy larger volume,

Deff in this case is essentially insensitive even to significant

changes of the aspect ratio. Indeed, because f � 1,

DeffðfÞz~DeffðfÞ, and ~DeffðfÞ can be estimated through

mapping onto effective spheres,

~DeffðfÞjdisks ¼ ~Deff

�
f�
�
jspheres;

where f* is defined by Eq. 8,

f�z
2k3ðcÞ

3c
f

(again exploiting the smallness of f). The overlap of disks is

also small, so that f z npr3c (n is the number density),

hence, f* ~ k3(c). Because k(c) is a slow function of c,

the excluded volume fraction of effective spheres f* and

therefore Deff are not particularly sensitive to changes in c.

Thus, even for tracer sizes comparable to, or greater

than, ER thickness (~100 nm), the ratio Deff/D0 is virtually

the same as for small molecules. This may explain why

the size effect had not been detected in some experi-

ments (15).

In contrast, diffusion through a network of filaments is

sensitive to tracer sizes if they are comparable to, or greater

than, the diameter of the filaments. The latter range between

2.5 and 10 nm. Let V be the total volume of individual fila-

ments in a unit volume and R the tracer radius. Then the frac-

tion of volume inaccessible to the tracer is Veff z V(1þ R/r)2

(r is the radius of the filament). With overlapping,

feff ¼ 1� exp
�
� Vð1þ R=rÞ2

�
¼ 1�ð1� fÞð1þR=rÞ2

; (9)

where f is the volume fraction of overlapping filaments.

Once feff is computed, a simple and accurate way to estimate

the effect of the tracer size on diffusion is to use a multiplica-

tion rule (47),

DeffzD
ð0Þ
eff D

ð1Þ
eff

�
feff

�
=D0;

where D
ð0Þ
eff and D

ð1Þ
eff are, respectively, the effective diffusion

coefficients for the structure that does not include the cyto-

skeleton and the one that includes filaments only. Approxi-

mating D
ð1Þ
eff by Eq. 7 with the parameters for long cylinders

yields

Deffðf;RÞ=D
ð0Þ
eff z

�
1� feff=fc;cyl

�mcyl

1� feff

; (10)
where fc,cyl ¼ 0.942, mcyl ¼ 1.58, and feff is determined by

Eq. 9.

Equation 10 can be compared directly to the experimental

findings reported in Luby-Phelps et al. (12). In the experi-

ments, fluorescently labeled inert particles of controlled sizes

were injected into live cells. The effective diffusion coeffi-

cients were measured by fluorescence recovery after photo-

bleaching and normalized to those in water. Satisfactory

agreement between the experimental data and predictions

from Eq. 10, shown in Fig. 9, was achieved with f ¼
0.024, a reasonable estimate of the volume fraction of

actin (34).

We conclude with estimating Deff for a tracer of a nano-

meter size, R ¼ r ¼2.5 nm, in the cytoplasm. Because the

particle is relatively large, the size effect needs to be

included. Therefore, in addition to the intracellular struc-

tures, as above, we take now into account cytoskeletal fila-

ments with f ¼ 0.04. From Eq. 9, feff ¼ 0.15 and Eq. 10

yields Deffz0:79D
ð0Þ
eff , where D

ð0Þ
eff ¼ 0:24D0 (see previous

section). Overall, Deff z 0.19D0; this indicates that the effec-

tive diffusion of a relatively large tracer can be five times

slower than it would be in the extract free of intracellular

structures.

DISCUSSION

Diffusion of molecules in cytoplasm is a complicated

phenomenon involving many factors. In the course of diffu-

sive transport, macromolecules can bind to and unbind from

other molecules; they experience and exert hydrodynamic

forces and move in a heterogeneous environment where

FIGURE 9 Normalized Deff as a function of tracer radius R. Experimental

data (12) (dots with error bars) are compared with predictions from Eq. 10

with f¼ 0.024 (solid line). The experimental values of Deff are from Table 1

of Luby-Phelps et al. (12) after averaging over all particles in a sample.
Biophysical Journal 97(3) 758–767
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space is occluded by internal membranes, cytoskeletal mesh-

work, and by other solutes. To be able to analyze such

a complicated system, it is necessary to make simplifying

assumptions that allow considering these factors indepen-

dently. This article presents a systematic numerical study

of the excluded volume effect due to intracellular structures,

such as internal membranes and cytoskeleton. It shows that

this effect is a major factor that accounts for most of the

reduction in diffusive transport of the inert tracer, compared

to in vitro diffusion.

A key step is to develop an adequate approximation of the

intricate geometry of intracellular structures. In this study,

the geometry is mimicked by random overlapping obstacles

of appropriate shapes, an approximation known as a Swiss-

cheese model. This approach permits modeling deformable

and branching structures by means of rigid objects of simple

shapes. In particular, cytoskeletal filaments are modeled as

long thin cylinders whereas ER cysternae are represented by

thin disks. For biologically relevant volume fractions f, Monte

Carlo simulations indicate onset of normal diffusion on

a micron scale. The Monte Carlo method is impractical,

however, for extensive studies of diffusion in a variety of

conditions because of its prohibitive computational cost.

Instead, we have implemented a more efficient method of

computing Deff based on the idea of homogenization

(32,25), which enabled exhaustive studies of diffusion in space

crowded by obstacles of different shapes and number densities.

Numerical experiments have uncovered unexpected simi-

larities. First, Deff (f) is accurately described by a unique

two-parameter function (Eqs. 6 and 7) that applies to the

entire range of volume fractions and to all shapes and their

mixtures. This universality simplifies computations: all that

is needed for determining Deff for all f is to estimate two

parameters for a given shape. Second, a scaling transforma-

tion has been identified under which dependencies for oblate

objects collapse onto that for spheres. This simplifies estima-

tion of Deff for mixtures of obstacle shapes.

Shapes, characteristic of intracellular environment, have

been shown to bring about a four-to-fivefold reduction in

diffusive transport, compared to diffusion in cytosol free of

intracellular structures. In the extract with a total macromo-

lecular content of ~100 mg/mL, the diffusion coefficient of

a solute is D0 z 0.8 Din vitro (2,7,9). Then the overall reduc-

tion is Deff ¼ 0.19–0.24 D0 ¼ 0.16–0.2 Din vitro. These esti-

mates agree with experimentally measured ranges for inert

particles and globular proteins (6,15,48). For a 20–30 kDa

protein of radius R ¼ 1.5 nm, Din vitro, estimated by the

Stokes-Einstein equation, is Din vitro ¼ kBT/6phwaterR, where

kB is the Boltzmann constant, T is the absolute temperature,

and hwater is the viscosity of water. With T ¼ 300 K and

hwater ¼ 0.01 g/(cm$s), Din vitro z 150 mm2/s. Then a typical

value of the in vivo diffusion coefficient for this protein

would be z 30 mm2/s, an estimate comparable to the exper-

imental data for globular proteins with no significant binding

interactions in cytoplasm (48).
Biophysical Journal 97(3) 758–767
The analysis also shows that cytoskeletal filaments are

unlikely to constitute diffusion barriers sufficient for forma-

tion of a microdomain of small molecules: to reduce diffu-

sivity of a small molecule 10-fold, the filaments would

need to fill ~90% of space, a very tight packing! In contrast,

ER sheets appear to be much more efficient in slowing down

diffusion. This may explain why diffusion of vesicle-sized

beads remain slow even after all major cytoskeletal filaments

are disassembled (6).

Perhaps most importantly, this study lays the foundation

for an accurate coarse-grain formulation that would account

for the mesoscale heterogeneity of cytoplasm and the

binding of tracers to intracellular structures.
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