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ABSTRACT 

The Gerschgorin circle theorem is used here to give sufficient conditions for the 
solution space of the difference equation x(m + 1) = A (m + 1)x(m) to admit a type of 
exponential dichotomy. The result obtained is then used to establish a result on 

regions of eigenvalue inclusion for the product of finitely many square matrices. An 
application to differential equations is also given. 

1. INTRODUCTION AND SUMMARY 

In [2] A. C. Lazer has given sufficient conditions for the solution space of 

the linear differential equation 

x’(t)=A(t)x(t) (1) 

to admit a type of exponential dichotomy. Here A(t) = ( aij( t)) denotes an 

n X n matrix valued function whose entries are continuous complex functions 

defined on the real line; and x(t) = col( x1( t), . . . ,x,,(t)) denotes a complex 
n-column vector. In order to paraphrase Lazer’s result we make the follow- 
ing definitions and conventions. 

For x = col(r,, . . . ,x”) we set 
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For any n X n matrix A = (uii) we set 

r(A))= 2 ICY+& 
/=I 

i#l 

DEFINITION. Let S be a subset of f4 = { 1,2,. . . , n}, and let 6 be a positive 
real number. We say that the matrix A = (a,J is (S, S) diagonally dominant if 
Re(u,)+r(A,i) < - 6<0 for each index iE S and Re(uii)- r(A,i) > 6 >0 for 
each index i EQ\S. 

DEFINITION. Let X denote the solution space of (1) and let 6 be a 
positive real number. We say that X admits a &comparative exponential 
dichotomy if X is the direct sum of two subspaces, X, and X,, such that 

I14tz)ll ( II+Jllexp%- 6J 

for every solution x in Xi, and 

if t, Q tz 

Il4CJll ) l14tJIlexp~(t2- 4 if t, < tz 

for every solution in X,. 

Lazer’s result states that if A(t) in (1) is (S, 6) diagonally dominant for 
each real t, then the solution space of (1) admits a S-comparative exponential 
dichotomy, and the dimension of X, is the same as the cardinulity of S. 
Lazer’s result was motivated by a result due to S. A. Gerschgorin [l] (which 
appears in [3]) which states that if A = (uii) is an rr X n complex matrix, then 
each eigenvalue of A is contained in one of the closed discs 

]z- aiil < r(A,i), i=l n. ,*a*, 

The appeal of Lazer’s result is that his hypotheses concern only the entries of 
the coefficient matrix A(t) in (1). 

In Sec. 2 of this paper we use techniques similar to those of Gerschgorin 
and Lazer to give sufficient conditions for the solution space of the linear 
difference equation 

x(m+l)=A(m+l)x(m), m=O, 51, &2,... (2) 

to admit a type of exponential dichotomy. As in [2] our hypotheses concern 
only the location of the Gerschgorin discs for A(m). 

In Sec. 3 we use the result of Sec. 2 to prove a purely linear algebra result 
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concerning the eigenvalues of the product of a finite number of square 
matrices. 

Finally, in Sec. 4 we give an application to differential equations by 
showing that any equation of the type (1) which satisfies Lazer’s hypotheses 
gives rise to an equation of the type (2) which satisfies our hypotheses. 

2. DIAGONALLY DOMINANT DIFFERENCE EQUATIONS 

Throughout this paper we denote the set of integers by Z and observe the 
following conventions: 

Zn={n,n+l,...}, Z”={ . . ..n-1.n). 

DEFINITION . We say that the coefficient matrix A(m) in (2) is (S, S ) 
diagonally dominant with respect to the unit circle if S is a subset of a and 6 
is a positive real number such that 1 uii (m)l + r(A (m), i) < 1 - S < 1 for each 
iES, and la,,(m)J-r(A(m),i)>1+6>1 for each iEG?\S. Throughout we 
assume A(m) to be nonsingular on Z. 

THEOREM 1. Let A(m) in (2) be (S,6) diagonally dominant with respect 

to the unit circle for each integer m. Let k be the cardinulity of S. Then each 

of the following statements holds. 

(a) There exist k independent solutions y’, . . . , y k of (2) such that if x is 

any nontrivial solution of (2) of the fnm 

x(m)=cw, y’(m)+ .a* +akyk(m), 

then e 

IIdm)ll Q II~P)II(~-~)~-~ ifpPm. 

(b) There exist n - k independent solutions zl,. . . ,znpk of (2) such that if 

x is any nontrivial solution of (2) of the form 

x(m)=a,z’(m) + f * f + an_kz”-k(m), 

then 

Ilx(m)ll > II~P)II(~+~)~-~ ifp<m 

(c) The solutions y’, . . . , yk, z?, . . . ,znwk form a basis for the solution space 

of (2). 
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The proof of Theorem 1 uses four preliminary lemmas. 

LEMMA 1. Uruhr the assumptions of Theorem 1, if x is a nontrivial 
solution of (2) such that ~~~(rn~)~~=~x~(rn,,)~ fm some j~a\S, then IIx(m)ll 
=Iq,(m)l with hEQ\S for every integer m>m,. Furthermore, Ilx(m)ll 

2 II~(%NlP + v- mu whenever m > m,. 

Proof. We have by (2) and our hypotheses that 

l$m0+ l)l> la&m,+ l)l*I$mJl- $, la&b+ WI+dl 
k#j 

~{l~~~~o+~~l-~~~~~~+~~y~~}ll~~~~~ll. 

Since i E ti2\ S, the above inequality and our hypotheses show that 

(3) 

for at least one hEQ\S. 
If i E S, we have by our hypotheses that 

~P4114m0)ll (4 

Comparing the above inequality with (3) establishes Lemma 1 in the case 
m = m, + 1. The cases m = ma + p, p > 1 follow by induction. n 

LEMMA 2. Under the assumptions of Theorem 1, if x is a nontrivial 
solution of (2) such that IIx(m,,)lj =lx~(m,)l for some iES, then Ilx(m)ll 
=Iq,(m)l with hES fm every integer m<m,. Furthermore, Ilx(m)ll(l- 
,)%-m 2 Ib(mdl fm every m<mW 

Proof. Assume on the contrary that Ilx(m,,- l)ll= Iq,(m,- 1)l for some 
hEO\S. Then by Lemma 1, Ilx(m,)jl =Ixl(m,,)l for some I EQ\S. Applying 
inequalities (3) and (4) to this situation gives that 

for every index p E S which contradicts our hypotheses. Thus Il~(m,,- l)ll 
= Ixh(mO- 1)l for some h= S. 
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Now 

for every ~EQ. By the above inequality and our hypotheses we have that 

which establishes Lemma 2 in the case m = ma - 1. The cases m = ma - p, 
p > 1 follow by induction. n 

The above two lemmas remain true if we allow A(m) to be singular. 
However, the next two lemmas require that A(m)- ’ exist for all m E 2. 

In the following K denotes the complex field. 

LEMMA 3. Unakr the assurnptims of Theorem 1, for each positive 
integer q there exists a k-dimensional subspace Vg of K n such that if x is a 
nontrivial solution of (2) with x(0) E Vg, then IIx(m)ll is strictly increasing on 
z -9’ 

Proof. Let R be the k-dimensional subspace of K n defined by 

R= {col(yl,..., y,)ly,=OifiES}. (5) 

Denote by Y( j,Z) th e unique n X n matrix defined for all ( j, 1) E Z X Z such 
that 

Y(j+l,Z)=A(j+l)Y(j,I), Y(Z,Z) =I. 

Let Vq be the subspace of K” defined by 

V,={cEK”lc=Y(O, -q)a, PER} 

By the nonsingularity of Y(0, - q) we have dim Vq = dim R = k. If x is a 
nontrivial solution of (2) with x(O) E Vq, then 

x(O) = Y(0, - q)a = Y(O, - q)x( - q), 

so x(-q)=aER. From (5) we have that IIx(-q)II=Ixi(-q)l for some 
jEfit\S. Thus by Lemma 1, lI~(m)ll is strictly increasing on Z_,. n 

LEMMA 4. Under the assumptions of Theorem 1, for each positive 
integer q there exists an (n - k)-dimensional subspace Wq of K n such that if 
x is a nontrivial solution of (2) with ME Wq, then Ilr(m)ll is strictly 
decreasing on Zq. 
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Proof. Let R be the (n - k)-dimensional subspace of K n defined by 

R={col(y,,..., y,)Iyi=Oif iEO\S}. (6) 

Let Y(m) be the unique n x n matrix function defined for all integers rn so 
that 

Y(m+l)=A(m+l)Y(m), Y(0) = 1. 

Define the subspace Wq of K” by 

By the nonsingularity of Y( 9) we have dimW,=dimR=n-k. If x is any 
nontrivial solution of (2) with x(0) E Wg, then x(0) = Y -‘(9)a for some a E R. 
But since x(O)= Y -‘(9)x(9), we have that x(9)= UE R. Thus from (6) we 

have Ilz(9)ll = l49)l f or some h ES, so by Lemma 2 Ilx(m)ll is strictly 
decreasing on 24. n 

In the following, if c is a column matrix, c* will denote the row matrix 
which is the conjugate transpose of c. 

Proof of Theorem 1. For each positive integer 9, let Vq be the k- 
dimensional subspace defined in Lemma 3, and let { 1~41 i = I,. . . , k} be an 
orthonormal basis for Vq, i.e., such that 

ci*ci=O fori#j andci*ci=l. 

By the compactness of the unit sphere in K “, there exists a sequence of 
integers { 91} and vectors ci E K “, j = 1,. . . , k, such that 

~~Ici-c,$=O, i=I ,..., k. 
+ 

Clearly c’*ci=O for i#i, and c’*c’=l, i,i=l,..., k. 
Now let yr,..., yk be the solutions of (2) defined by the initial conditions 

y’(O)=&, j=l,...,k, 

which, by their independence at zero, are independent. Let x be any 
nontrivial solution of (2) of the form 
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For each integer 1 = 1,2,. . . , let q(m) be the solution of (2) satisfying 

xl(o) = y,c;, + . . . + &Cl. 

Now x,(O) E Vqi, so by Lemma 3 we have that 11 xl(m)11 is strictly increasing on 
Z -q* 

Next observe that, for m > 0, 

II+) - dm)ll < 

and that for m < 0, 

Since 
( 

m-1 

Il4m) - 4m)ll G II IIA-Y-iNr II@h(0)Il. 
i=O 1 

Ilx(o)-x~(o)ll g i$I IY~l~lci-c~,l+o as l-+cn, 

we have by (7) and (8) that 

11x(m)- xl(m)ll+O as &co, mEZ. 

7th Ill+)ll- IIdm)llI+0 as &co, which shows that Ilx(m)ll is nonde- 
creasing on Z. Now let m, and mz be integers such that m,< m,. If 

Il4Wl = Iq(mJl f or some i E S, then by Lemma 2 we would have II x(ml - 

1)ll > IIx(m,)ll, contradicting the fact that Ilx(m)ll is nondecreasing. Hence 

Ilx(m~)ll = Ixj(mJl f or some j~!J\s, so by Lemma 1 we have that IIx(rn&ll 

a Ib(m,)ll(l+ 6Yrnl, which establishes statement (a). 
The proof of (b) follows analogously to the proof of (a), using the subspace 

Wq of Lemma 4; it is omitted. 
To establish (c) we note that if the solutions y’, . . . , yk, d,. . . ,znek were 

not independent, there would exist a nontrivial solution x of (2) such that 
Ilr(m)ll would be both strictly increasing and strictly decreasing on 2, which 
is absurd. n 

3. AN APPLICATION TO MATRIX PRODUCTS 

Using Theorem 1 we are now able to give estimates for the moduli of the 
eigenvalues of a product of finitely many n X n matrices. 
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THEOREM 2. Let A (l),A(2), . . . , A(p) be n x n complex nonsingular 

matrices and let A(k)=(+(i(k)) for l< k< p. Let 

and 

Let [ct, d,], 1 = 1, . . . , s, denote the components of u ;_ Jai, pi]. Let ni be the 
number of indices i such that [ai,pi] G [ci, di] for 1 < i < s, and kt I’= A (1) 
A(2)-. . . .A ( p). Then P has exactly ni eigenvalues x (counting multiplicities) 
such that 

We remark that this result can be considered as an extension of 
Gerschgorin’s theorem, since it follows from Gerschgorin’s theorem when all 
of the matrices are equal. 

The proof of Theorem 2 uses one preliminary lemma. 

LEMMA 5. Let S denote a subset of !l= { 1,2,. . . ,n}, and let k be the 
cardinulity of S. Let B(l), B(2), . . . , B( p) be non-singular n X n comphx 
matrices each of which is (S, 6) diagonally dominant with respect to the unit 
circle. Let I’= B(l)B(2)- - . . .B( p). Then P bus exactly k eigenvaues X such 
that ]A] < (l- 6) P and exactly n - k eigenvalues h such that ]A] > (1+ 8)” 
(counting multiplicities). 

Proof. Define matrices C(m), m E 2, by 

C(rp+j)=B(p+l-i) for 19 j< pandrEZ 

and consider the difference equation 

x(m+ 1) = C(m+ 1)x(m), mEZ. (10) 

Note that the difference equation (10) satisfies the hypotheses of Theorem 1. 
Thus if V denotes the solution space of (lo), it follows from Theorem 1 that 

where 

v= V,@ v,, 
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for any solution x E V,, and that 

for any solution x E Vs. Furthermore, dim V, = k. Now note that if x(m) is 
any solution of (lo), then 

x(r2p)=P~2-?r(r1p), r,,rsEZ. (13) 

Thus it follows from (ll), (12), and (13) that if W denotes the solution space 
of the difference equation 

!Am+l)=Q(m) 
then W= W,CB W, where 

II !/ha ( II Yhll(l-~)P(mp-ml)~ m,<m, 

for any solution y E W,, and 

II y(+Jll) II yhM~+~)p(m”-ml)~ m,<m, 

for any solution y E W,. Furthermore, dim W, = k. The lemma now follows 
from these observations. n 

Proof of Theorem 2. Without loss of generality, assume that 

c,<d,<c,<d,<... <c,<d,. 

First let i be any index such that 1 < j < s. Let 

y=@_,+cJ, S=i(+_,). (14 

Let B(m)=(l/y)A(m), 1 <rn < p, and let B(m)=(b,,(m)). Note that if 
[ai,Pi]C(-~,di-r], then by (14), 

,,m,k~p{,bii(k),+r(B(k),i)}=+<+= l- ay-1. (15) 

Let Si be the subset of &?={l,..., n} for which (15) holds. Then i EO\S, 
implies [ai,&] c [ci, co), and using (14) we compute that 

min {~bij(k)l-r(B(k),i)}=~>~=l+8y-1. 
l<k<p (16) 
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Now let q1 be the number of indices in S1• Then by (15), (16), and Lemma 5 
we conclude that the matrix T=B(l)B(2)· · · · ·B(p) has exactly q1 eigenva­
lues A such that IAI..;; (1- y-18)P and exactly n- q1 eigenvalues A such that 
IAI ~ (1 + y-18)P (counting multiplicities). Now A is an eigenvalue ofT iff AyP 
is an eigenvalue of P. Thus P has q1 eigenvalues A such that IAI < [ y(l­
y-18)]P, and n-q1 eigenvalues A such that IAI>[y(l+y- 18)]P. But from 
(14) we have that 

y(l-y-18)=d1_ 1 and y(l+y- 18)=c1. 

We have therefore established that if 1 < i..;; s, there are exacJ].y q1 = n1 + 
n2 + · · · + n1 _1 eigenvalues A of P such that I AI..;; df_ 1 and exactly n- q1 
= n1 + · · · + n8 eigenvalues A such that IAI > cf. To complete the proof we 
must show that there are no eigenvalues A of P such that either IAI > df or 
lA I < c1 (in the case c1 > 0). _ 

Now assume that l\,1 > df for some eigenvalue \, of P. Let ~ be a real 
number such that 

~ds < 1 <~l\,11/p, (17) 

and let C(k)=~(k), 1..;; k..;; p. Then for C(k)=(c~,~(k)), we have 

lc;;(k)l + r( C(k), i)..;; ~ds < 1, 

By Lemma 5 we conclude that IAI < 1 for every eigenvalue A of U= C(l)C(2) 
· · · · ·C(p). But A is an eigenvalue of P iff ~PAis an eigenvalue of U. Thus 
IAI < 1/~P for every eigenvalue A of P. Using (17) we have that 

IAol < ~~ < df, 

contradicting our assumption. Thus IAI..;; df for each eigenvalue A of P. 
If we assume the existence of an eigenvalue A of P such that IAI < c1 

(where c1 ~ 0), a similar argument produces the desired contradiction. • 

4. AN APPLICATION TO DIFFERENTIAL EQUATIONS 

Let x denote any nontrivial solution of the differential equation (1). For 
v>O we define the function y(m) on Z by y(m)=x(mv). Let X(t) denote 
the fundamental matrix for (1) such that X(O)= !=identity. Then y(m) 
=X(mv)x(O), so y(m+l)=X(mv+v)X- 1(mv)y(m) for each mEZ. Defin-
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ing CO(m + 1) = X(mu + u)X -‘(VW), we have that the differential equation 
(1) gives rise to the difference equation 

y(m+l)=C”(m+l)y(m). (18) 

The following result shows that, from the viewpoint of diagonal dominance, 
(18) is a generalization of (1). 

THEOREM 3. Let A(t) in (1) be uniformly continuous and bounded on 
[O,w). Zf A(t) in (1) is ($6) d ia g onally dominant for each t E [0, co) there 
exist positive numbers P and 77 such that C”(m) in (18) is (S,P) diagonally 
dominant with respect to the unit circle for all 0 < v < 17. 

The proof of Theorem 3 uses one preliminary lemma. 

LEMMA 6. Let A(t) be as in Theorem 2, and let X(t) denote the 
fun&mental matrix for (1) such that X(0) = 1. Then 

II ~[X(t+p)X-l(t)-Z]-A(t)I(-tn 

unifnmly on [0, co) a.s PLO. 

Proof. Let A(t) < M, t E [0, co). Since 

we have that, for each p E [0, co), 

which, by application of Gronwall’s lemma, gives that 

which in turn shows that 

IIX(t+y)X-l(t)-ZII<eW-l+O uniformly as p&O. (1% 
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x [X(t+u)X-‘(+I]&& 

the result follows by (19) and the uniform continuity of A. W 

Proof of Theorem 3. For A (t) = ( uii (t)) write u,~ (t) = h(t) + ip( t), where A 
and p are real functions. For real 0 note that 

(l+ua,,(t)l=~l+2oX(t)+o”[P2(t)+~2(t)] . 

Let a(v, t) = 24 t) + u2[ p2( t) + A2( t)]. Then we have that 

PO) 

j/l+a(u,t) =l+ba(v,t)+a2(u,t).~(a(v,t)) (21) 

where ~(u(u,t)) is O(ju(u,t)l). 
Since lu(u, t)l < 2)ulM+2u2M2, we get that 

Gw)) +. 
I44 

uniformly on [0, ~0) as u-0. 

From (20) and (21) we write that 

~l+uu,,(t)J=l+uX(t)+u2 [ p2@);02@) +( q,iu(u,t))] (22) 

Now let b(u,t)=Il+uuji(t)l-[l+uA(t)]. For (uJ<l sufficiently small that 
Ic(a(u,t))l< lu(u,t)l, we have from (20), (21), and (22) that 

Ib(u,t)l< M2+(2M+2~ulM2)lu(u,t)~2~ M2+(2M+2M2)3. 
Thus 

~l+uui,(t)(=l+uX(t)+u%(u,t), (23) 

where b(u, t) is bounded on [0, co) for sufficiently small u. Now by 
hypotheses we have that, for i E Q\ S, 

A(t)>r(A(t),i)+& tE[O,co). 
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Using (23) and the above, we have, for u > 0, that 

I’+~~~i(t)I-l~Ir(A(t),i)~Il+~~,~(t)l-~[X(t)-~]~ 
SO 

Il+uu,,(t)l-lulr(A(t),i)> l+u6-u2b(u,t), 

For i E S we have by hypothesis that 

A(t)< -r(A(t),i)-6, =[0+), 

which the reader, using (23), can verify gives that 

Il+uuii(t)~+lu~~(A(t),i)<l-u8+u2b(u,t), 

i E!J\S. 

i E S. 

39 

(24 

(25) 

We now define the n x n matrix-valued function C”(t) = c{(t) by C”(t) 
=X(t+u)X-‘(t). By Lemma 6 we have that 

C”(t)=Z+uA(t)+u+,u), (26) 

where IIc(t,u)11 0 --+ uniformly as u+O. From (26) it follows that 

~lc~(t)l-ll+Duii(t)l~’ ull’(t?u)ll~ iEfl\S, 

so we have, for i E !Ylt\ S, that 

I1+uu,i(t)l-Ull~(t,u)ll ( Jcl(t)] ( (l+uu~~(t)~+ullr(t~u)~~~ 

Similarly, (26) gives that 

(27) 

Ir(C”(t),i)-lulr(A(t),i)l<ulle(t,u))l, iEQ\S, 

so, for i E St\ S, 

Iulr(A(t),i)-ull~(t,u)ll< r(C’(t),i) < lul~(A(t),i)+ull~(t,~)II. (28) 

Now using (23) and (27) we conclude, for i EWS, that 

Icl(t)l-r(CD(t),i)> l+m3-u2f%(u,t)-2uJIc(t,u)(l. (29) 

Since b(u, t) is bounded for sufficiently small u, ub(u, t)+O uniformly as 
u-0. Thus we may choose 77 so small that 

~-~~~~17~~)+~11~~~~~)111~~. PO) 
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Letting P=u{s-[9b(77,t)+211~(t,~)ll]}, we have that fi >O and, from (29) 
and (30), that 

Ic~(t)l-T(C”(t),i)al+p, E[O,co), iEQ\S, o<u<?j. 

Similarly, using (25) and (28), we have, for i E S, that 

Ic;(t)l+r(C”(t),i) < l-u[&ub(u,t)]+2u~lE(t,u)ll, 

and so by (30), for q and p as above, we have that 

jc;(t)l+r(c”(t),i)<l+, tE[O,oo),iES,O<v<q. 
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