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A single-stage ion mirror in a time-of-flight (TOF) mass spectrometer (MS) can perform first
order velocity focusing of ions initially located at a start focal plane while second order velocity
focusing can be achieved using a double-stage reflectron. The situation is quite different when
an ion source extraction field is taken into account. In this case which is common in any
practical matrix-assisted laser desorption/ionization (MALDI) TOF-MS a single-stage reflec-
tron, for example, cannot perform velocity focusing at all. In this paper an exact, analytic
solution for an electric field inside a one-dimensional reflectron has been found to achieve
universal temporal focusing of ions having an initial velocity distribution. The general solution
is valid for arbitrary electric field distributions in the upstream (from the ion source to the
reflectron) and downstream (from the reflectron to an ion detector) regions and in a
decelerating part of the reflectron of a reflectron TOF mass spectrometer. The results obtained
are especially useful for designing MALDI reflectron TOF mass spectrometers in which the
initial velocity distribution of MALDI ions is the major limiting factor for achieving high mass
resolution. Using analytical expressions obtained for an arbitrary case, convenient working
formulas are derived for the case of a reflectron TOF-MS with a dual-stage extraction ion
source. The special case of a MALDI reflectron TOF-MS with an ion source having a low
acceleration voltage (or large extraction region) is considered. The formulas derived correct the
effect of the acceleration regions in a MALDI ion source and after the reflectron before

detecting ions.
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a simple instrument in which ions are accelerated

to the same energy and allowed to drift along
some path before detection. Because ions of different
mass have different velocities after acceleration they are
separated in space during flight and in time during
detection; thus, the time of arrival to the detector is a
measure of mass (or mass-to-charge ratio m/z if ions are
not singly charged). However, such a simple picture is
always complicated by the presence of nonideal factors,
among them [1]: (a) different time of formation or
acceleration of ions; (b) different initial locations of ions
in space; and (c) different initial velocities of ions before
acceleration. Time focusing can be achieved by using
pulsed drawout fields with sharp rise times or short
laser pulses in the case of laser desorption (LD) or
matrix-assisted laser desorption/ionization (MALDI).
A dual-stage extraction method is normally used for
correction of the initial spatial distribution of ions in an
ion source [2]. And finally, initial velocity (or energy)

The time-of-flight (TOF) mass spectrometer (MS) is
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distribution can be corrected partially by a time-lag
focusing technique which is now also referred to as
pulsed, delayed or time-delayed extraction [2-6].

In this work we consider only the compensation of
the initial velocity distribution of ions that is motivated
primarily by the wide use of MALDI and LD-TOF
instruments. Since MALDI and LD ions are desorbed
from or formed near a well-defined smoothed surface of
a conductor the initial spatial distribution of ions is
minimized. Initial temporal distribution for ions is also
very small due to the use of short pulse lasers (the pulse
width of a nitrogen laser is usually less than 1 ns). Thus,
among the above sources resulting in broadening the
mass spectral lines the initial velocity distribution is of
primary concern. MALDI ions, for example, are de-
sorbed with mean velocities up to hundreds of meters
per second that depend primarily on the matrix, and the
energy of desorbed ions may easily reach 10-100 eV
depending on ion mass [7-12].

The single, but major drawback of using time-de-
layed extraction for initial velocity distribution correc-
tion is that it is mass dependent [2] which is problematic
for a TOF mass spectrometer intended to record the
entire mass range simultaneously. A number of inves-
tigators have produced improvements in time-delayed
extraction techniques and other methods using dy-
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namic electric fields [13-20]; however, the problem of
mass dependence in the case of using pulsed extraction
fields is far from being resolved.

Alternatively, an approach to mass independent
compensation for the initial velocity distribution of ions
has been possible with the invention of the ion mirror or
the reflectron [21]. A reflectron does not actually make
a correction of the initial spatial, temporal, or velocity
distributions and, in fact, the temporal, spatial, and
velocity distributions at the start focal plane are trans-
ferred to the target focal plane formed after reflection
but with some distortion. If the initial velocity distribu-
tion is a major limiting factor in increasing the mass
resolution then the accuracy of such transfer by the
reflectron is usually expressed by the order of velocity
focusing which is actually the power of the highest zero
term in the expansion of the ion time-of-flight depen-
dence over the initial ion velocity. For example, a
single-stage linear reflectron performs first order veloc-
ity focusing, whereas a two-stage linear reflectron can
focus with second order accuracy [21]. A parabolic
mirror [22] can perform infinite order focusing, i.e., the
ion TOF does not depend on the initial kinetic energy of
ions at all. Such mirrors are also referred to as ideal
reflectrons. The field inside a parabolic reflectron is
curved along the axis and according to the LaPlace
equation it also has a curvature in a radial (or trans-
verse) direction. This, of course, limits the angular
aperture of such a reflectron, or otherwise divergent
ions will have different kinetic energy resulting in
lower mass resolution. An additional potential draw-
back of the parabolic reflectron is that it does not have
a field-free region which is generally required in
TOF-MS for mounting detectors, lenses, energy filters,
etc. This drawback is overcome in another design for an
ideal reflectron [23] in which a nonlinear field is also
used inside the reflectron but the field-free path can be
made any length in comparison with the reflectron
length if the minimum initial energy of ions to be
focused is allowed to be larger than zero (a parabolic
reflectron focuses ions of all energies starting from
zero). The authors [23] obtained the most general solu-
tion for the field inside such an ideal reflectron. Solu-
tions for some special cases have also been reported
using analytical [24] and numerical [25] approaches.

Thus, when a reflectron is introduced the problem of
velocity focusing is reduced to obtaining good condi-
tions at the start focal plane. This is not a problem if the
initial spatial distribution in the ion source makes a
major contribution to the line broadening in the mass
spectra because any single- or double-stage extraction
scheme effectively eliminates the ion space distribution
(converting it into the larger velocity distribution of
ions at the focal plane). In the case of MALDI where the
major contribution into the line broadening comes from
the initial velocity distribution of ions the situation is
not so clear. It has been shown that the velocity focusing
cannot be achieved at all in a MALDI/TOF-MS with a
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single-stage reflectron [26]. The use of very high accel-
eration voltages facilitates but does not solve the prob-
lem completely. The problem of velocity focusing in a
MALDI/TOF-MS can be solved with a specially de-
signed double-stage reflectron [26, 27] but the order of
accuracy of the velocity focusing is limited.

In this work the problem of ideal (or infinite order)
velocity focusing in a reflectron TOF mass spectrometer
is solved in a one-dimensional approximation. The
work may be considered as the generalization of the
problem of designing the ideal reflectron [23] which in
addition to a field-free region includes also acceleration
and deceleration fields always present in any TOF-MS.
Analytic expressions obtained in our work are valid for
arbitrary electric field distributions in an upstream
region (from the ion source to the reflectron) and
downstream region (from the reflectron to an ion de-
tector) as well as in the deceleration region of the
reflectron. The field in the correcting part of the reflec-
tron is determined by the electric field distributions in
the upstream region, the deceleration part of the reflec-
tron, and the downstream region of TOF-MS. Then, the
properties of the general solutions are studied for the
common case of linear acceleration/deceleration fields
in the upstream and downstream regions and low
acceleration voltage (or long extraction region) used in
an ion source.

Theoretical Approach

In this work the problem of the ideal velocity focusing
of ions is solved for a whole TOF-MS system which may
include ion source acceleration regions, a field-free
region, a reflectron, energy discrimination filters, post-
source acceleration before ion detection, etc. The task is
formulated for a one-dimensional model in the most
general case, i.e., for ions initially formed at the start
plane in an ion source with full (kinetic plus potential)
energy within an interval from V, to V, to determine a
field inside the reflectron which would perform infinite
order velocity focusing at the detector plane. The ion
potential energy U, (x) due to the electric field in the
upstream region (from the ion source to the reflectron)
can be different from that U,(x) in the downstream
region (from the reflectron to an ion detector) as shown
in Figure 1. For simplicity the potential energy at the
entry to the reflectron is taken as a reference point equal
to zero. In addition to the upstream and downstream
regions the potential energy U, (x) inside the reflectron
from zero up to V, can also be arbitrary. Thus, the
potential field V (x) from V, to V in the correcting part
of the reflectron shown by the dashed line in Figure 1 is
to be found. Note that the situation is quite different
from that when only linear fields inside the TOF-MS are
considered [26, 27]. In the latter case the field inside the
reflectron and the upstream (and/or downstream) re-
gion should be determined to achieve first (or higher)
order velocity focusing. In our case we determine



994 DOROSHENKO AND COTTER

Source plane

v e Ioniflight path .
Vi(x |
Vo Upstream r() i
Us : !
region |
g Ui ;
Uy(x) ;
SN Y R Y
|
Reflectron }
|
1%
Vix
Vo Downstream r()
region
Ui(x)
X X X X,
D e T R v
-Up
mector plane

Figure 1. A schematic presentation of the ion potential energy
during an ion flight from an ion source to a detector via the
upstream region, the reflectron, and the downstream region of a
TOF-MS.

infinite order velocity conditions for the arbitrary po-
tential fields U, (x) and U,(x) in the upstream and
downstream regions and even for the arbitrary field
U,(x) in the decelerating part of the reflectron. This
becomes possible because the potential field V,(x)
which is to be found can be curved, i.e., it is determined
by the infinite number of parameters. This, of course,
does not preclude optimizing the fields U, (x), U,(x),
and U,(x). As can be shown these fields can be chosen
to facilitate the solution of other tasks such as tuning
and building the reflectron.

The total TOF t for an ion of mass m and the full
(potential plus kinetic) energy € can be written as

_ xr dx *r dx
t= ; + :
s VE — Uu(x) w VE — Ud(x)

R dx
+2 | ——+2
fx \’6 - ur(x)

Xe dx
L Ve — Vi (x) g

where x, is defined by V,(x,) = €; and t = tV2/misa
reduced TOF. The first and the second terms of the right
side of this equation are the TOF for the upstream and
downstream regions correspondingly, the third and the
fourth terms correspond to the flight forward and back
through the decelerating and correcting parts of the
reflectron, respectively.

In the case of linear fields in a reflectron TOF-MS [26,
27] formula 1 for the TOF f is normally expressed as a
series expansion over the initial ion velocity vs =
V2(e — Us)/m, where Ug is the initial potential energy
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of the ion (see Figure 1) and, then, the parameters of the
linear electric fields are tuned to make the expansion
terms responsible for the first (or higher) order velocity
focusing equal to zero. In our case the time t does not
depend upon the ion initial energy within the interval
from V|, to V and the function V,(x) should be found by
solving the integral equation 1.

Results and Discussion

Solution of the Integral Equation for the
General Case

To solve the integral equation 1 we use the method
similar to that described previously [23]. After multi-
plying both sides of equation 1 by 1/27VV — € and
integrating over € from V, to V (see Figure 1) one can
obtain

Axy = LHV )2 =], — ]~ 2], 2

where V = (V — V,)/V, is a dimensionless potential
in the second part of the reflectron;

1 (v Xe dx
AXV = ; de T
W) =l v,

1 JXV JV de
=— dx /
w b WV = ale— V()]

XR

1 f«v [ ( V —2e+ V,(x) ﬂ Y
—— dx| — arctan
- 2 \/(V —ele— V. (x)] V(%)

XR

=Xy T XRr (3)

where for arbitrary function f(e) we defined f(e)|; =

fla) = f)
—Ljvd jm dx
ST B BN T PRV E0)

1 [ JV de
=— dx /
27 V= ole- U]

Xq V
1 [x [ ( V = 2e + Uy(x) )] v
=— dx| — arctan|—
2w | 2\(V = ele = U0/ 11,
_ Ly d t v 4
= X arctan e 4)

Xa

where U, = [V, — U,(x)]/Vy;a = u,d,orr; x,and x
are the limits of the action of the corresponding poten-
tial, e.g., (x,, x4) = (x5, x,) and (x,, x4) = (xp, x,) for
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the cases 2 = u and d correspondingly. We used the
trigonometric identity arctan[(1/x — x)/2] = w/2 — 2
arctan(x) to derive the final result 4.

Equation 2 determines the coordinate xy, at which
the potential in the correcting part of the reflectron is
equal to V, i.e., it determines in reciprocal fashion the
function V = V (x).

Note that f in eq 2 is an arbitrary parameter. Limits
for this parameter will be discussed later. Let us desig-
nate

_ *r dx *r dx
fo= - = 4 -
° JXS \'Vo - U,(x) jxD VWo — U,(x)

R dx
+2 —_— 5
jx \’VO - ur(x) ( )

Then, the solution 2 can be rewritten as

(E— ) Vy?

- vir—1,—1,-2I, (6)

Axy,

where

1= [V [V )
I,= ”an dx(arctan\/ag(x) () 7)

where the definitions for a and limits of the integration
are the same as in integral 4.

Properties of the General Solution in the Case
Vo # U,

Let us consider the behavior of the solution function 6
near the point x = x. Although this is not absolutely
necessary for our analysis we assume (and this is true
for the majority of the practical cases) that the function
U,(x) is not equal to zero except the point x; and may
be the start point in the ion source xs. The latter is
possible only in the case V, = Ug and is considered
below.

In the vicinity of x = xz we may take into account
only the linear dependence of the function U, (x) which
we define as U,(x) = U'(xgz — x)/Axg, where U’ < 1,
Axp << 1. The integral 7 in the case a = r can be
presented as

I,=1+1 (8)
where

PN ( % v )
= x| arctan m* m 9)

X
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P d[ /\7_/\7]
= x| arctan m m

XR—AXR

AxgV’ f”v' [ \/I \/I]
= dv| arctan — — 1/—
ar 14 14

0

Ax V'’
=—=X [arctan \,V - \/7\7 - + V' arctan \/7 ]
w
(10)

where V' = V/U'. We used substitution v = U, (x)/V
during integration to obtain the final expression 10. For
small V' one can expand the expression 10 in the series

+_vr3/2+”'

IH —
’ 2 3

ﬁ[_w_v’ 2 ] an

ks

In the cases 4 = u and d and V << 0 the expression
under the integral 7 can also be expanded in a series
that results in

1 [* 1/ V2 1/ V 2
I”:v_rj dx[_é(aum) +5<Ua<x>> _]

Xa

(12)

After integration the integral 12 contains only the terms
proportional to V*/2, V*/2, and higher order terms. A
similar expression (with different integration limits) can
be obtained for the integral 9. Thus, the integrals 12 and
9 do not contain low order terms with V'/? and V. The
only low order term in the integral 6 is from the
expression 11 and the final result for the case t = t, can
be written as

Axy = AxgV' +aV'32 + bV + ... (13)

where a4 and b are some coefficients. One can see that
the electric field in the second part of the reflectron is
linear near the point x = x; and

EV: Er (14)

where E, and E, are the absolute values for the electric
field strength near the point x = x; in the second
(correcting) and first (decelerating) parts of the reflec-
tron, respectively.

Properties of the General Solution in the Case
Us = Vy

In this case the integral I,, also makes a contribution to
the low order terms in the solution 6. The expression for
the integral I,, can be calculated similarly to I, by taking
into account only the linear part of the function U, (x) =
U'(x — xg)/Axg near the point x = xg:
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I,=1,+1" (15)
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Because, similar to the integral 12 the integrals I;,, I},
and I; in solution 6 do not contain low order terms with
V1’2 and V, the integrals 10 and 17 only generate low
order terms. Similar to expression 13 one can obtain for
the case t = t,:

1
Axy = (5 Axg + AxR)V’ +aV'32+pV2 4
(18)

that results in the following relation between electric
field strengths:

1_1 1 9
Ey 2E. E, )

where Eg is the absolute value of the electric field
strength near the start plane in the source region (x =
xs). Formula 19 can be considered as a generalization of
the result obtained for the case of linear electric fields
[26]. Thus, the electric field potential near x = xy in the
reflectron always has a cusp if ions of all velocities
(starting from zero) in the ion source are to be focused.

Limits for the Parameter t

As mentioned previously, the parameter f is an arbi-
trary parameter in this theory. If the ion full energy € in
eq 1is equal to Vy(e = V) then two cases may occur:
(a) the last term in the right side of eq 1 is equal to zero;
or (b) the last term is not equal to zero. In the latter case
(b) t must be larger than t, because otherwise Ax,, in the
solution 6 can become negative and the potential inside
the reflectron cannot be defined unambiguously. The
situation in case (b) is very similar to that of a parabolic
mirror in which the TOF is a finite value (greater than
zero) even for zero entrance energy [22]. This results in
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terms proportional to (V)2 in the solutions 2 or 6. In
case (a) t = t, and the terms proportional to (V)'/? a
not present in the solutions 2 and 6 as follows from our
previous results 8-13 and 15-18. One can obtain, simi-
lar to expression 18, an expansion valid near the point
X = xg:

F—t)V'” o _
Axv=—( VO G124 axp + 472 4 BT 4
w

(20)

where Ax, A, B, etc. are the expansion coefficients.

Thus, only the values of t = ¢, are allowed and the
quadratic term is always present in the correcting part
V,(x) of the reflectron if t > t,. The choice t = t, is the
only opportunity to avoid the quadratic term in the
correcting part of the reflectron. Quadratic fields are
practically difficult to design whereas there are no
major problems for generating a linear field near x =
Xg in the case t = t,.

Low Acceleration Voltage Case

The acceleration voltage can be comparable to the
energy of ions formed in an ion source especially in the
case of high mass MALDI ions [7-12] and when a
double-stage extraction scheme is used. This is the case
which is most suitable for applying the theory because
linear fields inside the reflectron do not provide the
necessary accuracy for velocity focusing or do not focus
at all [26]. One more reason to consider the low accel-
eration case is that in a conventional reflectron TOF-MS
the length of the second correcting part of the reflectron
would be too small and comparable to the distance
between the wires in meshes commonly used for build-
ing grids in the reflectrons. This is not desirable because
of the large deflection of ions passing through the mesh
in this case [28], the subsequent distortion of ion trajec-
tories and its effect on the ion TOF.

In one example we consider a TOF-MS with a
dual-stage linear extraction field ion source, a linear
deceleration part of the reflectron, and a linear acceler-
ation region before ion detection (Figure 2). We have
chosen the double-stage extraction scheme because it is
much easier to tune the potential GV, on the middle
acceleration grid (G is the geometrical factor shown in
Figure 2) than to fit geometrical parameters of the
system to get optimum operation. The case t = t, is
considered as the most practical.

In the case of linear variation of the potential energy
function U,(x) from U, to U, on the interval Ax, =
X, — x; the integral 7 can be directly calculated:

Ay F(V) F(V) i
“‘wAUu[ o, U] @)

—U)/Vo(i =1 or 2), AU, = U, —

where u, = (v,
Uu,, and
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Figure 2. A schematic presentation of the potential energy pro-
file with a double-stage ion extraction used in the case of low
acceleration voltage.
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The dependence F(u) is shown in Figure 3. In the
case of field-free region one can obtain for the integral 7

I—Ax”[ . 17_ V} -
a= arctan l_la Ha (23)

Using the expressions 21 and 23 in solution 6 for the
case shown in Figure 2 one can obtain

—F()
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T
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=20 -6 G U,

L4r
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u

Figure 3. The function F(u) determined by eq 22 which is used in
the formula for the integral eq 21.

IDEAL VELOCITY FOCUSING IN A REFLECTRON TOF MS 997

2.0
6=09/ 0,805,/
15
i g 0.7
[ N6
I~ 10f
0.5}
0.0> P | e R S NS S R
0.0 0.5 1.0 15 2.0
Ax,/Ax

Figure 4. The ideal velocity focusing potential in the correcting
part of the reflectron for the special case of the potential distribu-
tion shown in Figure 2 and the different values of the parameter G
(see text for details).

(24)

where L = [, + I,; I; and [, are the lengths of the
field-free paths in the upstream and downstream re-
gions respectively; s, and s, are the extraction and
acceleration interval lengths in the ion source;  is the
length of the deceleration region of the reflectron; d is
the length of the acceleration region before ion detection
(see Figure 2 for geometry definitions); Up is the
acceleration potential before ion detection.
Calculations have been performed for a small size
TOF-MS that is typical for a low acceleration voltage
instrument: L = 30 cm, s; = s, =1 cm, h = 2.5 cm,
d=1 cm, Up/Vy = 50. The ideal velocity focusing
potential profiles in the second correcting part of the
reflectron against the coordinate variable of Ax,/Ax
where Ax = h + 5,/2(1 — G) are shown in Figure 4
for different values of G. Note that in comparison with
the linear field case [26] where the ion velocity can be
focused only for some specially tuned geometrical
parameters in our case there is always a curved field
solution for any parameter G. In the coordinates of
Figure 4 the slope of the potential curves near Ax/
Ax = 0 is not dependent of the parameter G and is
equal to that of the dashed line shown in Figure 4.
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Figure 5. The dependence of the expansion paramter A in the
formula eq 20 upon the parameter G of the ion source extraction
region for the special case of the potential distribution shown in
Figure 2 (see text for details).

Special Case of the Correcting Field Close to
Linear Field

One can see that the curvature of the reflectron correc-
tion field in Figure 4 is determined by the geometrical
properties of TOF-MS, in this case by the parameter G
which determines the extraction and acceleration fields
in the double-stage ion source. Of course, it is possible
to adjust the geometrical factor G to obtain the correc-
tion field in the reflectron as close to a linear one as
possible. The more linear solution for the correction
part of the reflectron the easier to implement it in
practice. To achieve this goal it is required to make the
expansion terms of power higher than unity in the
formula 20 equal to zero. In our case we have just one
parameter (G) to adjust and, thus, we will need to zero
the term containing V*/? only. Using the expression 24
for Ax, one can obtain the expansion coefficient A in
the formula 20

1 Vod] 5)

L+ Up/V, Up

The dependence of A upon the factor G is shown in
Figure 5. One can see that A is equal to zero at G ~
0.805. For this G the potential inside the correction part
of the reflectron shown in Figure 4 is really very close to
the line, at least in the interval 0 < Ax,/Ax < 0.4. This
means that the linear field in the correcting part of the
reflectron can effectively focus ions with the initial
kinetic energy up to 40% of the acceleration potential
V. According to Figure 4 this interval is much smaller
if G # 0.805. Thus, using our theory one can choose the
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geometry of a TOF-MS to achieve a more linear poten-
tial in the correcting part of the reflectron. In the case
considered one parameter was adjusted to cause the
coefficient A to vanish in the expansion formula 20. It is
clear that by diminishing the next term coefficient B in
the formula 20 one can get even more linear potential
inside the correcting part of the reflectron. This may
take place if additional parameters in TOF-MS are
allowed to be tune. These parameters may arise if, for
example, additional stages in the ion source or the
reflectron are taken into consideration.

Conclusions

The potential inside the reflectron described by eq 6 can
perform ideal focusing of the ion velocity in a reflectron
TOF-MS. Note that the general formula 6 for the cor-
recting reflectron field exists for arbitrary geometry and
potential fields in the upstream and downstream re-
gions and in a decelerating part of the reflectron of a
reflectron TOF-MS. This is because the potential field
inside the reflectron is not linear and, thus, is effectively
described by an infinite number of parameters. How-
ever, the curvature of the correcting potential field
depends on the geometry of the accelerating fields in
the ion source as well as in the postacceleration region
before ion detection. This fact can be used for minimiz-
ing the potential distribution curvature to facilitate
reflectron construction. MALDI/TOF-MS is seen as the
primary field for the application of the theory because
the initial velocity distribution of MALDI ions is the
major limiting factor in achieving high mass resolution.
Simple working formulas have been obtained for the
most practical case of a TOF instrument with the
two-stage ion source/two-stage reflectron. Similar for-
mulas for designing a reflectron TOF-MS can be easily
obtained for any other cases.
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