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a b s t r a c t

In thiswork, we study the blow-up and global solutions for a quasilinear reaction–diffusion
equation with a gradient term and nonlinear boundary condition:

(g(u))t = ∆u + f (x, u, |∇u|2, t) in D × (0, T ),
∂u
∂n

= r(u) on ∂D × (0, T ),

u(x, 0) = u0(x) > 0 in D,

where D ⊂ RN is a bounded domain with smooth boundary ∂D. Through constructing
suitable auxiliary functions and usingmaximumprinciples, the sufficient conditions for the
existence of a blow-up solution, an upper bound for the ‘‘blow-up time’’, an upper estimate
of the ‘‘blow-up rate’’, the sufficient conditions for the existence of the global solution, and
an upper estimate of the global solution are specified under some appropriate assumptions
on the nonlinear system functions f , g, r, and initial value u0.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Global and blow-up solutions for quasilinear reaction–diffusion equations are discussed bymany authors (see e.g., [1–6]).
In this work, we study the blow-up and global solutions for the following initial-boundary-value problem of quasilinear
reaction–diffusion equation with a gradient term and nonlinear boundary condition:

(g(u))t = ∆u + f (x, u, q, t) in D × (0, T ),

∂u
∂n

= r(u) on ∂D × (0, T ),

u(x, 0) = u0(x) > 0 in D,

(1.1)

where q = |∇u|2,D ⊂ RN is a bounded domain with smooth boundary ∂D, ∂/∂n represents the outward normal derivative
on ∂D, u0 is the initial value, T the maximal existence time of u, and D the closure of D. Set R+

= (0, +∞). We assume,
throughout the work, that f (x, s, d, t) is a nonnegative C1(D× R+

× R+ × R+) function, g(s) is a C2(R+) function, g ′(s) > 0
for any s > 0, r(s) is a positive C2(R+) function, and u0 is a positive C2(D) function. Under these assumptions, the classical
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parabolic equation theory [7] ensures that there exists a unique classical solution u(x, t) for the problem (1.1) with some
T > 0, and the solution is positive overD×[0, T ).Moreover, by the regularity theorem [8],u ∈ C3(D×(0, T ))∩C2(D×[0, T )).

The problems of the blow-up and global solutions for reaction–diffusion equations with gradient term have been
investigated extensively by many authors. Souplet et al. [9] deal with the blow-up and global solutions of initial value
problems for the reaction–diffusion equations with a gradient term. Chen [10], Chipot and Weissler [11], Fila [12], and
Souplet et al. [13–15], and Ding [16] study the existence of blow-up and global solutions for the reaction–diffusion equations
with a gradient term and initial-Dirichlet boundary-value. Ding and Guo [17] and Zhang [18] investigate the blow-up
and global solutions for the reaction–diffusion equations with gradient terms and initial-Neumann boundary-values. Some
special cases of (1.1) are also treated. Walter [19] studies the following problem:

ut = ∆u in D × (0, T ),

∂u
∂n

= r(u) on ∂D × (0, T ),

u(x, 0) = u0(x) > 0 in D,

where D ⊂ RN is a bounded domain with smooth boundary. The sufficient conditions characterized by function r are given
for the existence of blow-up and global solutions. Amann [20] considers the following problem:

ut = ∆u + f (u) in D × (0, T ),

∂u
∂n

= r(u) on ∂D × (0, T ),

u(x, 0) = u0(x) > 0 in D,

where D ⊂ RN is a bounded domain with smooth boundary. The sufficient conditions are obtained for the existence of a
blow-up solution. Zhang [21] discusses the following problem:

(g(u))t = ∆u + f (u) in D × (0, T ),

∂u
∂n

= r(u) on ∂D × (0, T ),

u(x, 0) = u0(x) > 0 in D,

where D ⊂ RN is a bounded domain with smooth boundary. The sufficient conditions are obtained there for the existence
of a global solution and a blow-up solution. Meanwhile, the upper estimate of the global solution, the upper bound of the
‘‘blow-up time’’, and the upper estimate of the ‘‘blow-up rate’’ are also given.

In this work, we study the problem (1.1). Through technical construction of suitable auxiliary functions and using
maximum principles, the sufficient conditions for the existence of a blow-up solution, an upper bound for the ‘‘blow-up
time’’, an upper estimate of the ‘‘blow-up rate’’, the sufficient conditions for the global solution, and an upper estimate of
the global solution are specified under some appropriate assumptions on the functions f , g, r , and initial data u0. Our results
extend and supplement those obtained in [19–21].

We proceed as follows. In Section 2 we give the proofs for the main results. A few examples are presented in Section 3
to illustrate the applications of the abstract results.

2. The main results

Our first result Theorem 2.1 is about the existence of a blow-up solution.

Theorem 2.1. Let u be a solution of (1.1). Assume that the following conditions (i)–(iii) are fulfilled:

(i) the initial value condition:

β = min
D

1u0 + f (x, u0, q0, 0)
r(u0)g ′(u0)

> 0, q0 = |∇u0|
2
; (2.1)

(ii) further restrictions for functions involved: for any (x, s, d, t) ∈ D × R+
× R+ × R+,

r ′′(s) + 2r ′(s)fd(x, s, d, t) ≥ 0,
ft(x, s, d, t)

r2(s)
+ β


f (x, s, d, t)

r(s)


s
− β2g ′′(s) ≥ 0; (2.2)

(iii) the integration condition:∫
+∞

M0

1
r(s)

ds < +∞, M0 = max
D

u0(x). (2.3)
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Then the solution u of (1.1)must blow up in a finite time T , and

T ≤
1
β

∫
+∞

M0

1
r(s)

ds, (2.4)

u(x, t) ≤ H−1 (β(T − t)) , (2.5)

where

H(z) =

∫
+∞

z

1
r(s)

ds, z > 0, (2.6)

and H−1 is the inverse function of H.

Proof. Consider the auxiliary function

Ψ (x, t) = −
1

r(u)
ut + β. (2.7)

We find that

∇Ψ =
r ′

r2
ut∇u −

1
r
∇ut , (2.8)

1Ψ =


r ′′

r2
−

2(r ′)2

r3


ut |∇u|2 +

2r ′

r2
∇u · ∇ut +

r ′

r2
ut∆u −

1
r
∆ut , (2.9)

and

Ψt =
r ′

r2
(ut)

2
−

1
r
(ut)t =

r ′

r2
(ut)

2
−

1
r


1u
g ′

+
f
g ′


t

=
r ′

r2
(ut)

2
−

1
rg ′

∆ut +
g ′′

r(g ′)2
ut∆u +

g ′′f
r(g ′)2

ut −
fu
rg ′

ut −
2fq
rg ′

∇u · ∇ut −
ft
rg ′

. (2.10)

It follows from (2.9) and (2.10) that

1
g ′

1Ψ − Ψt =


r ′′

r2g ′
−

2(r ′)2

r3g ′


ut |∇u|2 +


2r ′

r2g ′
+

2fq
rg ′


∇u · ∇ut +


r ′

r2g ′
−

g ′′

r(g ′)2


ut∆u

−
r ′

r2
(ut)

2
+


fu
rg ′

−
g ′′f

r(g ′)2


ut +

ft
rg ′

. (2.11)

In view of (2.8), we have

∇ut = −r∇Ψ +
r ′

r
ut∇u. (2.12)

Substitute (2.12) into (2.11) to obtain

1
g ′

1Ψ +
2(r ′

+ rfq)
rg ′

∇u · ∇Ψ − Ψt =


r ′′

r2g ′
+

2r ′fq
r2g ′


ut |∇u|2 +


r ′

r2g ′
−

g ′′

r(g ′)2


ut∆u

−
r ′

r2
(ut)

2
+


fu
rg ′

−
g ′′f

r(g ′)2


ut +

ft
rg ′

. (2.13)

By (1.1), we have

1u = g ′ut − f . (2.14)

Substitute (2.14) into (2.13), to get

1
g ′

1Ψ +
2(r ′

+ rfq)
rg ′

∇u · ∇Ψ − Ψt =


r ′′

r2g ′
+

2r ′fq
r2g ′


ut |∇u|2 −

g ′′

rg ′
(ut)

2
+


fu
rg ′

−
fr ′

r2g ′


ut +

ft
rg ′

. (2.15)

With (2.7), we have

ut = −rΨ + rβ. (2.16)
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Substitution of (2.16) into (2.15) gives

1
g ′

1Ψ +
2(r ′

+ rfq)
rg ′

∇u · ∇Ψ +


r ′′

+ 2r ′fq
rg ′

|∇u|2 +
r
g ′

[
(Ψ − 2β)g ′′

+


f
r


u

]
Ψ − Ψt

=
r ′′

+ 2r ′fq
rg ′

β|∇u|2 +
r
g ′

[
ft
r2

+ β


f
r


u
− β2g ′′

]
. (2.17)

From assumptions (2.1) and (2.2), the right-hand side of (2.17) is nonnegative, i.e.

1
g ′

1Ψ +
2(r ′

+ rfq)
rg ′

∇u · ∇Ψ +


r ′′

+ 2r ′fq
rg ′

|∇u|2 +
r
g ′

[
(Ψ − 2β)g ′′

+


f
r


u

]
Ψ − Ψt ≥ 0. (2.18)

Now by (2.1), we have

max
D

Ψ (x, 0) = max
D


−

1u0 + f (x, u0, q0, 0)
r(u0)g ′(u0)

+ β


= 0. (2.19)

It follows from (1.1) that, on ∂D × (0, T ),

∂Ψ

∂n
=

r ′

r2
ut

∂u
∂n

−
1
r

∂ut

∂n
=

r ′

r2
ut r −

1
r


∂u
∂n


t
=

r ′

r
ut −

1
r
(r)t =

r ′

r
ut −

r ′

r
ut = 0. (2.20)

Combining (2.18)–(2.20), and applying the maximum principles [22], we know that the maximum of Ψ in D×[0, T ) is zero.
Thus

Ψ ≤ 0 in D × [0, T ),

and

1
βr(u)

ut ≥ 1. (2.21)

At the point x0 ∈ D where u0(x0) = M0, integrate (2.21) over [0, t] to produce

1
β

∫ t

0

1
r(u)

utdt =
1
β

∫ u(x0,t)

M0

1
r(s)

ds ≥ t.

This together with assumption (2.3) shows that umust blow up in the finite time T and

T ≤
1
β

∫
+∞

M0

1
r(s)

ds.

By integrating the inequality (2.21) over [t, s] (0 < t < s < T ), one has, for each fixed x, that

H(u(x, t)) ≥ H(u(x, t)) − H(u(x, s)) =

∫ u(x,s)

u(x,t)

1
r(s)

ds ≥ β(s − t).

Passing to the limit as s → T yields

H(u(x, t)) ≥ β(T − t),

which implies that

u(x, t) ≤ H−1(β(T − t)).

The proof is complete. �

The result on the global solution is stated as Theorem 2.2 below.

Theorem 2.2. Let u be a solution of (1.1). Assume that the following conditions are satisfied:

(i) the initial value condition:

α = max
D

1u0 + f (x, u0, q0, 0)
r(u0)g ′(u0)

> 0, q0 = |∇u0|
2
; (2.22)
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(ii) further restrictions on functions involved: for any (x, s, d, t) ∈ D × R+
× R+ × R+,

r ′′(s) + 2r ′(s)fd(x, s, d, t) ≤ 0,
ft(x, s, d, t)

r2(s)
+ α


f (x, s, d, t)

r(s)


s
− α2g ′′(s) ≤ 0; (2.23)

(iii) the integration condition:∫
+∞

m0

1
r(s)

ds = +∞, m0 = min
D

u0(x). (2.24)

Then the solution u of (1.1)must be a global solution and

u(x, t) ≤ G−1 (αt + G(u0(x))) , (2.25)

where

G(z) =

∫ z

m0

1
r(s)

ds, z ≥ m0, (2.26)

and G−1 is the inverse function of G.

Proof. Construct an auxiliary function

Φ(x, t) = −
1

r(u)
ut + α. (2.27)

Replacing Ψ and β with Φ and α in (2.17), we have

1
g ′

1Φ +
2(r ′

+ rfq)
rg ′

∇u · ∇Φ +


r ′′

+ 2r ′fq
rg ′

|∇u|2 +
r
g ′

[
(Ψ − 2α)g ′′

+


f
r


u

]
Φ − Φt

=
r ′′

+ 2r ′fq
rg ′

α|∇u|2 +
r
g ′

[
ft
r2

+ α


f
r


u
− α2g ′′

]
. (2.28)

It is seen from assumptions (2.22) and (2.23) that the right-hand side of (2.28) is nonpositive, i.e.

1
g ′

1Φ +
2(r ′

+ rfq)
rg ′

∇u · ∇Φ +


r ′′

+ 2r ′fq
rg ′

|∇u|2 +
r
g ′

[
(Ψ − 2α)g ′′

+


f
r


u

]
Φ − Φt ≤ 0. (2.29)

By (2.22), we have

min
D

Φ(x, 0) = min
D


−

1u0 + f (x, u0, q0, 0)
r(u0)g ′(u0)

+ α


= 0. (2.30)

It follows from (1.1) and (2.20) that

∂Φ

∂n
=

∂Ψ

∂n
= 0 on ∂D × (0, T ). (2.31)

Combining (2.29)–(2.31) and applying themaximumprinciples, we know that theminimumofΦ inD×[0, T ) is zero. Hence

Φ ≥ 0 in D × [0, T ),

i.e.

1
αr(u)

ut ≤ 1. (2.32)

For each fixed x ∈ D, integrate (2.32) over [0, t] to get

1
α

∫ t

0

1
r(u)

utdt =
1
α

∫ u(x,t)

u0(x)

1
r(s)

ds ≤ t.

This together with (2.24) shows that umust be a global solution. Moreover, (2.32) implies that

G(u(x, t)) − G(u0(x)) =

∫ u(x,t)

m0

1
r(s)

ds −

∫ u0(x)

m0

1
r(s)

ds =

∫ u(x,t)

u0(x)

1
r(s)

ds =

∫ t

0

1
r(u)

utdt ≤ αt.
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Therefore

u(x, t) ≤ G−1 (αt + G(u0(x))) .

The proof is complete. �

3. Applications

When g(u) ≡ u, f (x, u, q, t) ≡ 0 or g(u) ≡ u, f (x, u, q, t) ≡ f (u) or f (x, u, q, t) ≡ f (u), the conclusions of Theorems 2.1
and 2.2 still hold true. In this sense, our results extend and supplement the results of [19–21].

In what follows, we present several examples to demonstrate the applications of Theorems 2.1 and 2.2.

Example 3.1. Let u be a solution of the following problem:

um

t = ∆u + un in D × (0, T ),

∂u
∂n

= up on ∂D × (0, T ),

u(x, 0) = u0(x) > 0 in D,

where D ⊂ RN is a bounded domain with smooth boundary ∂D,m > 0, −∞ < n < +∞, −∞ < p < +∞. Here

g(u) = um, f (x, u, q, t) = un, r(u) = up.

By Theorem 2.1, if n ≥ p > 1 ≥ m and

β = min
D

∆u0 + un
0

mup+m−1
0

> 0,

umust blow up in finite time T and

T ≤
1
β

∫
+∞

M0

1
r(s)

ds =
M1−p

0

β(p − 1)
, M0 = max

D
u0(x),

u(x, t) ≤ H−1(β(T − t)) = [(1 − p)β(T − t)]
1

1−p .

By Theorem 2.2, if 0 ≤ p ≤ 1 ≤ m, n ≤ p and

α = max
D

∆u0 + un
0

mup+m−1
0

> 0,

umust be a global solution and

u(x, t) ≤ G−1(αt + G(u0(x))) =


(1 − p)αt + (u0(x))1−p 1

1−p , p < 1,
u0(x)eαt , p = 1.

Example 3.2. Let u be a solution of the following problem:


u +

√
u

t = ∆u +


tu2

+ q +

3−
i=1

x2i


u2 in D × (0, T ),

∂u
∂n

=
1
2
u2 on ∂D × (0, T ),

u(x, 0) = 1 +

3−
i=1

x2i in D,

where q = |∇u|2,D =


x = (x1, x2, x3) |

∑3
i=1 x

2
i < 1


is the unit ball of R3. Now

g(u) = u +
√
u, f (x, u, q, t) =


tu2

+ q +

3−
i=1

x2i


u2, r(u) =

1
2
u2,

and

β = min
D

1u0 + f (x, u0, q0, 0)
r(u0)g ′(u0)

= 4 min
1≤u0≤2

6 + 5u3
0 − 5u2

0

2u2
0 + u

3
2
0

= 7.0205.



942 J. Ding, B.-Z. Guo / Applied Mathematics Letters 24 (2011) 936–942

It is easy to check that (2.2) and (2.3) hold. It follows from Theorem 2.1 that umust blow up in a finite time T , and

T ≤
1
β

∫
+∞

M0

1
r(s)

ds = 0.1424,

u(x, t) ≤ H−1(β(T − t)) =
0.2848
T − t

.

Example 3.3. Let u be a solution of the following problem:


ueu

t = ∆u +


e−t−u

+ e−q
+

3−
i=1

x2i


√
u in D × (0, T ),

∂u
∂n

=
√
2u on ∂D × (0, T ),

u(x, 0) = 1 +

3−
i=1

x2i in D,

where q = |∇u|2,D =


x = (x1, x2, x3) |

∑3
i=1 x

2
i < 1


is the unit ball of R3. Now we have

g(u) = ueu, f (x, u, q, t) =


e−t−u

+ e−q
+

3−
i=1

x2i


√
u, r(u) =

√
2u,

and

α = max
D

∆u0 + f (x, u0, q0, 0)
r(u0)g ′(u0)

= max
1≤u0≤2

6 +

e−u0 + e4(1−u0) + u0 − 1

√
u0

√
2u0 (1 + u0) eu0

=
7e + 1

2
√
2e2

.

It is easy to check that (2.23) and (2.24) hold. It then follows from Theorem 2.2 that umust be a global solution and

u(x, t) ≤ G−1 (αt + G(u0(x))) =


u0(x) +

7e + 1
4e2

t
2

.
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