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Asymptotic Properties of the Estimators for
Multivariate Components of Variance

SELLEM REMADI AND YASUO AMEMIYA

lowa State University

Estimation of the covariance matrices in the multivariate balanced one-way
random effect model is discussed. The rank of the between-group covariance matrix
plays a large role in model building as well as in assessing asymptotic properties of
the estimated covariance matrices. The restricted (residual) maximum likelihood
estimators derived under a rank condition are considered. Asymptotic properties of
the estimators are derived for a possibly incorrectly specified rank and under either
the number of groups, the number of replicates, or both, tending to infinity.
A higher order expansion covering various cases lcads to a common approximate
inference procedure which can be used in a wide range of practical situations.
A simulation study is also presented. 1994 Academic Press, Inc.

1. INTRODUCTION

Suppose that a px | observation vector Y; taken on the jth individual
in the ith group satisfies

Y,=p+b,+w, i=1,.,nj=1.,r, (1)

where p is a p x 1 vector of unknown parameters, the p x 1 b, represents the
ith group effect, and w;; is the p x 1 error term assumed to have N, (0, X))
distribution. When » groups are assumed to be taken from some popula-
tion, we often assume that the between-group effects b/s are independent
N,(0, E,,) random vectors distributed independently from the w,’s. Assume
that £,, is nonnegative definite and X, is positive definite, and that
n>1 and r> 1. This is the multivariate balanced one-way components of
variance model.

The univariate components of variance model has been used and dis-
cussed extensively in the literature. For reviews, see, e.g., Harville {12],
Robinson [217], and Searle et al. [23]. A multivariate model such as (1)
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MULTIVARIATE VARIANCE COMPONENTS 111

containing unknown covariance matrices can be transformed to the general
univariate form by stacking the px 1 response vectors. However, such
rewriting may not solve some of the statistical problems for the multi-
variate case, because of the parameter space restriction and the possibility
of singular covariance matrices. Thus, development of statistical procedures
for multivariate models often requires approaches slightly different from
those used for the univariate case. The literature on the multivariate model
has been rather limited. The ordinary or residual maximum likelihood
estimation for Model (1} with no restricton on X,, was discussed by Klotz
and Putter [14], Bock and Petersen [9], and Amemiya [1]. Hill and
Thompson [13] and Bhargava and Disch [8] discussed the problem of a
possible nonnegative definite estimate of £,,. Mathew et al. [15] derived
estimators of X,, which have uniformly smaller values of a certain risk
function than the usual unbiased statistic. Estimation under the rank con-
dition and testing for the rank was treated in Anderson [5, 6], Amemiya
and Fuller [2], Schott and Saw [22], Anderson et al. {4], Amemiya et al.
[3], Anderson and Amemiya [7], and Remadi and Amemiya [20].
Thompson [24] and Meyer [16] discuss algorithms for computing the
restricted (residual) maximum likelihood estimators (REML) of covariance
components in the multivariate mixed effect model. For the balanced multi-
variate random effect model, Calvin and Dykstra [10] proposed a com-
putational algorithm which is guaranteed to converge to the REML.
Properties of estimators or inference procedures for functions of covariance
components have received virtually no treatment in the literature.

Here we consider estimation of covariance components X,, and X, in
Model (1). Although Model (1) is the simplest multivariate components of
variance model, properties of the estimators have been largely unknown.
Consideration of Model (1) highlights some of the common problems for
multivariate models and suggests possible extensions to more general mul-
tivariate models. In model (1), the between-group effect b, is p x 1; t.e,, each
of the p response variables has one corresponding group effect variable
inb,. But the actual between-group variability can be concentrated in a
space of dimension less than p. For example, some of the p variables or
some linear combinations may have no between-group differences. Thus,
a random effect in the multivariate model can exist with a singular
covariance matrix with various values of rank, while a variance component
in the univariate model is either zero or positive. As shown later, the true
rank of a covariance component also affects properties of an estimated
covariance component. In this paper, we consider, for Model (1), proper-
ties of estimators of £,, and L, obtained under the assumption that rank
X,» <m. In practice, such a rank condition is imposed based on subject
matter consideration or based on statistical tests of rank. See, e.g,
Amemiya et al. [3] and Anderson and Amemiya [7]. Note that any
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estimator should take values in (the closure of) the parameter space (with
probability one), i.e., an estimator of X,, should be a symmetric non-
negative definite matrix of rank at most m, and an estimator of X, should
be symmetric positive definite, with probability one. A set of such
estimators is the restricted (residual) maximum likelihood estimators
derived under the assumption of rank X,, <m. To present the estimators,
let the between-group and within-group mean-square matrices be defined
to be

where Y. =(1/r)3>;_, Y, and Y. =(l/nr) 37 37_, Y, Note that the
statistic 1/r(m,, —m,,) is unbiased for X,,, but does not always take
values in the parameter space. Let a p x p orthogonal Q and p x p diagonal
A =diag{4,, .., 4,} be such that

m. . mm? = QAQ,

ww W

(2)

Define 12=min{m, number of ):,-’s> 1}. This k is the rank of the REML
estimator £,,. We write

where P, is px £, and £ x k A, consists of the & largest roots 4,’s. Then the
REML estimators of £,, and X, under rank X,, <m are, respectively,

1o o . N
—-PR, TP i k>0, (3)

- 1
£ onlm) = —— {(n=)[myy —r £, ] +nlr— 1) m,,,}.

See, e.g., Anderson [5] and Amemiya and Fuller [2]. Note that £,,(m) is
a symmetric nonnegative definite matrix of rank k <m and that £, (m) is
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a weighted average of m,,,, and a part of m,, not used for estimating X,,.
An alternative form of the REML estimators is

1 1.
ﬁ[)b(’n) == (mbb - mww) - Qm,
r r

1. (4)
2ww('n) = mww + —n———— Qms
nr—1
where
Qm = P2(112 - Ip—lz) p,2

In this form we see that £,,(m) and £, (m) are obtained by adjusting the
unbiased statistics (1/r)(m,, —m,,) and m,, using terms involving €,,,
and that a partition of the total sum of squares holds:

(n—=1)r&(m)y+(ar— 1)L, (m)=(n—1)m,,+n(r—1)m,,

(Y,]"_?,)(YU— Y),
1

1P =
I~

i=1j

In this paper, we derive asymptotic properties of £,,(m) and £, (m).
Development of asymptotic results for the random effect models requires
some special care. See, e.g., Miller [17]. Model (1) contains two indices n
and r, ie., the numbers of groups and replicates. A practical situation may
have large n, large r, or large n and r. We develop an asymptotic theory
covering any of these cases. Throughout this paper, we refer our different
assumptions for asymptotics as

Case 1. n— oo and r is fixed.
Case II. n— o0 and r — oc.
Case III. n s fixed and r — oo.

Our eventual goal is to develop approximate inference procedures for X,,
and X, (or functions of £,, and X£,,) which can be applied in a wide
range of practical situations. After developing specific results for each of
these cases, we suggest approximate inference procedure which can be used
in a situation corresponding to any one of Cases I, II, and III. Another
problem associated with developing asymptotic properties of £,,(m) and
£,.(m) is their dependency on the true rank m, of £,,. Although the
estimators are obtained under the assumption that rank X,, < m, the true
rank m, is generally unknown. We investigate the effect of not knowing m,
on the properties of the estimators.
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2. CONSISTENCY

To discuss asymptotic properties of £,,(m) and £, (m), we need to note
that for Case I1I with fixed n, a consistent estimator of X,, does not exist.
Thus, for X,,(m), we discuss the consistency by checking whether or not

ihb(’”)_shh s 0, (5)
where
1 n _
hhzn_l Z (bi*b)(b,“b)’,
i=1
b=_ 5 b
=T

This is equivalent to the ordinary consistency for Cases I and II with
n— oc. Note that S,, is unobservable. First, we consider the case with
m = my; i.e., the case where the maximum allowable rank is larger or equal
to the true rank of £,,.

THEOREM 1. If m = my, then for all cases I, 11, and 111
- 1 1
X, (n1) =; (my,—m,,)+0, i \/;
1
=8,,+0, (——)
T
£.(m=m, +0 ( ! >
nwu nl = ' 2
A7 T
1
-z, +0,(—=),
"

where S, is defined in (5), r is constant for Case I, and n is constant for
Case I11.

Proof. Note that for all three cases,

1 1 1
-m,,—Sy—~E.,.=0,(—),
, mbh bb r Wi r (\/};)
1
mww - ZW\.- = Op <‘—‘\/;;> N

. o ~ 1
P=mxo=zxo+o( )
P \/;
=0,(1),
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where we have used the fact that the elements of Q are bounded by one in
absolute value. By the result on the limiting distribution of the roots 4,

I -1)=0,1), i=me+1,..,p. (7)

See, e.g., Remadi and Amemiya [19]. Note that Q,, in (4) is a function of
Ay i=m+1, ., p, with m>=m,. It follows from (6) and (7) that for all
three cases

Q,=0, <—l—>
N
Thus the result follows from (6), (9), and (11). ]

Hence, with the understanding of the consistency of £,,(m) as given in
(5) for CaseIll, 2,,,,(m) and £, .(m) are consistent for £,, and I,
provided that m>m,. Thus, for example, £,,(p) and £, (p) obtained
under no rank condition of £,, are always consistent.

To discuss the case m < my, define the p x p matrix

wWan Wi

¥ T 22,2 2 for Cases I and 11,
RS, E0 R, for Case II.

Note that S,, is a2 random matrix defined in (5). Let v, > --- > v, be the
eigenvalues of ¥, and let Q, be the p x (m, — m) matrix of a set of eigenvec-
tors corresponding to v, , i, .., V,,,. For Case IIl, v/’s and Q, are also ran-
dom. By Okamoto [ 18], for Case I11, v/s are distinct with probability one.
For simplicity, we assume for Cases I and II that v,,>v,, ., ,. Now we pre-
sent the following result on the consistency when m < mig.

THEOREM 2. If m <my, then for all cases I, Il, and 111,
2:/Jb(m) -8, - —B

B, for Cases I and 11,
f'ww(rn) - wa —_P‘) n—1

; B, for Case 111,

where
— 172 : ’ 1,2
B - zww QO dlag{vm + 13 e VMO} QOZN/'H"

Proof. Tt follows from (6) that for all cases I, I1, and III,

1 .
—12 —12as
-’: m,, my,m,., \PU’ (8)
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where

1
v, - ‘l‘+;lp, for Case I,

¥, for Cases II and III.

Thus, by the continuity of the eigenvalues,
i=1,2,.,p, (9)

where v =v,+ 1/r for Case I and v? = v, for Cases II and III. Let Q, be the
(m+ 1)-st through mg-th columns of Q. Since the elements of Q, are
bounded, with probability one, every subsequence has a converging sub-
subsequence. By (8) and (9) over such a converging subsubsequence Q,
with a limit Qg

1 - ~ 1 - -
0= ; m, Vzmbhm;»:/le - Q[ ; dlag{im + 15 00 Amo}

ww

-~ ¥,Q8 — Q& diag{v), . |, - Vi, }-

Because vp, >vy ,, and v >vp . for Cases I andIl, and for Case III
with probability one, Q& is unique up to orthogonal rotation of each
eigenspace of ¥, corresponding to vJ ., .. v?no. Since Q¥QJ’ and
Q¢ diag{vy,, |, .., vo,} Q&' are unique under such orthogonal rotations,
and equal to Q,Qf and Q diag{v, , |, .., v, } Qj, it follows that for all

three cases
A 1 5 T A a.s. ' ;
R, =Q,—diag{4,, ,,—1,., 4, — 1} Qs— T 2B 12 (10)
r

Since v0m0> 1 for Case I, and since r — oo for Cases II and III, (9) implies
that for all three cases

P{i,,>1)-1 (11)
For m<m,

Plli=m}—1.
Hence, using the form (4), we can write with probability approaching one,
£,,(m)= 221;(”‘0) —m2R,m)?”

ww?
n—1)r
(__l_m:ijmm

(12)
172

2I‘\‘M'(”rl) = 23‘%'("10) +

nr—1
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where £2,(m,) and £2, (m,) are £,,(m,) and £, (m,) with £ =m,, and R,,
is defined in (10). Thus, the result follows from (10), (12), and
Theorem 1. ||

Hence, £,,(m) and £,,(m) are not consistent when the specified maxi-
mum rank m for £,, is smaller than the true rank m,. Since the matrix B
in Theorem 2 is nonnegative definite, £,,(m) “underestimates” ¥,, and
.. (m) “overestimates” ¥,,,. Thus, it is important not to underspecify the
rank of X,, in estimation of X,, and X .

3. LiMiTING DISTRIBUTION

By Theorem 2, if m<m,, £,,(m) and £,,,(m) are inconsistent in the
sense given in the theorem. For such a case, a limiting distribution result
useful for asymptotic inferences cannot be found easily. Hence, we con-
sider only the case with m > m,, ie., where the true rank is less than or
equal to the assumed maximum rank. For a pxp symmetric matrix A,
we use the notation vech A, a p(p+1)/2x1 vector containing the
elements on and below the diagonal of A starting with the first column.
For a pxp symmetric matrix A, there is a unique p? x p(p + 1)/2 matrix
K, such that vec A=K, vech A, where vec A is the p>x 1 vector listing
the elements of the columns of A starting with the first. For any such A
we write

F(A)=2K}(A®A)K,, (13)

where K = (K,K,)"'K, and ® is the Kronecker product. Note that for

A = (a;), a typical element of I'(A) is a,a;+ a,a;.
If m>=m, the limiting distributions for Cases 1I and III are relatively
simple and are given in the following theorem.

THEOREM 3. Suppose that m = mg. For Case 1,

{ \/;VeCh(ibb(m)_zbb) }‘E*N{C)) (r(zhb) 0 )}
Jn(r=1) vech(E,,(m)—E,..) 0/°’\ 0 T(Z,)/)

For Case 111,

vech £,,(m) L {vechS,,
{ n(r—l)vech(ﬁw(m%zw)}‘*{ w }
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where S,, and W are independent, (r—1)Sy,~W,(E,,,n—1), and
W~ N0 I(E,.))

Proof. The results follow immediately from Theorem 1. |}

Note that the limiting distribution of £,,(m) and £,,(m) in Theorem 3
is that of S,, and m,,,,. Thus, for Cases II and IIlI with r — cc, the limiting
distributions are simple in that the rather complex nature of the rank
restriction and interrelationship disappears in the limit. Also, the form of
these limiting distributions is the same for all m > m,. In this sense, the
limiting distribution in Theorem 3 may be considered too optimistic in
practice. In Section 4, a higher order asymptotic expansion is considered.

For Case I, we need to distinguish two cases, m=m, and m>m,. For
rank E,,=m,<p, let C be a px(p-—m,) matrix of rank {p—m,) such
that C'Z,, C =0. Define

%,=L,.C(CL,,C)' CL,,. (14)

Note that C is not unique but I, is free of the choice of C. If my=p, X,
is understood to be zero.

THEOREM 4. Consider Case 1. If m=my, then

{ V/n veeh(£,4(m0) — Zpn) b () (v:,,, Vh)}
v n(r - 1) VGCh(iww(nIO) - Zww) 0 ' Vfrb V}vw '
where

1 1 1 1
V:’h =r (be + ; Eww) + r (7 wa) WY r(z())a

r—1 Cr(r—1)
1
vl T r E0 __r En'w 3
bwn r\/r-—-l[ ( ) ( )]
VLW = r(zww) - % F(ZO)

If m>myg, the limiting distribution of

{ \/; vech(E,,(m)—L,,) }

Jnlr— 1) vech(E,(m)—£,,)

does not exist if m<p and is not normal if m=p.
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Proof. The result for m = m, is a consequence of the expansion given in
Theorem 6 of the next section. If m > m,, for example, for £,,,

S (Eop(m) —Epp) = /1 (£2,(mg) — Epp) + = mwvfnmw, (15)

where £9,(mg)is £,,(m,) with k =m,,

R= Y (4L-1I4>144,

i=np+ 1

and q; is the ith column of Q. Since £9,(m,) is a function of Ay i=1,
2, .., mgy, and since m,,, *» £, the two terms in (15) are independent in
the limit. By the first part of this theorem the first term converges to a normal
distribution. Thus for the sum to have a limiting normal distribution, the
second term must have a limiting normal distribution. See, e.g., Feller

[11, p. 525, Cramer-Levy theorem]. Note that

=) I/n(5,=1)>0), i=me+1,..m,

converge to nonnegative random variables. Thus, if \/;R has a non-
degenerate limiting distribution, then it is not normal. For m < p, following
the argument used in the proof of Theorem 2, the limit of a converging sub-
sequence of \/r;R depends on the subsequence, because the limiting
q4/’s, i=mgy+1,..,p, span the cigenspace of dimension (p—m,) corre-
sponding to the unit root of £, *(rL,, + L,,) L. Hence, for m <p,

W Wwh

\/' (£,,(m) —L,,) does not have a limiting distribution. |

Thus, for Case I, with m > m,, the estimators are consistent but do not
have a limiting normal distribution. The discrepancies among the limiting
distributions for Cases I, II, and III as given in Theorems 3 and 4 show
that the use of the limiting result for asymptotic inferences requires some
special care in practice. It may not be apparent which of the three cases is
most appropriate for a given situation.

4. ASYMPTOTIC APPROXIMATION

A possible approach to developing approximate inference procedure use-
ful for all cases I, I1, and 11l is to consider a common asymptotic expan-
sion. To this end, we assume that m = m,, and first derive an expansion for
each of the three cases which is of higher order than that given in
Theorem 1. We recall the definition of the p x (p —m,} matrix C in (14).

683:49/1-9
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Let D be a p x my matrix of rank m, satisfying that (C, D) is a p x p non-
singular matrix. Note that D is unique only up to multiplication of a
mg x my nonsingular matrix from the right, and that D'E,, D is non-
singular. Define

where

Let

where

Note that €, and €, are invariant for different choices of C and D.

S.‘.x = D/Sbb D,

Q,=k,,C(CE,,C) " (5,-8.)CE,,C)"' CL,,,

QII = waC(C,Ewa) ! (Suu-x - See}(clzwwc) -'CE

S = Suv - Sv.rs.;xl S;x .

e x

THEOREM 5. Suppose that m=mqy <p. Then, for Case I,

1
£,5(me) — =7 [m,,— (rEs + E..)]

1 1 1
- (mww - wa) - QI + Op <_
r r

- —1 1
Eww(n/lo) - wa =m,,, — 2ww + - Ql + Op <.—>
nr—1 n

)

(16)
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For CaseIl,

1
£,5(mg) —E,, = 7 [m, — (rZ, + X,..)]

1 1 1

—= w— ) —— O, ——=),
r (mnw un) r 1I + ? (nr \/;)

£ (mg)~E,. =m,. L. +7"L0 +0 (————1
wwl/fo wiw — e e —1 i 4 nr \/; :

For Case IlI,

1 1 1
£,4(mg) — £, == [my,— (L, + £,,)] — - Q@ + o, < ),
r r r \/7
-1 1
2ww(rno)_z‘ww=l“ww_zwv-‘ _+_;_1n_r___9" + Op ( )

1 N

The proof of Theorem 5 is given in the Appendix. These three expansions
are meaningful in the sense that every term explicitly given is of order
larger than the remainder. All explicit terms for Case 1 are 0,,(1/\/71).
But, for Cases II and III, terms have different order, representing higher
order expansions. Since the expansions for the three cases are similar, an
expression valid for all cases can be derived.

THEOREM 6. If m=my,, then for all Cases I, II, and I1],

1
£,5(mg) —Epp = 7 [m,,— (rE, + E,..)]

1 1
- (mww - z:ww) - Qll + Op <
r r

)
)

where it is understood that n is constant for Case II1, r is constant for Case I,
and that ;=0 for my=p.

' -1
2ww(m0) - Eww = mww - 2ww + %j Qll + Op <

Proof. Note that for Casel,

1
Suv - Sru x vas;\c] S,v,\ = Op (_> >
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and thus Q;—Q, =0 ,(1/n). For Case III,

1
; (ml\‘u' - an‘) = 0/) (

)

The common expansion given in Theorem 6 is in fact the one for
Case II given in Theorem 5. For Cases I and III, this common expansion
simply adds extra terms of the same order as the remainder. This expan-
sion also highlights some characteristics of the estimators derived under
the rank condition much better than the expansion in Theorem 1. The
adjustment or improvement made to the naive estimators (1/r)(m,, —m,,,)
and m,,, is given in terms of ;. The term ©,; can be characterized to be
a part of (m,,—m,,) estimating the error variability, not the between-
group variability. This term is subtracted from (1/r)(m,,—m,, ) for an
efficient estimator %,,(m), and is pooled with m,, for an improved
estimator of X,,.. This expansion provides a means for obtaining an
approximate inference procedure which works for a wide range of practical
situations.

1
rJr

Thus, the result follows. |

5. APPROXIMATE INFERENCE PROCEDURES

We develop approximate inference procedures for functions of the ele-
ments of £,, or functions of the elements of £,, and X ,,.. Typical examples
are a linear combination of elements of X,,, a between-group correlation
(a correlation computed fromX,,), and an intra-group correlation (a
diagonal element of £,, divided by the sum of diagonal elements of £,, and
X..). In practice, it may be difficult to decide which of the three cases I,
I, and Il is most appropriate {for a particular situation. Thus, our goal
here is to develop procedures useful for various situations. From the results
in Sections 2 and 3, we note that without some knowledge of the rank
of X,, inference procedures can be incorrect, especiaily for Case I. Thus, if
the rank is unknown we suggest performing some statistical inference for
the rank. See Anderson [6], Amemiya et al. [3], Anderson and Amemiya
[71, and Remadi and Amemiya [20]. Here we assume that some idea
about my, the true rank of L,,, is obtained so that £,,(m,) and £,..(m,)
can be used at least with large enough probability. First we consider the
covariance matrix of the terms in the common expansion in Theorem 6 as
a common approximate covariance matrix. Taking the covariance matrix
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of the expansion terms and ignoring the remainder, the approximate
covariance matrix of

vech £,,(m,)
{VeCh 2‘4't1'(n10)}

V — (Vbb Vhw ,
vwb wa

where

1 1 1 1
Vhb = ;;—__1— r <Ebh + ; Zn'w) + n(r 1 ) T (; zww)

(T e T

r? n—1+n(r—1) (n—1)
\% —l( 1 my >FE) 1 —
= T T =) Y& =y T B
! n—1 m,
TR ) (n(r— Dinr— 1) (nr— 1)2> T'(Zo).

and the T'(.) function and X, are defined in (13) and (14), respectively.
The unknown matrices L,, and X, in V can be estimated by £,,(m,)
and £,,(m,). To estimate £,, we consider any px(p—k)C such that
C'E,,(my) C=0. Recall that rank £,,(m,)=%k. By (17) in the Appendix,
P{k =mgy} — 1 for all three cases. Thus, for all three cases,

i0 = 2}1%'(’"0) C(C’iww(mo) C)_l C,iww(mo)

P
— L.

Hence, we have an estimated covariance matrix V obtained by evaluating
V at £,,(m,), £,.(m,), and £,. We suggest the use of .(m), T,..(m), V,
the standard normal cut-off points, and possibly the delta method in
approximate inference for functions of the elements of X,, and X, . As
can be seen from Theorems 3, 4, and 6, this procedure is asymptotically
justified for Cases I and II, if some knowledge of m, is available. For
Case II1, the normal distribution based inference is not exactly appropriate.
But, for many functions, Wishart-based inference is difficult. By taking into
account the higher order terms in the common expansion of Theorem 6,
our normal approximation is expected to be practically adequate even for
relatively small n.
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6. SIMULATION

A simulation study was conducted to assess finite sample properties of
the asymptotic inference procedures developed in Sections 2-5. We consi-
dered Model (1) with p=4 and normally distributed b; and w;. We set
p =0, but p was estimated. For the sample configuration {(n, r), we chose
three sets, (50, 5), (50, 50), and (5, 50), loosely corresponding to Cases I,
II, and UI used to develop the asymptotic theory. Note that in many
applications »n =50 is not necessarily considered very large and r=150 is
unusually large. For the covariance components X,, and X, we
considered two parameterizations both of which have rank £,, =m,=2.

1 1 05 05 1 025 025 025
_ 1 1 05 05 loe2s 1 1 025
iy LW 0 _ i
O Ze=1os 05 1 1] Z*"|o025 025 1 025
05 05 1 1 025 025 025 1
(i) I =Xg), L) =30z

One way to characterize the parameter sets is to consider the roots of
[Z,, —7E,.] =0. For (i), y=1.714, 1.333, 0, 0, and for (ii), y = 0.057, 0.044,
0,0. Thus (ii) can be considered to be a case where L, of rank 2 is
relatively close to a rank | matrix while the rank of L, in (i) can easily be
detected to be 2. We first looked at the sample roots 4;s as defined in (2)
to see differences among the sample configurations and parameterizations.
Table I reports the empirical frequency of the number of 4/s larger than
one. The true rank of £,, being 2 implies that we expect exactly two roots
to be larger than 1. We note that this number is the rank of £,, in (3) with
m =4, the estimate with no information on the rank. For parameterization
(i), all the samples produced at least two roots larger than 1, but can

TABLE I
Frequency of the Number of Roots 4, Greater than One

Parameterization

() (ii)

number  (n,r)  (50,5)  (50,50) (5, 50) (50,5)  (50,50) (5, 50)
0 0 0 0 0 "0 1
1 0 0 0 0 60 126
2 212 262 677 599 269 722
3 703 688 321 331 670 151
4 85 70 2 10 61 0
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produce three or more roots larger than 1 quite often regardless of the sam-
ple configuration. For parameterization (ii), the number of roots larger
than 1 tends to be smaller than parameterization (i).

Even though the true rank of X,, is 2, we considered four different situa-
tions where a statistician believes the rank is at most m where m=1, 2, 3, 4.
The case with m =4 corresponds to that with no information on the rank.
As a summary, we report only on inferences for two parametric functions
Op11» the (1, 1) element of X,, and t, =0,,,,/(64s,; +0,.,), the intra-
class correlation for the first variable. The true values are

(G411, T1) = (1, 0.500), for (i),
=(1, 0.032), for (i1).

Tabie II presents the relative bias (bias divided by the true value) of each
of the four estimators corresponding to m=1, 2, 3, 4. For the estimator
with m = 1, the relative bias is large for parametrization (i), and in general
the bias does not necessarily decrease with larger n orr. This result is
consistent with the fact the estimator with m = 1 is not a consistent estimator
in the sense of Section 2. The relative biases of the estimators with m > 1
are very similar. For these estimators, the bias is not a serious problem
except for parameterization (ii) with either small #» or smallr. Large
relative biases for (ii) with small r are due to a combination of the difficult
parameter structure and the small true value of a positive parameter. For
parameterization (ii), the estimator with m =2 has a smaller bias than that

TABLE 1I

The Relative Biases (Bias/True Value) of the Estimators with m=1,2, 3, 4

Parameterization
(i) (i)
(n,r): (S0, 5) (50, 50) (5, 50) (50, 5) (50, 50) (5, 50)
Ospyy EStimator
m=1 —-0.294 —0.292 —0.166 0.184 —-0.274 0.007
m=2 0.012 0.006 0.019 0.591 0.022 0.200
m=3 0.019 0.007 0.020 0.637 0.038 0.208
m=4 0.019 0.007 0.020 0.638 0.039 0.208
7, estimator

m=1 —-0322 -0317 —0.291 0.171 -0.279 —0.022
m=2 —0.007 —0.007 —0.097 0.577 0.019 0.171
m=3 0. —0.007 —0.096 0.620 0.034 0.176
m=4 0. —0.007 -0.096 0.623 0.034 0.176
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with m=3 or m=4. TableIIl gives the mean square errors of the
estimators. The estimator with m=1 has a mean square error which is
either large or irregular (with relative to »n or r). Once again, the estimators
with m =2, 3, 4 exhibit similar behavior. For m =3 or m =4, the estimator
is different from that with m =2 only if /5 (or 4,) given in Table I is larger
than one. Even for such a case, 4, contributes to the estimator only
through Ay—1; ie., the part of i, larger than 1. Thus, when this part is
small relative to 4, — 1 and 4, — 1, the differences are small. For the difficult
case for estimation, 1.e., for (ii) with small #n or r, the estimator with m =2
seems to have a smaller mean square error than that with m=3 or4.
Hence, the under-specification of the rank seems to lead to a poor perform-
ing estimator, while the over-specification does not seriously hamper point
estimation except possibly for the difficult cases with small random effect.

To assess the usefulness of the aproximate inference procedure suggested
in Section 5, confidence intervals with nominal 95% of coverage were
computed. These are based on each estimate, the corresponding standard
error using V in Section 5, the standard normal percentile (1.96), and the
delta method for t,. Recall that this procedure based on a higher order
expansion and normal approximation is asymptotically valid for Cases I
and II and its use for Caselll does not have valid justification. For
Case 111, and asymptotically valid procedure is possible for some parametric
functions, using Wishart limiting distribution given in Theorem 3. For
O4p11s SUch a procedure is the chi-square confidence interval with n—1

TABLE Il

The Mean Square Errors ( x 100 for 1) of the estimators with m=1,2,3,4

Parameterization

(i) (ii)

(n,r): (50,5) (50, 50) (5, 50) (50, 5) (50, 50) (5, 50)

O4pqy EStimator

m=1 0.20273 0.24504 0.62424 1.45636 0.29814 1.17939
m=2 0.05809 0.04340 0.51607 1.75602 0.10434 1.18803
m=3 0.05788 0.04340 0.51701 1.80604 0.10435 1.18970
m=4 0.05789 0.04340 0.51601 1.80779 0.10436 1.18970
7, estimator
m=1 593730 5.53200 6.94470 0.14366 0.03189 0.10642
m=2 0.45376 0.26559 2.99960 0.17147 0.01007 0.10487
m=3 0.44039 0.26505 299310 0.17610 0.00998 0.10494
m=4 0.43971 0.26503 299310 0.17622 0.00998 0.10494
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degrees of freedom. We also computed such an interval using each of the
estimators with m =1, 2, 3, 4 for all (n, r) pairs. For each of these different
nominal 95% confidence intervals (8 for o,,,, and 4 for 7,), the percentage
of containing the true value over 1000 replications was obtained. Table IV
gives such results. As expected, the intervals based on the estimation under
the rank at most 1 have very poor coverage. The differences among those
based on m =2, 3, 4 are small for either V-based or 2 | -based procedures.
Comparing these two approaches with m =2, 3, 4, the V-based procedures
have larger (sometimes much larger) coverage than the y>-based, except for
parameterization (i) with (n, r)=(5, 50). The yx>-based procedure is
justifiable for large r cases, but does not seem to perform very well for the
difficult cases with small random effect (relative to error) and for small r
cases. The V-based normal interval, originally suggested as a possible
procedure regardless of the sampling configuration, in fact provides good
coverage properties over different cases, except for parameterization (i)
with small #. For small », the use of ¢ cut-off points withn—1lorn—1—m
degrees of freedom would improve the coverage. For parameterization (ii),
the over-specified rank (m=4) tends to decrease the coverage. Once the
maximum possible rank of a covariance component is reliably established

TABLE IV

Percentages of the Nominal 95% Confidence Intervals
Containing the True Values (Methods Based on V and x2 ).

Parameterization

(i) (i)

Method (n,r): (50,5) (50,50) (5,50) (50,5} (50,50) (5, 50)

Gy €stimator

A% m=1 59.4 54.0 66.2 87.1 64.6 85.1
m=2 93.7 94.1 825 954 94.2 92.9

m=3 94.2 94.2 82.5 96.7 95.3 94.5

m=4 94.3 94.2 82.5 95.2 95.5 89.7

7, m=1 54.3 559 80.7 19.4 47.1 74.8
m=2 89.7 940 93.8 270 79.0 84.1

m=3 90.0 94.0 93.7 269 79.5 84.2

m=4 89.9 94.0 93.7 26.9 79.5 84.2

7, interval

\% m=1 532 453 67.2 85.9 62.4 84.9
m=2 95.1 94.6 86.9 94.6 93.3 92.6

m=3 94.7 94.6 870 95.6 946 939

m=4 94.7 94.6 87.0 94.3 94.6 89.2
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{(e.g., using a test procedure in Anderson and Amemiya [7], and Remadi
and Amemiya [20]), we recommend estimation under the rank condition
and approximate inference based on V and normal or ¢ cur-off points.

APPENDIX

Proof of Theorem 5. We first note that (16) in the proof of Theorem 2
and the restriction m =m, imply

Pllk=my} -1 (17)

for all three cases. Thus, in deriving an asymptotic expansion, we can
consider £,,(m,) and £, (m,) with 12=m0. It turns out to be easier to
derive first the common expansion given in Theorem 6.

Note that for given C and D in (16), with probability one, Ch,=0 for
all i and Db, has a nonsingular covarinace matrix. Since the result is free
of the choice of C and D, we use, without loss of generality and with
possible reordering of variables, C and D given by

Cz(lpfmg’ —;B')” D=(07 Imo)"cznjulzvu’

where f is a myx(p—m,) nonzero matrix, £,=C%,,C, and X, =
CZ,.(0,1,)" Correspondingly, we assume that L,, has the form

Zu=(y ) Eulh L

"o

where £ is a m,xm, symmetric positive definite matrix. Note that
CE,,C=0, rank D=m,, and (C, D) is a p x p nonsingular matrix. Also,
Db, has the nonsingular covariance matrix X .

Using the expansion in Theorem 1 with I€=m0 and the fact that m,,, =

X+ 0,,(1/\/;), we can write

N 1 1
be(mo)—zbb":; [(m,, — (rZ + E,,)]1+ 0p< \/;)’
r

1
2ww(’nO)_Eww:=n'lww_zww-in Op ( )
T
Let P=m'2Q, T=m_?Q, and partition these matrices as

ww

. (P, P, T, T
P= 11 1 , T=< 11 12>’
<P21 pZZ) T‘21 TZZ
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where P,, and T, are (p —mg) x m, and Q is defined in (2). Define

1 . .
2){1 = ; p21(1\1 - Imo) P,21 >

B= (pan_ll)l = ‘Tzszzl-

Furthermore, if we let C = ({ P -—B")’ and A =T,,T{,, then

)-1
mwaAC’(mbb - mww) CAC’mww’

>
]
3
=i
=y

(19)
Q

l

o

where 2, is defined in (4) with 12=m0. See Amemiya and Fuller
[2, p.449]. Let S,,, S,.. S... S.., and S . be as defined in (16) with this
particular choice of C and D.

Multiplying the first equation in (18) by (0,1, ) on the left and by

(0,1,,,)" on the right, we get for all tree cases

£.=S.+0, (ﬁ)

Multiplying the first equation in (18) by C’ on the left and by (0,1,,))" on
the right, we get for all three cases

S+ 0, (—1——> (20)

. 1
—f=—8
A-p Jr r/n
Since 1/\/r S,x = 0,(1/y/nr), (20) implies that

é-c:op(—l—). (21)

T

Using the form € =C —E with E=[0, (f— ) ]’, we have for all cases

. N 1
C'(m,,,,—mww)C=Sw_X—Se,_,+O,,( ) (22)
r

n

Also, from (19), (21), and the fact that m_, =X, + 0,,(1/\/;17), we have
for all three cases

I 1
A=ZW‘+OI,<——>. (23)

N
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Now, using the second equation in (19), (21), (22), and (23), and the fact
that m,, =X + 0,(1//nr), it follows that
>. (24)

The result for Case II follows from (21) and (24). The approximation for
Cases I and I1I follow from the fact that £, =€, + O,(1/n) for Case I and
(1/r)(m,,, —E,,) = 0,(1/r /) for Case IIL

ny

1
Q,,= waczx; I(Sm' cx T S(‘c) zvrl Clzww + Op <
n r
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