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a b s t r a c t

Video file format standards define only a limited number of mandatory features and leave
room for interpretation. Design decisions of device manufacturers and software vendors
are thus a fruitful resource for forensic video authentication. This paper explores AVI and
MP4-like video streams of mobile phones and digital cameras in detail. We use customized
parsers to extract all file format structures of videos from overall 19 digital camera models,
14 mobile phone models, and 6 video editing toolboxes. We report considerable differ-
ences in the choice of container formats, audio and video compression algorithms,
acquisition parameters, and internal file structure. In combination, such characteristics can
help to authenticate digital video files in forensic settings by distinguishing between
original and post-processed videos, verifying the purported source of a file, or identifying
the true acquisition device model or the processing software used for video processing.
ª 2014 The Authors. Published by Elsevier Ltd on behalf of DFRWS. This is an open access
article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/).
Introduction

Methods to verify the authenticity of media data are of
growing relevance in our digital world. While most con-
sumer devices lack practical authentication support at all,
attacks against professional camera authentication systems
have demonstrated weaknesses of existing in-device solu-
tions.1 Forensic techniques to infer the provenance and the
processing history of media files ex post have thus gained
more and more interest among researchers and practi-
tioners. Forensic image analysis has been themain driver of
the field (Sencar and Memon, 2013), but also video files
have recently been brought to the forefront (Milani et al.,
2012b). Resembling the evolution of digital image foren-
sics, an already ample body of literature approaches the
problem of video forensics through the analysis of inherent
device characteristics or processing artifacts in the video
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data (Chen et al., 2007; Wang and Farid, 2007; Hsu et al.,
2008; Conotter et al., 2011; Stamm et al., 2012; Vázquez-
Padín et al., 2012, amongst others).

File format information and metadata are another source
of forensic evidence, but have generally received less
attention. Existing works mainly focus on digital images.
Here, basic JPEG (ISO/IEC 10918-1, ITU-T Recommendation
T.81, 1992) and EXIF (Japan Electronics and Information
Technology Industries Association, 2002) metadata proper-
ties have gained major interest. Digital cameras and image
processing software (or groups thereof) use customized
quantization tables. Differences therein can narrow down
the source device of a questioned image (Farid, 2008;
Kornblum, 2008). Characteristics of thumbnail images
(often saved as JPEG images themselves) have been reported
to be another pool of forensically relevant features
(Murdoch and Dornseif, 2004; Kee and Farid, 2010). In one
of the most elaborate approaches, Kee et al. (2011) combine
image and thumbnail compression parameters, image and
thumbnail dimensions and the number of EXIF entries into
signatures of camera model or processing software config-
urations. By testing against a reference database, images of
unknown or uncertain provenance can be attributed to a
. This is an open access article under the CC BY-NC-ND license (http://
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2 Also the free software exiftool (available at: http://www.sno.phy.
queensu.ca/wphil/exiftool) can be used to extract metadata and high-
level file format information, but it does not provide access to all infor-
mation that is of interest here.
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class of source configurations. Images are flagged as suspi-
cious if no match is found. In a different approach, Fan et al.
(2013) exploit noise characteristics to determine whether
image content and EXIF data are consistent. However, as
tampering with compression parameters or EXIF entries is
only a question of using proper software tools (which are
often publicly available), concerns have frequently been
expressed that high-level file format information and met-
adata are easily replaceable and/or forgeable (Sencar and
Memon, 2008). On the contrary, existing image processing
software and metadata editors do not allow users to access
or to modify core file structures. Along these lines, Gloe
(2012) reports that peculiarities in the specific internal
order of JPEG and EXIF structures are particularly valuable
and distinctive information for digital image authentication.
Such low-level characteristics thus offer a much increased
reliability and relaxdto some degreedthe common
assumption that file format and metadata information shall
not be trusted per se.

Following this trail, this paper extends the idea of file
format forensics to popular digital video data container
formats, for whichdto the best of our knowledgedno
systematic exploration of file format and/or metadata
specifics has been reported in the forensic literature so far.
Similar to differences in the JPEG file structure, we identify
manufacturer- and model-specific video file format char-
acteristics and point to traces left by processing software.
Such traces can be used to authenticate digital video
streams and to attribute recordings of unknown or ques-
tionable provenance to (groups of) video camera models.
Note that this differs from video file carving (Pal and
Memon, 2009; Lewis, 2012), where it is usually sufficient
to find valid video streams in (fragmented) mass storage
dumps. Based on a description of our (Test setup) and
(General observations) on video file format forensics, the
following sections demonstrate that peculiarities of the
(AVI Container format), of (Quicktime and related container
formats (MP4, 3GP)), and of (MJPEG Compression
parameters) can yield important insights about prove-
nance and processing history of digital videos. The paper
closes with a (Summary and concluding remarks).

Test setup

We report findings from the examination of each one
device of overall 19 digital camera models and 14 mobile
phone models, all of them equipped with video capturing
functionality. We acquired 3 to 14 videos per device by
iterating over all available video quality settings (e.g., frame
size and frame rate). Mobile phones were also switched
between regular and MMS (Multimedia Message Service)
mode where available. All devices were subject to slight
motion during the video capturing process. Table 1 sum-
marizes our test setup.

For a selected number of camera models, video editing
software was used to cut short sequences (length: 10 s)
from the recorded video streams. All software in our tests
supports non-intrusive (‘lossless’) video editing, i.e., we
saved files without re-compressing the original stream.
Hence, the edited videos are presumably not detectable by
means of double compression artifacts (Wang and Farid,
2006; Milani et al., 2012a). The ‘Adobe Premiere’ toolbox
was a sole exception in our test set in this regard. The
commercial software is one of the major professional video
editing tools, but does not support lossless processing.

We have written our own customized file parser(s) to
read and extract all available file format information and
metadata from the videos in our database.2 As it is
impossible to detail all model- or vendor-specific singu-
larities within the scope of this paper, the following sec-
tions focus on selected results and observations that we
believe are particularly relevant for practical forensic ana-
lyses of common video container formats.

General observations

The majority of digital cameras in our database stores
videos in the AVI container format. Only a few of the test
devices use Apple Quicktime MOV containers. We found
that most digital cameras compress video data using
Motion JPEG (MJPEG), where every video frame is handled
as independently JPEG-compressed image. Only three
camera models in our sample use more sophisticated and
efficient compression algorithms (DivX, Xvid or H.264).
Before compression, frames are generally converted to the
YUV color space. We encountered 4:2:2 and 4:2:0 sub-
sampling to reduce the resolution of chroma channels.
MJPEG compressed video streams utilize the full intensity
range of 256 intensity levels for 8-bit encoded frames
(yuvj422p or yuvj420p), whereas cameramodels with DivX
or Xvid support (yuv420p) use only a reduced number of
220/225 intensity levels for the luminance/chrominance
channel(s) (ITU-R Recommendation BT.601-7, 2011). Audio
data in the video container is usually stored as raw data
(PCM), using linear (8-/16-bit) or logarithmic (m-law)
quantization.

All mobile phones in our database store video data in
MOV-based container formats (MOV, 3GP, MP4). The
LG KU990 camera phone is an exception and also
supports AVI containers. Interestingly, none of the mobile
phones uses MJPEG compression. Instead, more sophisti-
cated compression algorithms find application, e.g., H.263,
H.264, MPEG-4 video (simple profile) or DivX. Subsampling
always follows a 4:2:0 scheme. In contrast to videos from
digital cameras, the audio track of mobile phone videos is
typically also subject to lossy compression. We found
MPEG-based audio compression or the AdaptiveMulti-Rate
audio codec (AMR-NB) to be most common. The latter is a
standard optimized for speech coding (3rd Generation
Partnership Project, 1999), which is very common in
mobile phones designed for GSM- and UMTS-networks.

AVI Container format

Microsoft introduced AVI (Audio Video Interleave) in
1992 as a multimedia container format, which can contain

http://www.sno.phy.queensu.ca/%7Ephil/exiftool
http://www.sno.phy.queensu.ca/%7Ephil/exiftool
http://www.sno.phy.queensu.ca/%7Ephil/exiftool


Table 1
Digital cameras, mobile phones and video editing software used in this study.

Make Model Container Video stream Audio stream

Digital camera models
Agfa DC-504, DC-733s, AVI MJPEG (yuvj422p) PCM (8-bit)

DC-830i, Sensor530s
Agfa Sensor505-X AVI MJPEG (yuvj422p) PCM (m-law)
Canon S45, S70, A640, Ixus IIs AVI MJPEG (yuvj422p) PCM (8-bit)
Canon EOS-7D MOV H.264 (yuvj420p) PCM (16-bit)
Casio EX-M2 AVI MJPEG (yuvj420p) PCM (8-bit)
Kodak M1063 MOV MJPEG (yuvj420p) PCM (m-law)
Minolta DiMAGE Z1 MOV MJPEG (yuvj422p) PCM (8-bit)
Nikon CoolPix S3300 AVI MJPEG (yuvj422p) PCM (16-bit)
Pentax Optio A40 AVI DivX (yuv420p) MP2
Pentax Optio W60 AVI MJPEG (yuvj422p) PCM (8-bit)
Praktica DC2070 MOV MJPEG (yuvj420p) –

Ricoh GX100 AVI MJPEG (yuvj422p) PCM (m-law)
Samsung NV15 AVI Xvid (yuv420p) PCM (m-law)
Mobile phone models
Apple IPhone 4 MOV H.264 (yuv420p) MP4A
Benq Siemens S88 3GP H.263 (yuv420p) AMR-NB
BlackBerry 8310 3GP MP4V, H.263 (yuv420p) AMR-NB
Google Nexus 7 3GP H.264 (yuv420p) MP4A
LG KU990 3GP, AVI DivX, MP4V, H.263 (yuv420p) MP3, AMR-NB
Motorola MileStone 3GP MP4V (yuv420p) MP4A
Nokia 6710 3GP, MP4 MP4V, H.263 (yuv420p) MP4A, AMR-NB
Nokia E61i 3GP, MP4 MP4V, H.263 (yuv420p) MP4A, AMR-NB
Nokia E65 3GP, MP4 MP4V, H.263 (yuv420p) MP4A, AMR-NB
Nokia X3-00 3GP MP4V, H.263 (yuv420p) AMR-NB
Palm Pre MP4 MP4V (yuv420p) MP4A
Samsung GT-5500i MP4 MP4V, H.263 (yuv420p) AMR-NB
Samsung SGH-D600 MP4 MP4V (yuv420p) MP4A
Sony Ericsson K800i 3GP H.263 (yuv420p) AMR-NB

Software Version
FFmpeg 1.1.4 all
Avidemux 2.6.2 all
FreeVideoDub 2.0.17.320 all
VirtualDub 1.9.11 AVI
Yamb 2.1.0.0 beta2 no AVI
Adobe Premiere CS 5
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both video and audio streams (Microsoft Developer
Network).
Fig. 1. Internal structure of AVI files acquired with our cameras.
General file structure

AVI files start with a mandatory AVI RIFF (Resource
Interchange File Format) header. All following data is
organized and stored in so-called lists and chunks. A four
character code (FourCC) is used to identify these data seg-
ments. The FourCC for a list is LIST. Different FourCC’s exist
for chunks, e.g., JUNK or idx1. There is no strict specifica-
tion that defines the sequence and occurrence of lists and
chunks.

Fig. 1 illustrates the basic file structure that we found to
appear similarly in all examined AVI files captured by dig-
ital cameras or mobile phones. All devices store the
mandatory list hdrl directly after the AVI RIFF header. This
list segment comprises all the information that is necessary
to decompress the video and audio data stored in the file.
The third mandatory AVI segment after header and hdrl

list is the movi list. It contains the actual video and audio
data. Depending on the specific camera or phone model,
additional lists and/or JUNK chunks may exist between the
hdrl and movi lists. These optional data segments are
either used for padding or to store metadata. The idx1

chunk indexes the data chunks and their location in the file.
It is mentioned as an optional element in the AVI file
reference (Microsoft Developer Network, 0000), yet we
found it in all video files in our database.

Camera model specifics

An inspection of our video database revealed consider-
able differences between device models and software
vendors, a selection of which we discuss in the following.
These and related characteristics can be tested for to verify
or to infer the source of questioned video content.

Fig. 2 exemplarily illustrates four typical AVI file struc-
tures of video recordings from Canon A640, Canon S45,
Nikon CoolPix S3300, and Ricoh GX100 digital cameras. The
tree-like representations reflect the nested character of the



Fig. 2. AVI file structure of videos acquired with Canon A640, Canon S45, Nikon CoolPixS3300, and Ricoh GX100 digital cameras. Equivalent elements are ar-
ranged on the same horizontal level. Not all nested sub-elements are listed.
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AVI container format and depict all major lists and chunks
in accordance to their actual order in the respective files.
Corresponding elements are arranged on the same hori-
zontal level. The figure indicates that not all files share the
same components, and that both the content and the
format of specific chunks may vary. The Nikon camera, for
instance, does not use the IDIT chunk to store the
recording date, but adds a dedicated ncdt list to organize
its metadata. All four cameras insert an INFO list with
distinct content after the stream header. The two Canon
cameras further differ in the format of the IDIT date
specification, but none of them uses the same format as the
Ricoh GX100.

We also found that digital cameras with MJPEG
compression may specify the video codec in lowercase or
uppercase letters. Canon Ixus IIs, Canon PowerShot (A640,
S45, S70), Nikon CoolPix, Optio W60, Ricoh GX100, and
CASIO EX-M2 cameras use ‘mjpg’, whereas all other tested
cameras prefer the string ‘MJPG’. Further variations exist in
the hdrl list. The Agfa Sensor505-X camera adds an
additional stream description that refers to the Ven-

dorName. The Pentax Optio A40 camera explicitly specifies
the StreamName (‘Video’ or ‘Audio’). Video and audio
stream descriptions in hdrl lists from LG KU990 mobile
phones are followed by JUNK chunks. Similar to the ex-
amples in Fig. 2, most camera models add their own INFO

list after the hdrl list to provide additional metadata. Also
here, padding with JUNK data chunks is common.

Video editing

All software tools in our test setting leave distinct traces
in the file structure of edited AVI videos, which do not
match any of the camera characteristics in our database.
Even losslessly edited videos are thus detectable by
comparing the file structure of a questioned file with a
reference of the purported source.

Fig. 3 gives two specific examples. The familiar tree-like
graphs depict AVI file structures of a Canon A640 video
after editing with the tools AVIDemux and VirtualDub,
respectively. Differences to the structure of the original file
(shown in the leftmost part of Fig. 2) are printed on gray
background. Observe that both tools place JUNK chunks in
the hdrl list at the end of audio and video stream



Fig. 3. AVI file structure of a Canon A640 video after editing with AVIDemux
and VirtualDub. Equivalent elements are arranged on the same horizontal
level. Not all nested sub-elements are listed. Differences to the original file
are printed on gray background (see also Fig. 2).

Fig. 4. Internal structure of most MP4-like files acquired with our cameras.
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descriptions. VirtualDub adds another LIST with
OpenDML3 AVI header data. The same tool extends the top-
level file hierarchy by its own identifier JUNK chunk
(‘VirtualDub build 32842/release’). AVIDemux
changes the video codec information to capitalized letters.
Other editing softwares leave their own traces. FFmpeg, for
instance, also inserts additional JUNK chunks. The content
of these entries is fixed and specific to FFmpeg. In addition,
a list info with details about the employed encoder soft-
ware and version (here Lavf54.59.106) is present in videos
edited with FFmpeg.

Metadata lists and JUNK chunks that would hint to the
recording device are typically lost in edited files. Virtual-
Dub is an exception and appends the device-specific INFO

list of the original file to the edited video (cf. Fig. 3). In
general, however, losslessly edited video streams might
still contain distinct compression characteristics of the
3 OpenDML is an AVI-like file format specification that supports larger
file sizes, amongst other extensions.
source camera, as we will discuss in the section on (MJPEG
Compression parameters).

QuickTime and related container formats (MP4, 3GP)

The MOV container format was introduced by Apple for
its QuickTime multimedia framework in 1991. It was later
used as a basis for the MP4 and 3GP container specifica-
tions (Apple Computer, Inc., 2001; ISO/IEC 14496, 2003; 3rd
Generation Partnership Project, 2004). For the sake of
simplicity, we refer to all three container formats as MP4-
like formats.
General file structure

Similar to the AVI format, MP4-like containers consist of
individual data structures (‘atoms’ or ‘boxes’), which are
identified via unique 4-byte sequences. Information about
the atom size precedes the corresponding identifier. Atoms
can be nested. Although the format explicitly does not
define any particular order or number of data segments, we
found the general structure in Fig. 4 to be present inmost of
the examined files. MP4-like video files usually start with
the ftyp atom, which refers to the file type specifications
the file is compatiblewith.4 The actual data stream is stored
in the mdat atom, which is accompanied by corresponding
metadata in the moov atom.We also encountered files with
moof atoms, which contain shorter data chunks of
elementary streams.
Camera model specifics

Reflecting the by far more complex file format, MP4-like
videos exhibit an even larger degree of source-dependent
internal variations than AVI files.5 This is only to the
advantage of forensic investigators, who will find these
characteristics useful for authentication purposes. Yet it is
beyond the scope of this paper to detail all the differences
we observed, and we rather focus on select indicative
examples.

Most MP4-like videos in our database start with the
ftyp atom, yet we also found a number of exceptions.
Kodak videos, for instance, start with a skip atom, whereas
Minolta Z1 videos place a pnot atom with a reference to
preview data at the beginning of a file. The Praktica DC2070
camera does not use a header at all and starts with the
mdat atom directly. As MP4-like container formats are
compatible with a plethora of different data formats,
codecs and parameterizations, the ftyp atomdif
4 As per the 2008 ISO media file standard ISO/IEC 14496 (2008), the
ftyp atom is mandatory and must be placed as early as possible in the
file.

5 We refrain from detailed graphical illustrations because of this
increased complexity.



Table 2
Major and compatible brands stored in the MP4 ftyp atom.

Model/container: model Major
brand

Compatible brands

Apple IPhone 4 qt qt
Benq S88 isom isom, 3g2a
BlackBerry 8310, Palm Pre 3gp4 3gp5, 3gp4, isom
Canon 7D qt qt, CAEP
Google Nexus 7 3gp4 isom, 3gp4
Kodak M1063 – –

LG KU990 3gp5 3gp5, 3gp4
LG KU990, Samsung

SGH-D600
3gp5 3gp5, isom

Minolta DiMAGE Z1 – –

Motorola MileStone 3gp4 3gp4, mp41, 3gp6
Samsung GT-5500i (MP4V)
3GP: Nokia 6710, E61i, E65 3gp4 3gp4, 3g2a, isom
MP4: Nokia 6710, E61i, E65 mp42 mp42, 3gp4, isom
Nokia X3-00 3gp5 3gp5, 3gp4, 3g2a, isom
Praktica DC2070 – –

Samsung GT-5500i (H.263) 3gp4 3gp4, 3gp6
SonyEricsson K800i 3gp5 vfj1, 3gp4, 3gp5, mp42

FFmpeg isom isom, iso2, mp41
YAMB mp42 isom, mp42, 3gp5
Adobe Premiere CS 5 3gp5 isom, 3gp4, mp41, mp42

Table 4
Additional atoms in MP4-like files.

Model Atoms

Benq S88 mvex, mdat file end, moof
BlackBerry 8310
Canon 7D udta

Google Nexus 7 udta

IPhone 4 wide, free, meta
Kodak M1063 skip, edts
LG KU990
Minolta Z1 pnot, PICT
Motorola MileStone udta

Nokia 6710
Nokia E61i, E65
Nokia X3-00 free, mdat file end
Palm Pre udta

Praktica DC2070
Samsung GT-5500i udta

Samsung SGH-D600 iods

SonyEricsson K800i udta

FFmpeg free, edts, udta
YAMB iods, tref, nmhd, free, mdat file end
Adobe Premiere CS5 iods, udta, uuid, mdat file end
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presentdstates which specification is the ‘best use’ of the
file in the major_brand field. Additional fields then list the
minor version and compatible brands. Table 2 reports
combinations of ftyp major and compatible brand speci-
fications in our database. It indicates that these specifica-
tions can differ to a large degree between different
recording devices. We do not report the minor_version

field, as we usually found it set to 0.
Table 3
Values stored in the MP4 moov atom time_scale field, as observed by
iterating over all available quality settings per device. Symbol ‘.’ indicates
that mvhd and mdhd entries do not differ.

Model time_scale

mvhd mdhd

(video)
mdhd

(audio)

Benq S88 90000 . 8000
BlackBerry 8310 1000 . 1000
Canon 7D 25000, 24000, 50000 . 48000
Google Nexus 7 1000 90000 44100
IPhone 4 600 . 44100
Kodak M1063 150191–279991 . 11025
LG KU990 1000 . 8000,1000
Minolta Z1 600 . 7875
Motorola MileStone 1000 . 44100
Nokia 6710 10000 30000 3GP: 8000,

MP4:
48000, 16000

Nokia E61i, E65 10000 30000 3GP: 8000,
MP4: 16000

Nokia X3-00 15750 . 15750
Palm Pre 1000 . 44100
Praktica DC2070 60 . –

Samsung GT-5500i 1000 . 8000
Samsung SGH-D600 1000 . 11025
SonyEricsson K800i 1000 . 8000

FFmpeg 1000 variable 48000
YAMB 600 30000 48000
Adobe Premiere CS5 90000 29970 32000
The moov atom is one of the most complex data struc-
tures in MP4-like files. It specifies the decoding parameters
for parsing the mdatdata streamcorrectly. The atom itself is
organized in a number of sub-structures, such as the general
mvhd movie header atom or the more specific mdhd media
header atom. We found that parameter settings largely
depend on the specific camera model. Table 3 exemplarily
summarizes settings for the time_scale field, which
controls both frame rate and audio sampling rate. Observe
that mvhd and mdhd atom may define different values for
this field, and that corresponding combinations thereof
vary between different recording devices.

Besides the (quasi-)standard ftyp, mdat and moov

atoms, we also encountered a variety of additional ele-
ments in MP4-like video files. The overview in Tab. 4 in-
dicates, for instance, that some sources store metadata in
udta user data atoms, or use free atoms for padding.
Because the specific order of atoms is generally not
explicitly defined, it is finally not surprising that there exist
differences here, too. Notable deviations are Benq S88 and
Nokia X3-00 videos. The former follow a ftyp moov mdat

sequence (and optionally multiple subsequent pairs of
moof mdat). The latter are organized as ftyp moov free

mdat free.6 Motorola MileStone exhibit another inter-
esting peculiarity. Here, the audio stream precedes the
video stream.

Video editing

Like in the case of AVI editing, none of the MP4-like files
produced by editing software in our test set is compatible
6 On a side note, we mention that the apparent prevalence of the mdat

moov order may pose a problem to forensic file carving scenarios. If the
last part of an MP4 file (including the moov atom) is lost, its recon-
struction in the absence of metadata becomes considerably more
complicated. This is generally not the case for AVI file containers or JPEG
files.



Table 5
Common JPEG file markers. Symbol ‘�’ indicatesmandatory markers. (JIF’s
entropy encoding table is not restricted to DHT.)

Marker id Short value JIF JFIF EXIF Description

SOI 0xFF D8 � � � Start of image
APPn 0xFF En Application data
APP0 0xFF E0 � (e.g., JFIF)
APP1 0xFF E1 � (e.g., EXIF)
DQT 0xFF DB � � � Quant. tables
DHT 0xFF C4 (�) � � Huffman tables
SOF 0xFF Cn � Start of frame
SOF 0xFF C0 � � (baseline DCT)
SOS 0xFF DA � � � Start of scan
DRI 0xFF DD Restart interval
RSTn 0xFF Dn nth restart
COM 0xFF FE Comment
EOI 0xFF D9 � � � End of image

Table 7
Number of unique quantization tables in MJPEG videos.

Camera model Y/CbCr

Agfa DC-504 1/1
Agfa DC-733s 589/390
Agfa DC-830i 489/314
Agfa Sensor505-X 893/286
Agfa Sensor530s 1/1
Canon Ixus IIs 5/5
Canon A640 6/6
Canon S45 6/6
Canon S70 8/8
Casio EX-M2 121/121
Kodak M1063 10/10
Minolta DiMAGE Z1 13/13
Nikon CoolPix S3300 465/111
Pentax Optio W60 73/73
Praktica DC2070 1/1
Ricoh GX100 924/338 (2�)

P
unique quantization tablesa 2914/1279

a The total number of unique tables is not the sum of unique tables per
camera model.
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with any recording device in our database. The three
bottommost rows in Tables 2–4 exemplify some of the
differences for FFmpeg, YAMB, and Adobe Premiere CS5.
Observe that each software has its own unique signature,
which emphasizes the usefulness of such characteristics in
authentication scenarios.

Table 2 suggests that the combination and order of
major and compatible brands is particularly indicative. The
inspection of the time_scale field revealed that FFmpeg,
AVIDemux and FreeVideoDub always set the mvhd value to
1000, with a mdhd (video) value depending on the original
frame rate. Other tools employ different specifications
(cf. Table 3). Table 4 indicates that Samsung SGH-D600
videos share the existence of additional iods object
descriptor atoms with edited YAMB and Adobe Premiere
videos, whereas the latter two also use extra tref and
uuid atoms, respectively. FFmpeg-based software is the
only one in our test set that adds an edts edit list atom to
the file. We further observed that AVIDemux sets the
acquisition time and modification time of edited files
incorrectly to 01-01-1904.

MJPEG Compression parameters

Independent of the supported container format, the
majority of digital cameras in our database uses Motion
JPEG (MJPEG) to encode recorded videos (cf. Table 1). In-
dividual MJPEG frames are stored as JPEG compressed still
images, which itself consist of marker segments. Such
Table 6
JPEG marker segment sequences in MJPEG compressed videos.

Model/thumbnail: model Sequence of J

Agfa DC-504, Sensor530s SOI, DQT, SOF
Agfa DC-733s, DC-830i SOI, APP0(AV
Agfa Sensor505-X, Nikon CoolPix S3300 SOI, APP0(AV
Canon PowerShot A640 SOI, APP0(AV
Canon S45, S70, Ixus IIs SOI, APP0(AV
Casio EX-M2, Ricoh GX100 SOI, APP0(AV
Kodak M1063 SOI, APP0(AV
Minolta DiMAGE Z1 SOI, DHT, DHT
Pentax Optio W60 SOI, APP0(AV
Praktica DC2070 SOI, APP1(0x
thumbnail: Nikon CoolPix S3300 SOI, DQT, DHT
thumbnail: Pentax Optio W60, Ricoh GX100 SOI, DQT, SOF
segments are internally identified by 2-byte numbers,
usually abbreviated with character sequences known from
the JPEG standard (cf. Tab. 5). Based on our prior work on
JPEG file forensics (Gloe, 2012), we expect that the exis-
tence and the order of specific segments here depends on
the recording device, too.

For all MJPEG videos in our test set, we observed the
same sequence of JPEG marker segments for all frames of
one video. Differences do exist between groups of camera
models. Within these groups, the sequence of JPEG marker
segments is independent of respective quantization set-
tings. Table 6 summarizes our findings for cameras with
MJPEG support and the corresponding thumbnails
(if available). Interestingly, MJPEG frames do not strictly
follow the JFIF (Hamilton, 1992) or JPEG/Exif (Japan
Electronics and Information Technology Industries
Association, 2002) standards. Most cameras identify JPEG
frames by means of an AVI application data segment
(APP0(AVI1)) instead. Also the selection of JPEG marker
segmentsdand in some cases even their sequencedis
different from the JPEG still images of the same digital
camera.

Kodak M1063 video frames, for instance, contain a
combination of AVI and JFIF application data segments,
PEG marker segments

0, DHT, COM, SOS, EOI
I1), DQT, DHT, SOF0, SOS, EOI
I1), DRI, DQT, DHT, SOF0, SOS, EOI
I1), DRI, DQT, SOF0, SOS, EOI
I1), DRI, DQT, SOF0, APP2, SOS, EOI
I1), DQT, SOF0, SOS, EOI
I1), DRI, APP0(JFIF), DQT, DQT, SOF0, DHT, DHT, DHT, DHT, SOS, EOI
, DHT, DHT, DQT, DQT, SOF0, SOS, EOI
I1), DRI, DQT, SOF0, DHT, SOS, EOI
0000 mjpg), DQT, DHT, SOF0, SOS, EOI
, SOF0, SOS, EOI
0, DHT, SOS, EOI
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whereas the Praktica DC2070 digital camera uses a specific
APP1(0x0000 mjpg) marker segment. Differences also
exist in the organization of Huffman and quantization ta-
bles. Older Canon cameramodels (S45, S70, Ixus IIs) use the
APP2marker instead of the dedicated DHTmarker segment
to store the Huffman tables for entropy coding. Canon
A640, Casio EX-M2, and Ricoh GX-100 video frames rely on
standardized Huffman tables and do not store tables along
with the frames. On the contrary, Kodak M1063 and Min-
olta Z1 cameras employ four DHT marker segments, i. e.,
one segment per Huffman table instead of a single DHT

segment with all four tables. The same camera models use
two DQT segments instead of one to store the two required
quantization tables. Another characteristic of Minolta
videos are padding bits between subsequent frames.

It is also interesting to note that we identified the
impressive number of 2914 unique JPEG quantization tables
(luminance only) in our relatively small set of test videos.
We refer to Table 7 for an overview. This large amount can
be mainly attributed to cameras with scene-dependent
adaptive quantization settings. We found that these cam-
eras may also switch quantization tables between frames of
the same video. Backed with similar experiences with
adaptive quantization tables of thumbnail images in the
Dresden Image Database (Gloe, 2012), our observations for
MJPEG video frames strongly emphasize the challenges
that forensic investigators have to deal with when
attempting to create a comprehensive database of quanti-
zation parameters.

We close this section with the remark that marker
segment characteristics (and quantization tables) are most
useful to verify or to determine the source device of an
MJPEG video (or a group of devices). Lossless video editing
does notmodify the internal structure ofMJPEG frames. This
is different from the analysis of JPEG files, where we re-
ported software-specific traces in the file structure of pro-
cessed images (Gloe, 2012). At the same time, however, any
video editing software is likely to change the structure of the
container format in its very own specific way. It is thus still
possible to detect lossless video editing based on file
structure information, cf. our discussion of (Camera model
specifics) of the AVI container format.

Summary and concluding remarks

This paper has presented a first systematic exploration
of popular video container formats from a forensic view-
point. Specifically, we have focused on the internal file
structure of AVI andMP4-like (MOV, 3GP, MP4) multimedia
containers. Our examination of videos from 19 digital
cameras, 14 mobile phones, and various video editing tools
indicate a profusion of model- and software-specific pe-
culiarities. The identified characteristics complement the
toolbox of forensic investigators and provide valuable clues
to verify the authenticity of digital video streams.

Our main findings can be summarized as follows:

� Videos from digital cameras and mobile phones often
employ different container formats and compression
codecs. Mobile phones opt for sophisticated compres-
sion algorithms (MP4V, H.26x). Most digital cameras in
our test set prefer a combination of AVI containers and
basic MJPEG compression.

� The structure of AVI and MP4-like containers is not
strictly defined. We observed considerable differences
both in the order and in the presence of individual data
segments. AVI files often contain specific INFO lists or
JUNK chunks. MP4-like files may employ various non-
standard atoms and different parametrizations of spe-
cific atom entries.

� Different camera models implement different JPEG
marker segment sequences for MJPEG-compressed
video frames. Content-adaptive quantization tables
seem to be more frequent than for JPEG images. MJPEG
frame and JPEG still image marker sequences and
compression settings of the same camera model can be
completely disjoint.

� Lossless video editing leaves compression settings of the
original video stream untouched, but introduces its very
own distinctive artifacts in the structure of container
files. While file format peculiarities of the genuine
source device are typically lost after video editing, all
tested software tools have unique file format signatures
throughout our test set.

We note that our test set did not comprise multiple
devices per camera model, so we can only surmise that our
observations generalize to arbitrary devices of the same
model as well. Yet this is to be expected, as our observations
resemble similar reports about the structure of JPEG still
images (Kee et al., 2011; Gloe, 2012), RAW image formats
(Kalms et al., 2012), and MP3 audio files (Böhme and
Westfeld, 2005). Because our analysis relies on file struc-
ture internals, we are currently not aware of any publicly
available software that would allow users to consistently
forge such information without advanced programming
skills. This makes the creation of plausible forgeries un-
doubtedly a highly non-trivial undertaking and thereby re-
emphasizes that file characteristics and metadata must not
be dismissed as unreliable source of evidence for the pur-
pose of file authentication per se.

We note that further examinations will have to show
how distinctive video file format characteristics are on a
larger scale. It is without question that the identified gen-
eral differences between different recording devices and
editing softwares could also be combined with a signature-
based quantitative approach as proposed by Kee et al.
(2011) for JPEG files. From the viewpoint of practical case
work, however, we believe that such “condensed” signa-
tures are never optimal, as they do not exploit all available
information. This is particularly so when we consider that
video container formats are by far more complex (and less
strictly defined) than the JPEG format. At the same time, it
is an open question how a more holistic signature would
scale with all the unknown file format variations that
doubtlessly still exist in the wild, but also to what degree
modern streamlined smartphone designs are built around
standard open source or vendor-based reference imple-
mentations. We can only surmise that a collection of
source-specific file parsers, which mimic the careful
manual inspection of a forensic investigator, could help in
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authentication scenarios. Future work will have to inves-
tigate how the specification of such parsers can be auto-
mated and how practical this approach is also for large-
scale source identification applications.
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