
Theoretical
Computer Science

ELSEVIER Theoretical Computer Science 2 19 (1999) 1855 223
www.elsevier.com/locate/tcs

On approximate and algebraic computability
over the real numbers

Armin Hemmerling *

Ernst-Moritz-Amdt-Universitiit Greifswald, Imstitut fir Mathematik und Infbrmatik,

F.-L.-Jahn Str. ISa, D-I 7487 Greifswald, Germany

Abstract

We consider algebraic and approximate computations of (partial) real functions f : R” ti R.
Algebraic computability is defined by means of (parameter-free) finite algorithmic procedures.
The notion of approximate computability is a straightforward generalization of the Ko-Friedman
approach, based on oracle Turing machines, to functions with not necessarily recursively open
domains.

The main results of the paper give characterizations of approximate computability by means of
the passing sets of finite algorithmic procedures, i.e., characterizations from the algebraic point
of view. Some consequences and also modifications of the concepts are discussed. Finally, two
variants of arithmetical hierarchies over the reals are considered and used to classify and mutually
compare the domains, graphs and ranges of algebraically resp. approximately computable real
functions. @ 1999 Elsevier Science B.V. All rights reserved.

Keywords: Computable real function; Computable real number; Abstract (algebraic)
computability; Approximate computability; Arithmetical hierarchies over the reals

1991 MSC: 03D65, 03F60, 03D10, 03D55, 26E40, 68405

1. Introduction

The intuitive notion of computability over the natural numbers and other discrete

sets of objects has a well-defined and generally accepted meaning. This is usually

expressed by Church’s Thesis. On this basis, classical theory of computability (as well

as of computational complexity) deals with fundamental abilities and limits of real

world computers applied to discrete problems.

With respect to the ordered field of real numbers, “perhaps mathematics’ most basic

structure” [6], the situation is different. There is a variety of approaches, each with its

own motivations, methods and results, which are partially incomparable among each

* E-mail: hemmerli@rz.uni-greifswald.de.

0304-3975/99/$-see front matter @ 1999 Elsevier Science B.V. All rights reserved.

PII: SO304-3975(98)00289-8

186 A. Hrmmerlingl Throrrticul Computer Sciencr 219 (1999) I&‘-223

other. In this paper, we consider two fundamental points of view which lead to different

variants of computability over the reals. It should be noticed that some features of these

two positions once more reflect the old conflict between the view of the infinite as only

potential or constructive and its treatment as actual or existential. The former position

goes back to Aristotle, the latter one was taken by Cantor, cf. [13, 191.

The first point of view is based on the postulate that only discrete, finitary entities

can be stored in and processed by physical devices. Therefore, to apply computations

to continuous objects like the real numbers, these objects have to be represented by

discrete ones. Of course, such representations can only be approximate, with a certain

degree of inaccuracy. Nevertheless, real numbers can be named by (infinite) sequences

of discrete objects which converge to them, and classical discrete computation devices

can be used to perform calculations over the reals by means of such approximating

sequences. There are several implementations of this basic idea, starting with Turing’s

seminal contribution [37]. Throughout the present paper, by approximate computabil-

ity, in the narrower sense we understand that concept which has more recently been

defined and investigated by Kc+Friedman, Weihrauch and others, see [21,20,38,39]

for detailed presentations of the origins and the state of the art.

For the second group of approaches, we imagine a programmable calculator able

to store and to process arbitrary real numbers with absolute precision. Its basic op-

erations consist in assigning, to some destination register, either a base constant (0

or 1) or the result of a base operation (+, -, .,/) applied to the contents of source

registers. The execution of jumps will depend on the validity of an order relation (<

or <) between the contents of two registers. Moreover, a halt instruction is needed.

The “finite algorithmic procedures” [9] built in this way are already sufficient to per-

form all intuitively imaginable algebraic computations in the ordered field of real

numbers.

Obviously, this is only a special case of a straightforward concept of computability

over an arbitrary algebraic structure given by a universe of objects and by base costants,

operations and relations. In order to enable a program to deal with arbitrarily many

registers, some kind of indirect addressing is additionally needed. These and more

or less related notions of algebraic computability were developed and investigated

by several authors, first explicit presentations are by Janov [171 and Engeler [7]. For

further discussions, we refer to [1,8,9, 11, 18,3 1,361.

From the algebraic (or formalistic) point of view, it is less interesting if there exist

physical devices that perform operations or decisions between real numbers with exact

precision. There are rich theories of general program schemes [23] and of computability

over general data structures [34], computational geometry [28] is widely based on the

model of real RAM, and the BSS theory of computability and complexity over the

reals [2, l] produced many interesting results and put new questions. On the other hand,

digital computers surely can process only discrete objects. Thus, one could conclude

that only the approximate point of view can lead to a genuine theory of computability

and complexity over the reals. So either of the two approaches has its own justification,

advantages and also disadvantages.

A. Hemmerling I Theoretical Computer Science 219 (1999) 185-223 187

At first glance, the two settings seem to be rather contrary to each other. They

use different tools and methods, and the results and problems of one of the both are

often not meaningful or even not expressible within the framework of the other one.

Moreover, the communities of the followers were nearly disjoint for a time. Up to few

years ago, Friedman [9,21] and Shepherdson [30-321 were the only authors who had

worked in both directions.

More recently, Weihrauch, Hertling and Brattka [12,4] made some attempts in study-

ing the real RAM model from the approximate point of view or to modify it in order

to get a closer relationship to approximate computability, also with respect to time-

complexity measures. Meyer auf der Heide and Wiedermann [24] proposed a still more

realistic RAM model which processes floating point representations of some precision

instead of real numbers. Hotz et al. [16, 1.51 used infinite converging computations on

BSS-like machines with rounding operations in order to approximate real functions.

Boldi and Vigna [3] studied semi-decidable subsets of the reals by using both approxi-

mately working Turing machines and special algebraically working BSS machines. The

recent contribution by Zhong [40] considers semi-decidability from the two points of

view, too. For a general, alternative approach based on partial algebras, the reader is

referred to Tucker-Zucker [35].

In the present paper, we show how approximate computability can be defined and

investigated by means of algebraic machines or programs. It will even turn out that the

approximate and the algebraic computability are directly complementary to each other.

They simply represent the two sides of the same coin: whereas algebraic computability

is defined by means of the finite, halting computations, approximate computability is

related to the infinite, never halting computations.

More precisely, we consider parameter-free algebraic programs (finite algorithmic

procedures, briefly: FAPs) over the ordered field of real numbers. If we restrict the

partial real functions f : Rid F+ Iw which are computable by such programs to inputs

of rational numbers, we obtain just those functions fo : Qd >-t Q which are classically

computable (via some standard encoding of the rational numbers). Thus, we deal with

a rather natural concept of algebraic computability. Of course, it violates a fundamen-

tal thesis of approximate computability which says that all computable functions are

continuous.

In order to characterize approximate computability, however, we only have to

consider the infinite, never halting computations of algebraic programs. Indeed, any ap-

proximately computable function f can straightforwardly be obtained from the (d + l)-

dimensional passing set of a (robust) FAP. This is the set of all real (d + l)-tuples

which do not belong to the program’s halting set. It will turn out that f is ap-

proximately computable if and only if its graph, i.e., the set ((~1,. . . , rd, ro) E Rd+’ :

f(v,..., rd) = ro}, coincides with such a (d + 1)-dimensional passing set considered

as a relation from Rd to R and restricted to those d-tuples on which it is unique. So

we obtain a characterization of approximate computability from the algebraic point of

view. In particular, it does not depend on any naming system or representation of the

reals by (sequences of) finitary objects.

188 A. Hemmerlingl Theoretical Computer Science 219 (1999) 185-223

The paper is organized as follows. In Sections 2 and 3, we recall and modify suitably

the fundamentals concerning algebraic and approximate computability, respectively, and

introduce basic notations and techniques used in the sequel. Approximate computability

is here defined by generalizing the Ko-Friedman approach to functions with not neces-

sarily recursively open domains. Section 4 presents a first characterization of approx-

imate computability by means of FAPs. Section 5 discusses the concepts and results

and shows some consequences and further relationships. In Section 6, we introduce

two variants of arithmetical hierarchy over the reals and apply them to classify and

compare mutually the domains, graphs and ranges of computable functions. We close

with some final remarks.

2. Algebraic computability

The reader is supposed to be familiar with the basic notions and results of classical

recursion theory. This is the theory of computability concerning functions in the natural

numbers, f : N e+ N, word functions f : A* F-+ A*, for (always finite) alphabets A, or

functions of more complicated and even of mixed types like f : Ndl x (A*)d2 H Nd3,

for some dl,dz, d3 E N+, and so on. In the sequel, these fundamentals will be applied in

a rather informal manner. Moreover, we shall deal with several objects, like formulas,

tuples of rational numbers, rational intervals, etc., which are straightforwardly encodable

by natural numbers or words. Thus, the classical theory of computability can be applied

to those domains via the corresponding encodings. To improve the readability of this

paper, we then often do not explicitly distinguish between the objects and their codes.

We want to study computability in the ordered field of real numbers,

!Jf= (R; 0, I;+,-,.,/; G),

where the division is simply thought to be a total operation: let r/O = 0.

Formulas of the first-order language with equality over 9 (briefly: FO-formulas)

will be denoted by Greek letters like cp, $, If cp contains (at most) the free

variables x1 ,. . .,xd, we also write Cp(Xt,. . . ,xd) or Cp= q(Xt,. . . ,Xd). By replacing si-

multaneously variables Xi by numbers ri E R, for 1 < i 6 d’ with some d’ <d, from

cp the quasi-formula (p(r1,. . . , rd’,X&+l, . . , , Xd) is obtained. This can also be consid-

ered to be an FO-formula over the extended structure 3 = (R; R; +, -, .,/; <). No-

tice, however, that ?% is a structure of infinite signature. For L&terms t = t(xl, . . . ,xd),

we use the corresponding symbolism. .L% k cp(rl,. . I) rd) means that cp(rl,. . . ,rd) is

valid in 9’. We write 9 t= q(xt,. . . ,xd) if cp(r1,. . . ,rd) is valid in 9, for any tuple

(rt , . . . ,rd) E Rd. Formulas &, , . . . &) and l/+(x, , . . . ,xd) are said to be (L%‘-) equiva-

lent if %?+&xt ,..., xd)f-‘$(xt ,..., xd).

Quantifier-free formulas can be translated into equivalent disjunctions of conjunctions

(the latter are also called systems) of rational polynomial inequations, each of the form

Ph ,..., Xd)>o or p(xt ,..., xd)<o, where p(x~,..., xd) denotes a polynomial in the

variables xl,. . . , xd with rational coefficients. Notice that we do not distinguish between

A. Hemmerlingl Theoreticul Computer Science 219 (1999) 185-223 189

base constants, operations and relations of structure 9 and the symbols denoting them;

> denotes the negation of < . Rational numbers stand for variable-free 9-terms having

them as values. FO-formulas and terms are considered to be words over a suitable

finite alphabet. To this purpose, the indices of variables are binarily encoded. The

translation just mentioned can effectively be performed: it is executable by a recursive

word function,

A formula cp = cp(xi, . . . , Xd) represents the following set of d-tuples,

set(q)={(ri ,..., Td)E[Wd: 6@?kqcp(ri ,..., Yd)}.

A set S C IWd is called FO-representable if there is an FO-formula representing it.

As a tool which will be used throughout the paper, we recall Tarski’s fundamen-

tal result that W (like every real closed field) admits effective quantifier elimination,

cf. [33,6].

Tool 1 (EQE: Effective Quantifier Elimination). There is a recursive function @ such

that, for every FO-formula cp = cp(xl, . . . , xd), @(q) is an B-equivalent quantifier-free

FO-formula in the same variables x1,. . . ,xd.

In particular, FO-representable sets can always be represented by quantifier-free for-

mulas. The corresponding result follows for quasi-formulas which may contain arbitrary

real numbers, so-called parameters. The sets representable by means of quasi-formulas

are just the semialgebraic sets considered in real algebraic geometry. We here are

mainly interested in the parameter-free case, however.

By a finite algorithmic procedure (briefly: FAP), we mean a sequence d =(Bo;

B1;. . . ; B,) of instructions Bj, of the following types.

Assignments: XjI=C (CE{OYl)) and

Xj I= Xj, WXj2 (~E{+,-_,~,/));

branchings: ifxj, dxj, then goto 11 (A.1 E (0, l,..., 1));

stop instructions: halt.

The indices of variables, j,ji, j2, have to be constant positive natural numbers. Thus,

a FAP acts only on finitely many variables explicitly given in it. Moreover, we suppose

that the last instruction is the only stop instruction: BI = “halt”, and Bj, #“halt”, for

O<E,< 1. Computations always start with the first instruction Bo.

The meaning of the instructions and the step-by-step working of an FAP are straight-

forward, cf. also the definition of the computation tree below. Let an FAP .d act on

the variables xi , . . . ,xd,Xd+l and, possibly, some further auxiliary variables. Then, with

respect to dimension d, it computes the function Fd,d defined as follows.

For all (r-l,..., rd) E [Wd, let &,dh , . . . , rd) be defined if and only if procedure .aj’,

starting with the values r; in the variables xi, for 1 <i <d, and with value 0 in

all its other variables, stops after finitely many steps of working. In this case, let

Fd,d(?-i,. . . , rd) be equal to the last current value of variable Xd+i.

190 A. Hemmerlingl Theoreticd Computer Science 219 (1999) 185-223

A real function f : Rd H R is said to be algebraically computable if there is a FAP

JZ! such that f =Fd,d.
This concept is already strong enough to include all real functions of fixed arities

which are intuitively computable in 5? from the algebraic point of view. Even if we

would allow the use of more comfortable storages like stacks of real numbers or if we

would consider the parameter-free variant of Friedman’s effective definitional schemes

[9] or parameter-free BSS machines [2], we would obtain the same set of computable

functions from some Rd into R. This was pointed out by Friedman and Mansfield [lo].

Of course, in order to compute string functions over $3, i.e., to process arbitrarily long

input sequences of reals, one would need some implementation of indirect addressing

like in the BSS machines, cf. [2, 111. This aspect, however, is not the subject of the

present paper.

The naturalness of our concept is also stressed by the fact that the restrictions of

algebraically computable real functions to input tuples of rational numbers yield just

those functions g : Qd ++ Q which are classically computable via some standard en-

coding of the rational numbers, p.e., by pairs of integers. This fact easily follows from

the definition of FAPs, and also from the proposition below in this section.

To analyse the actions of an FAP d = (Bo; BI ; . . ; Bl) in more detail, one considers

its computation tree yd. This usually is a connected directed binary tree whose paths

correspond to the possible computations of d. As it has been done in [I l] for a

more general setting, here the vertices v of & are identified with the non-empty

finite sequences of indices of the instructions that are performed up to reaching the

corresponding situation: v E (0, 1, . . . , l}+. So the computation tree can inductively be

defined as follows.

The word 00 = 0 is the root of &.

Avertexvi,u~{O,l,..., 1-l}*,%~{O,l,..., 1},
_ has no son iff BJ~ = “halt”;
_ it has a son ~13’ iff ” ”

* BA is an assignment and ;1’ = i + 1, or

* BA is a branching instruction “if xj, <xi, then yoto 21” and L’ = EL + 1 or

/1’ = 2,.

Obviously, the set of vertices of $C is a recursive set of words in the alphabet

(0, 1,. . .) 1).

To every u=I~~~~~&,E{O,~,..., I}+ and any dimension d, we assign the set of all

input tuples which lead to vertex v in the computation tree of JZZ. More precisely,
_ if v is a vertex of JY~, then

Wd(V)={(T*,...,~d)E[Wd : starting with the input tuple (~1,. . . , rd),

procedure ~4 performs the sequence of

instructions Bl, , . . . , BAG, in the first m steps};

_ if v does not occur in &, then wd(v) = 0.

For example, if v1 and 212 are vertices of Yd, &(et) s wd(2)2) iff the word 02 is an

initial segment of 01.

A. Hemmerliny I Theoretical Computer Science 219 (1999) 185-223 191

It immediately follows from the inductive definition that the computation tree of a
FAP can effectively be generated, successively up to any finite level. This corresponds
to the symbolic simulation of the actions of the procedure. So one successively obtains

formulas (Pd, u = vd, &l, . . . , xd) representing the sets Wd(v). Moreover, the current val-
ues of the variables Xj used by the FAP, at the situation corresponding to vertex u, can
be represented by a term cfd,o,j = td,“,j(x], . . . , xd) only depending on the input variables
XI,. ,xd. More precisely, let

~d,O(xl,..~~ xd) = “xl <<xl” (an always true formula), and

fd,O&l,,..,xd)=
xj if 1 <j<d,

0 otherwise.

Given (Pd,$. and td,oJ,j, We define
_ if Bj, = “xi := C”, for some C E (0, I}, and A’= L -+ 1, then

(Pd,L.L~‘(XI,...,Xd)=fPd,Ll~(Xl,...,nd)r and

td, tGJ/,j(xl > . . .j xd) =
C if j=jo,

td,&, j(xl~. . .Y xd) if j#j0;

- if Bi = ‘xi, 1= Xj, lLOXj2”, for some operation o, and 1’ = I + 1, then

(Pd,oll’(Xl,...,Xd)=4Dd,vi.(Xl,...,Xd), and

fd,ni.ir,j(xl > + . . txd > = C td, oi., j, (XI ,...,Xd)Wtd,vi.,jz(XI,...,Xd) ifj=jO,

td, “i&l, . . . , xd) if j#j0;

- if B>. = “if xi, <Xjl then goto I]“, then

= (Pd,oZ~Xl~~~~,~d)~(td,ui.,j,(~I,~~~r~d)~~d,vR,j~(Xl,...,~d)) if i’=il,

{ ~d,‘&l ,...,xd)A(td,vi,jl(xl,...,Xd)>td,oi.,jz(Xl,...,Xd)) if ~~‘=~+ 1;

Id, tiii./, j(xl >. . . txd) = td,vA,j(xl, . . . ,xd).

Thus, we have a second tool well-known from literature, cf. 131, I 1,361:

Tool 2 (CTA: Computation tree analysis). For any dimension d and any FAP S? =

(Bo; BI ;. . ; BI) which uses the variables XI,. . . ,xd,xd+l, . . . ,x,, there are recursive

functions @d and yd such that, for all vertices v of &,

- @d(U) = (Pd,&l , . . . ,xd) is a system of rational polynomial inequations which rep-
resents the set w,(v);

- yd(u,j) = td.u,j(xI , . . .,&I) is an &?-term representing the current value of variable
X/ at the situations corresponding to vertex v (1 <j <m).

We remark that both the fimctions @d and !& are uniformly effective with respect to
dimension d and procedure LZI, the latter considered as a word over a suitable alphabet.

192 A. Hemmerliny I Theoretical Computer Science 219 (1999) 185-223

By CTA, one obtains characterizations of the halting set and the function computed

by a FAP. Vertex v of Td is said to be a halting vertex of the procedure if it terminates

with the index 1; remember that BI is just the only stop instruction. Let HV(d) denote

the set of all halting vertices of d. The d-dimensional halting set of the procedure is

defined as

Haltd(&)={(q,...,rd)E [Wd : starting with the input tuple (q, . . . , rd),

procedure d reaches the stop instruction

after finitely many work steps}.

Thus,

Haltd(&‘)= U Wd(v).
uEHV(.d)

Proposition 2.1. A set S & Rd is the d-dimensional halting set of an FAP iff there is

a recursive function @ of N into the set of FO-formulas (or the systems of rational
polynomial inequations) in the variables x1, . . . , Xd such that set(@(nl)) n set(qi(n2)) =

0 if nl # n2, and

S = U set(@(n)).
nEN

A function f : Rd ++ R is algebraically computable iff there are a recursive function

@ like described above, for S = dom(f), and, moreover, a recursive function Y of N

into the set of &?-terms in the variables x1,. . . ,xd such that

if (rl,. . ,rd) E set(@(n)), then f (rl,. . . ,rd) = y(n)(rl,. . . ,rd),

for all (rl,..., rd)E [Wd,nE N.

Proof. This representation of algebraically computable functions corresponds to

Friedman’s [9] notion of effective definitional schemes, applied to &! and without pa-

rameters. So the proof is due to Friedman, cf. [9, lo]. We only give a sketch (for the

second part of the proposition).

The direction “-+” can be shown by a straightforward application of CTA. Remark

that HV(&) is a recursive set and that &(vt) n &(02) = 0, for any two different

VI, 02 E HV(&). Moreover, &,d(q,. . . ,rd) = td,&+l(rl,. . . ,rd) if (rl,. . . ,rd) E Q(v).

For direction “t”, one has to observe that every classically computable arithmetical

function can also be computed by a FAP. Thus, given some input tuple (rl, . . . , rd) E Rd,

(godelizations of) the formulas G(n) can be put here, for n =O, 1,2,. . ., up to realiz-

ing that (q,. . . , rd) E set(@(n)). This is effectively decidable, and when such an n
has been found, the value of the term Y(n)(r,, . . , , rd) is the corresponding Vahe of

function f. 0

The content of the proposition is disappointing in some sense. Roughly speaking,

algebraic computability in the real numbers is completely characterized by classical

computability only enriched by the use of FO-formulas and W-terms.

A. Hemmerling I Theoretical Computer Science 219 (1999) 185-223 193

In particular, constant and total algebraically computable real functions yield only

rational values. On the other hand, the proposition shows that algebraically computable

functions are not necessarily continuous and that their domains are not necessarily

recursively open, cf. the definition in the next section. Thus, their class is incomparable

with that of approximately computable functions in the sense of Ko-Friedman [21].

For a better illustration, now we are going to discuss some consequences of the

proposition with respect to the l-dimensional case. For d = 1, the formulas @p(n) are

systems (i.e., conjunctions) of rational polynomial inequations in the only variable xl

which is now simply written as x. Hence the sets set(@(n)) are unions of finitely many

open, closed or semiclosed real intervals whose endpoints are either from { -00, fee},

or they are algebraic numbers, namely zeroes of polynomials occurring as terms within

Q(n). The terms Y(n) give rational functions (i.e., quotients of polynomials) depending

on variable x.

Algebraic numbers can straightforwardly be encoded by pairs consisting of rational

polynomials and positive integers. Let

@(x),k)=r iff p(r) = 0 and there are exactly k - 1 real numbers y

such that y < r and p(y) = 0;

this means that r is the kth zero of polynomial p(x), k E N+. CI is a partial function

from A* x N+ onto the set of all algebraic numbers, for some suitable alphabet A. The

equality and order of algebraic numbers are recursively decidable with respect to the

encoding LX, i.e., the set

{((pl(x),kl),(P2(X),k2)): cr(pl(x),kl)~a(pz(x),k2)}

is classically recursive. This holds since

a(PI (x), kl) 6 a(p2(x), k2) iff the following FO-formula is true:

~~l~z2[P1(~1)=~~\2(~2)=~

A j=WI) y(y<z1 A PI(y) =O) A 3==(kZ-‘)y(y<z2 A p2(y) = O)-+zr Sz2].

This formula does not contain a free variable. By EQE, it can effectively be trans-

lated into an equivalent quantifier-free formula without variables. Thus, its validity is

recursively decidable. By the way, we would obtain related results by encoding every

algebraic number r by a rational polynomial p(x) and a rational interval in which r is

the only zero of p(x).

Again by EQE, from the formulas Q(n), one can effectively obtain a representation

of set(@(n)) by finitely many mutually disjoint intervals whose endpoints are -cc or

+cc or algebraic numbers given by codes according to the encoding a. Moreover, it

is recursively decidable which of the endpoints belong to set(@(n)). Thus, we have

Corollary 2.1. A real function f : RF+ R is algebraically computable ifl there are

- a recursive sequence of mutually disjoint real intervals (I,,)+N, each with algebraic

endpoints given by their a-codes, and

194 A. Henzmerling I Theorrticul Computer Science 219 (1999) 185-223

~ a recursive sequence of g-terms (t,,)nGN in the variable x

such that

- dam(f) = UnEN Z, and

- f(r) = t,(r) if r E Z, (n E N).

Notice that the intervals Z, are herein allowed to be empty. In particular, the empty

function f = 0 is algebraically computable.

3. Approximate computability

In the sequel, d-tuples of real numbers or variables are also denoted by the corre-

sponding bold-face letters, p.e., Y = (~1,. . . , rd) or x = (xi,. . . , xd). Topological notations

always refer to the natural topology in the Euclidean space Rd, which is induced by

the standard norm, (Y(= (Cf=, $)‘i2, or by the maximum norm, 1~1,~~ = max{ Iril: 1 <

i<d}.

We shall often have to deal with open and closed d-dimensional intervals, i.e., sets

of the form

intd(a,b)= {r E Rd: ai<ri<bi for 1 <i<d} and

intd[a,6]{rE Rd: ai<ri<bi for l<i<d},

respectively. Correspondingly, we also prefer to work with the d-dimensional open

cubes,

c,“(r) = intd((?j - a/2,. . . , rd - a/2), (?“I + a/2,. . . ,rd + a/2))

= {Y’ E Rd: IY - dImax <a/2}, a E R,

instead of the customarily taken spheres. Like the spheres, the cubes build a basis of the

natural topology of Rd, even if we restrict ourselves to the recursively enumerable class

of rational cubes. Here, both intervals and cubes are called rational if they are defined

by rational numbers, a, b, Y E Qd, a E Q, respectively. Then they can straightforwardly

be encoded by finitary objects, like tuples of rationals, and we usually do not distinguish

between them and their codes. The 1 -dimensional intervals are denoted as (a, b) and

[a, bl.
To define approximate computability, tuples of real numbers are named and handled

by means of special sequences of multidimensional intervals. A sequence, Sz = (Q,),E~,

of d-dimensional closed, nonempty intervals, 52, = intd[an,bn], is called nested if

n n+i C IR,, for all n E N. It is called regular if, moreover, the intervals are rational,

an,& E Qd, and Ian - hImax < 22”, for all n E N. Then there is just one Y E Rd such

that {r] = f-l&U 9,, and we shall say that the regular sequence Q converges to P, or

we shall call Y the target of Q, briefly: Y = tar(Q).

The definition of approximate computability we shall use here is based upon the

concept of (function-) oracle Turing machine (briefly: OTM) in the sense of

KoFriedman [21]. Such an OTM -4’ takes a natural number n as input and a regular

A. Hemmerlingl Theoretical Computer Science 219 (1999) 185-223 195

sequence Q as oracle, and it yields a l-dimensional rational interval [a’, b’] C R as

output if it halts. The oracle queries are of the form “m?“, for m E N, and they are

answered by providing the machine with the mth oracle interval, Q, = intd[a,, b,]. For

further details, cf. [21,20].

If the machine J%’ with oracle Q on input n halts with some output [a’,b’], we write:

.&%P(n) = [a’, b’].

A function f : Rd F-+ R’ is said to be approximately KF-computable (this means:

computable in the Ko-Friedman sense) if there is an OTM J%? such that

1. for every r E dam(f) and any regular sequence 52 that converges to r, the results

A”(n) always exist and yield a regular sequence of one-dimensional intervals,

(JWr))& which converges to the real number f(r);

2. for all r $ dam(f), every regular sequence Sz with tar(Q) = r and all it E N, A’(n)

is undefined (i.e., the machine does not reach a halt).

It is easily seen that this definition is only a slight, equivalent modification of the

original one by KoFriedman who used binarily converging sequences of dyadic num-

bers to represent real numbers. Thus, it is known that this concept of computability, co-

incides with a variety of related notions defined by several authors, see [21,20,38,39].

More precisely, these equivalences hold at least for total functions or with respect to the

restrictions of computable functions to closed intervals. Computability of partial func-

tions with more complicated domains seems to be dealt with at the first time by Ko and

Friedman [21] in the just described way, cf. also [32]. It turned out that the domains

of approximately KF-computable functions are exactly the recursively open sets.

A set S & Rd is called recursively open if there is a recursive function @ of N into

the class of d-dimensional rational open cubes such that

S= IJ Q(n).
nEN

S is said to be recursively closed if the complement, Rd\S, is recursively open.

Instead of the cubes, one could also allow arbitrary open FO-representable sets to

exhaust the recursively open sets.

Proposition 3.1. A set SC Rd is recursively open ifs there is a recursive function Y

of N into the set of FO-formulas such that set(Y(n)) is open, for all n E N, und

S= IJ set(Y(n)).
nEN

Proof. The first direction of the proof is trivial, since from any rational cube a repre-

senting FO-formula is easily obtained.

Conversely, if S = lJnEN set(Y(n)) as specified above, then

S = U{C,d(q): a E Q, a 20, q E Qd, C,d(q> C S}

=U{C,d(q):.EQ, a30, qEQd, C:(q) C set(Y(n)), for some n E N}.

196 A. Hemmerling I Theoretical Computer Science 219 (1999) 185-223

The latter set of rational cubes is recursively enumerable, since

C:(q) C set(Vn)) iff vx](Ix - 41max <a/2) + Y(n)(x)l,

and, by EQE, one effectively obtains an equivalent quantifier-free FO-formula whose

validity is recursively decidable, with respect to the arguments a,q. 0

Lemma 3.1. If a function f : R” ti R is approximutely KF-computable, then dam(f)

is recursively open. If a set S C Rd is recursively open, then the function f = S x (0)

is approximately KF-computable.

Proof. The proof is analogous to that one given by Ko-Friedman, see [21,20]. Cl

Unfortunately, there are rather simple functions which do not have recursively open

domains. For example, the trivial sets 0 and Rd are the only subsets of Rd which

are both open and closed. Thus, if S is a nontrivial closed subset of Rd, the constant

function on S, fs = S x { 0}, cannot be approximately KF-computable. Moreover, the

empty set is the only subset of Nd which is open in Rd. Therefore, the empty function

0 is the only function f : Nd w N that is approximately KF-computable.

Now we define a generalization of approximate KF-computability which was already

introduced by Kreitz and Weihrauch [22]. It includes the classical computability over

IV and also allows, for example, the computability of functions with closed domains.

A function f : Rd F+ R is called approximately computable if there is an OTM ~‘4

such that

1. for every Y E dam(f) and any regular sequence Sz with tar(a) = r, the results An(n)
always exist and tar((An(,))nEN) = f (r)
(this coincides with the first condition of approximate KF-computability);

2. for all r @ dam(f) and every regular sequence 52 with tar(Q) = Y, there is an input

n E N such that M”(n) remains undefined (i.e., the machine does not halt).

In our opinion, this definition corresponds well to the idea of approximate com-

putability. It includes also functions over domains which are not recursively open. On

recursively open domains, however, our notion of computability coincides with the KF

version, as we are going to show now.

Obviously, every approximately KF-computable function is also approximately com-

putable. On the other hand, we have

Proposition 3.2. Let f : Rd e R be an approximately computable function and S be
a recursively open set such that S C dom(f). Then the restriction of function f to
the set S, i.e., the function fis, is approximately KF-computable.

Proof. Suppose that there is a representation S = UnEN Q(n), with some recursive

function @ yielding rational open cubes Q(n), and that there is an OTM ./Z that

approximately computes the function f. For every input n E IV and any regular se-

quence fi, let the OTM J&” first, via Cantor’s recursive pairing function, search for

A. Hemmerling I Theoretical Computer Science 219 (1999) 185-223 197

a pair (m,k) such that Sz, G Q(k). This condition is expressible in the form

Vx(x E 52, +x E Q(k)).

By EQE and using the oracle D and the computation of function @, an equivalent

quantifier-free FO-formula (~(~,k) can effectively be obtained from (m,k). Moreover,

since (P(~,~J does not depend on free variables, its validity is recursively decidable.

Thus, such a pair (m,k) can be found iff it exists, and this holds iff tar(Q) ES. Then

let A” halt with the result of machine A, i.e., with A”(n) if it exists. Otherwise, if

A’“(n) does not exist or tar(a) 4 S, A? does never halt.

This OTM A” computes approximately the restriction fis in the KF sense. 0

Immediately we now have

Corollary 3.1. Let f : Rd w R and dom(f) be recursively open. Then f is approxi-

mately computable ifs it is approximately KF-computable.

The corollary implies that our concept of approximate computability owns all the

properties well-known from the other equivalent approaches, at least if it is applied

to total functions or to the restrictions of computable fimctions with recursively open

domains to closed intervals. We here formulate only two examples which even apply

to our general notion of computability: it is closed under compositions of functions,

and approximately computable functions are continuous.

Lemma 3.2. Let f, : Rd w 58, f2 : R! ++ R be approximately computable functions.
Then fi o f, is approximately computable, too.

Proof. The proof is by standard arguments. 0

The analogous result would hold for functions fi : Rdl ++ Rd2, fi : Rd2 s-+ Rd3,dl, dz,
d3 E IV+, if the approximate computability of such vector-valued functions would be

defined in the straightforward way.

The following proposition shows that our concept satisfies the fundamental thesis of

approximate computability.

Proposition 3.3. Every approximately computable function f : Rd w R is continuous
on its domain.

Proof. For the proof, we have to show that from r,r, E dom(f), lim,,, r,, = Y, it

follows lim n+o3 f(r,,)= f(r). Let M be an OTM that the function f computes ap-

proximately.

We consider a regular sequence CJ with tar(G) = r such that r belongs to the in-

teriors of all intervals Sz,, m E N. For any k E N, there is an index mk such that, in

computing A”(k), machine AC? puts only oracle queries concerning indices m Qmk.
Thus, for almost all elements r,, there are regular sequences !2(“) with tar(S2(“)) = r,

198 A. Hrmmerlingl Throreticul Computer Science 219 (1999) 185-223

and a:’ = 52, for all mdrnk. It follows that almost all f’(v,), as well as f(r), belong

to the interval &o(k), i.e., If(m) - f(u)1 ~2~~. Therefore, lim,,, f(u,> = f(r). 0

Remark that we did not suppose or conclude in the proof that dam(f) has to be

closed.

Now we are going to show that our concept also includes the classical computability

to a certain extend.

Proposition 3.4. Let f : Nd N N, und dom(f) be a recursively enumerable set. Then

f is a (classically) recursive function ifs it is approximately computable.

Proof. Given a recursive function f, let the OTM 4 work as follows, on an input

II E N and a regular oracle Q. First it checks if the interval Q2, contains a tuple of natural

numbers, m E Nd. If yes, this tuple m is uniquely determined. Then J& tries to compute

f(m) according to a classical Turing machine. When a result k = f(m) is obtained, let

_4 output the interval [k - 2-(nf2), k + 2--(n+2) 1. If m 6 dam(f), & does not halt. Also

if Q2, n Nd = 8, let &o(n) remain undefined. Then ./! computes f approximately.

Conversely, suppose that ~4 approximately computes the function f and that dam(f)

is recursively enumerable. A classical Turing machine computing f (with respect to

some standard encoding of tuples of natural numbers) can work as follows, on a given

input m E Nd. First it checks if m E dam(f). If not, it does never halt. If yes, f(m)

can be obtained by simulating the computation of _& on input n = 0, with the oracle

sequence Q defined by & = intd[m - (2-(k+2), . . . , 2-(k+2)),m + (2-(“+2), . . . , 2-(k+2))],

k E N. Indeed, &o(O) is a closed real interval [a’, b’] of a length <2’ = 1, and it

contains the number f(m). 0

Notice that the supposition of recursive enumerability of dom(f) is essential for the

second part of the proof. If the Turing machine would simply simulate the computation

of ,4’“(O), one would classically compute a function f such that f C 7. The domains

of approximately computable functions, both generally and restricted to the natural

numbers, will be characterized in Section 6.

A real number Y is said to be (approximately) computable if there is a classically

computable regular sequence 52 such that Y= tar(R). This is equivalent to the usual

definitions, and by standard arguments one obtains

Lemma 3.3. For any real number r are equivalent:

(i) r is (approximately) computable,

(ii) the constant total function f = R x {r} is approximately computuble,

(iii) the set R\(r) is recursively open,

(iv) the partial function f = ((- x,r) X {-l})U((r,+w) x {I}) is approximutefy

computable.

In contrast to KF-computability, with respect to our concept, the function fr = {r} x

(0) is also approximately computable, for every computable number r. Indeed, let Q(”

A. Hemmerlingl Theoretical Computer Science 219 (1999) 185-223 199

be a classically computable regular sequence such that tar(.Q(‘)) = r. Without loss of

generality, we suppose that r belongs to the interiors of all intervals Q!), n E N. Let

the OTM J/ work as follows, on input n and any regular oracle 0.

If there is a k E N with Szk C a$‘, _,r%! outputs the (degenerated) interval [0, 01; other-

wise &o(n) remains undefined. Thus, M”(n) is defined for all n E N iff tar(a) C Szr’,

for all n E N, and this holds iff tar(Q) = r.

We want to stress again that the concepts of algebraic resp. approximate computabil-

ity are mutually incomparable. On the one hand, a constant total function with an irra-

tional but (approximately) computable real value is approximately but not algebraically

computable. On the other hand, there are discontinuous total real functions which are

algebraically computable. Now we are going to show that not even for continuous total

functions algebraic computability implies the approximate computability.

Our example is based on a standard (Godel) numbering of the FAPs (,E!~: n E N).

Analogously, the classical Turing machines could be used. Without loss of generality,

we can suppose that no FAP begins with the stop instruction. So at least one work

step has always to be performed.

There is a universal FAP which simulates step-by-step the work of any &, on a

given input assignment. If the inputs are rational, this simulation can even recursively

be performed. In particular, and only this is essential in the sequel, there is a recursive

total function K : N2 + (0, 1) such that

1

1 if ZZY~ reaches the stop instruction after exactly I steps,

ic(n, I) = on the empty input assignment (i.e., xi = 0, for all i E N,),

0 otherwise.

The special halting problem,

HP = {n: there is an 1 E N such that rc(n, I) = 1 }

is not recursively decidable, since (da: n E N) immediately yields a standard numbering

of the partial recursive functions over N.
1

We consider the mnction f : lR’-+ R defined as follows.

Let f(y) = 0, for all Y E (-co, 0) and all r E N. On the intervals (m, m + 1), f is

defined in dependence on the number of steps performed by d,,, on the empty input

assignment (Xi = 0, for all i E N,). More precisely, if m E N and &,,, reaches the

stop instruction after exactly I steps, then let

(

0 if y E (m + l/1, m + 1),

f(r)= g.2/
if r = m + l/(Z),

if r = m + s, for s E (0,1/(21)),
(*)

1 p.s.21 if r = m + l/(21) + s, for s E (0,1/(21));

if .d,,, does never stop on the empty input, then let

j(r)=0 for all rE(m,m + 1).

Obviously, ,f is a continuous total real function

200 A. Hemmerling I Theoretical Computer Science 219 (1999) 185-223

Lemma 3.4. The just de$ned real function f is algebraically computable, but it is

not approximately computable.

Proof. Given an input r E (0, oo)\N, f(r can be obtained by determining first the)
numbers m E N, I E N+ such that r E (m + l/(1 + l),m + l/Z], by computing then the

values ~(m, 1’), for all 1’ E { 1,2,. . . , I}, and halting finally with the output according

to definition (*) above. This can be performed by a FAP.

Assume now that an OTM M would approximately compute the function f. Then

it could be used to solve the halting problem HP in the following way: For n E N,

simulate the computation of A”(‘)(2), where !$“I = ([n - 1/2k+2, n + l/2k+2])kEN. This

computation finally halts with some output [a’, b’], b’< i, and it uses only oracle

intervals with indices k < ko, for some ko E N. It follows that f(r) < i, for all r E (n, n+

l/2k0+2). Thus, by computing ~(n, I) for the finitely many I E (0, 1,2,. . . ,2ko+2}, it

could effectively be decided whether n E HP. 0

4. Approximate computability by means of FAPs

Whereas algebraic computability refers to finite, halting computations of FAPs, ap-

proximate computability can be characterized by means of the infinite, never halting

computations. They will also be referred to as passing computations.

Given a FAP d = (Bs; Bt ;. . . ; Bt), its passing set of depth t (and dimension d) is

defined to be the set of all input tuples on which d has not yet stopped after t steps

of work, i.e.,

Pd,t(d) = u{ wd(u>: u is a vertex of Yd, v 4_ HV(&), length(v) = t + l}.

This is complementary to the halting set of depth t,

&r(&)=U{Wd(v): UEHV(&), length(u)<t + 1,).

It holds P&t(d) n&t(d) = 8, Pd,t(d) uHd,t(d) = Rd, Pd,t+l(d) c: pd,t(-cg), and

ffd,t+l(d) 2 ffd,t(-oe).

Analogously to the first part of Proposition 2.1, by CTA we obtain an effective

representation of the halting resp. passing set of any depth.

Proposition 4.1. For every FAP S? acting on variables xl,. . . ,xd,. . . , there is a re-
cursive function @ of N into the set of (quantifier-free) FO-formulas in the variables

x1,. . . ,Xd such that, for all t E N, &f,t(&) = set(@(t)), and P&t(&) = set(T@(t)).

By Section 2, the halting set (of dimension d) of procedure & is

Haltd(d) = u ffd,t(-Qz).
fEN

Complementary, for every dimension d, we now define the passing set of d,

A. Hemmerlinyl Theoretical Computer Science 219 (1999) 185-223 201

It follows

Passd(&) n Ha&d(&) = 0 and Passd(&) U Halt&d) = Rd.

Let S? be a FAP acting on the variables xl,. . . ,xd,xd+l and, possibly, some further ones.

With respect to dimension d, it determines approximately a function G.d,d : Rd ++ R

defined as follows.

For r E Rd, Gd,d(r) is defined if and only if

(1) for all M E N, there are numbers 1, t E N such that,

for all (rt , Yl>, h, y2) E Pd+l,t(~), it holds

YI,P~ E C,“_,(Y)-+ 1y1 - y21<2+; and

(2) for all 1,t E N,

cc,“-I@> x R> n Pd+l,fw) # 0.

If Conditions (1) and (2) hold for r E lRd, there is exactly one yV E R which satisfies

(3) (r, Yr) E f& cl(~d+l,bo.

Then let G.d,d(r)= y,..
Herein “cl” denotes the closure operator applicable to subsets of Rd+’ . To improve

the readability, the pairs (r, y) E lRd x R are identified with the corresponding (d + l)-

tuples (r-1,. . . , rd, Y>.

To show the existence of a Y, satisfying Condition (3), let for n E N, fn, tn E N be

chosen such that lyt - y2[<2-” if (rl, y1),(r2, ~2)EPd+l,~,(&) and rl,r2 E C,“_,,(r).
Then we take (rn, yn)E (C,“_,n(r) x R)nP d+l,t,(d). This is possible by Conditions

(1) and (2), respectively. Moreover, one can secure that lim,,, I, = 00. It follows

lim,,, r, = r. Since (yn)nE~ is a Cauchy sequence, there exists y, = lim,,, y,. We

have

(r, Vr) E n Cl(Pd+de).
tEN

The uniqueness of yr follows immediately from (1). Thus, the definition of function

G.d,d has been shown to be correct.

Obviously, Conditions (1) and (2) just ensure that G.d,d(r) = y,. is uniquely defined

by (3). In other words, Gd,d is simply defined by the set ntEN ~l(&+i,~(&!)) which

is considered as a relation from Rd into R but restricted to those arguments, for which

this relation is unique.

To say it more precisely, let

graph(f) = ((0,. . . , l;i, y) E if2 d+‘: f(rl,...,rd)=y},

for any function f : Rd N R. Then it is easily shown

Proposition 4.2. For every FAP ~4 acting on variables XI,. . , , xd, Xdfl , . . , it holds

- dom(Gd,d) = {r E Rd: 3=‘Y[kY) E f-&N Cl(Pd+l,t(~))l}~

- &w?h(G.d,d) = ntEN cl(pd+l,t(d)) fl (dom(G.r/,d) X R).

202 A. Hemmerling I Theorekui Computer Science 219 (1999) 185-223

Conversely, by the equations given in the proposition, the function G.d,d is uniquely

determined. So it has been shown to be defined in a rather natural way. For some

further discussion, we refer to the next section.

The remaining part of this section is devoted to the main theorem of the paper which

also stresses the naturalness of the concept of approximate determination of functions

by FAPs.

Theorem 4.1. A function f : I@ H IF! is approximately computable ifs there is a FAP

&I? such that f = G.r/,d.

Proof. To start with the proof of direction “c”, let ,f = G.cv’,d, for a FAP d. According

to Proposition 4.1, a representation of the (d + 1)-dimensional halting set of d is

supposed,

ffd+l,r(d) = s%@(t)),

where @(t) = c@(t) (xl , , . . , xd, Xd+ 1) are quantifier-free FO-formulas.

Now we describe the work of an OTM J, on an input iz E N and a regular oracle

a = (52k)kE~ consisting of d-dimensional intervals 52k.

1. First let ,&Y check if (521 x R) n P d+l,,(d)# 0, for all 1, t<n. Since, for any pair

(1, t), 521 is a constant rational interval and P d+l,t(d) = set(-Q(t)), this test condi-

tion is easily FO-representable and then effectively decidable by means of EQE.

If the answer is “no”, for some 1, t d n, let the computation of d”(n) never halt.

2. Otherwise, let J?‘, according to the order defined via Cantor’s recursive pairing

function, search for a pair (I, t) E N2 such that for all (YI,~I),(YZ, ~2) EPd+l,[(&)

Yl,Y2 E sz[+ Iy, - y2/ <2-(2n+4).

Again, this condition is FO-expressible and effectively decidable by means of func-

tion @ and via EQE.

3. When such a pair (1,t) has been found, JZ searches for a rational number q
satisfying

(QI x(q-2_ @+4), q + 2-m+4)
>>nPd+l,t(N#0.

This last test condition is effectively decidable, too, and a corresponding rational

number q can be found if it exists, by means of a recursive enumeration of the

set Q.

If this search terminates successfully, let

AR@) = [q _ 2-(2”+2),q + 2-_(2n+9.

Otherwise, A”(n) remains undefined.

Assume that G.d,d(Y) is defined and equal to some y,.. Let tar(Q) =Y. Then, for

n E N, the check 1 always terminates with “yes”, by Condition (2) of the definition of

G_d,d. Moreover, by Condition (1) and since 52 is a regular sequence, the search 2 is

successful. Finally, the search 3 yields some qn E Q such that ly, - qnJ <2-(2”+3).

A. Hemmer&y I Theoretical Computer Science 219 (1999) 185-223 203

We have M’(n) = [qn - 2-(2”+2),qn +2-(*“+*)I. Since q,, -2-(2”+2) < yr - 2-(2n+3) <

qn+1 - 2- (2nf4) < yr <q,+l + 2-(2”f4) < yI + 2-(2n+3) <q, + 2-(2”+2), it follows that

(J”(%ErV is a regular sequence of intervals with the target yv.

If G.d,d(r) is not defined, either the check 1 or the search 3, or the search 2 cannot

be successful, for some n E N, and &o(n) remains undefined.

So we have shown the approximate computability of function G.d,d. Notice that the

approximate RF-computability cannot be obtained in general.

Now we are going to show direction “+” of the theorem. Let f be approximately

computed by an OTM 4.

Without loss of generality, we can suppose that, for all regular sequences 52 and all

n E N, if &o(n) is defined,

(i) J@(n) = [a’,b’], for some a’,b’ E Q with a’<b’,

(ii) I?‘” is defined too, for all ni ~12, and ~@(n)c&o(ni).

Indeed, if J~Z does not yet satisfy these conditions, they can be achieved by slight

modifications of &Y without changing the function which is approximately computed.

Firstly, it can be ensured that A’(n) is defined only if &‘o(ni) is also defined and

4”(n) C Jo’“, for all ill dn, n E N. Secondly, the degenerated intervals, when they

occur at index n’ + 1 at the first time, i.e., Jo(n’) = [a’,b’], a’< b’ and ~?‘o(n’ +

1) = [c’,c’], can be avoided by taking [2-“(a’+c’),2-*(b’+c’)] instead’of ~&“(n’+m),

for m > 1. The case that already &Y”(O) = [c’, c’] can similarly be treated.

A regular sequence CJ = (SZk)k E N of d-dimensional intervals is called distinguished

if, for all k E N, there is a tuple of integers, z E Zd, such that

& = intd[2- (k+‘)Z,2-(k+‘)(z + I)],

where 1 =(l,..., 1) E Zd. This means that the interval Szk is a (closed) cell of the

d-dimensional regular grid of mesh width 2- (kS-l) The interiors of these cells are .

mutually disjoint, neighbouring cells have common boundary elements however.

More precisely, a real d-tuple r belongs to exactly 2’ of the cells of width 2-ckf’)

if c is the number of components ri of r which are representable as Yi = ~2-‘~+‘),

with integers z E 77. Thus, for any r E Rd there are just 2’ distinguished sequences with

the target r if c is the number of components representable as ri =.~i2-(~,+‘), with

ki E N, zi E Z (i.e., ri is an integral multiple of reciprocal power of 2).

Now we are ready to describe the work of a FAP d starting with some (d + l)-

tuple (r, Y) = 0-l , . . . ,rd, y) whose components are the input values of the variables

Xi,. . . ,xd,xd+] , respectively.

Procedure & works by Stages n, for n = 0, 1,2,. . . .

In Stage 12, it tries to simulate the computations of _&4’(n), for all distinguished

sequences 52 with tar(Q) = r. Recall that there are at most 2d of such sequences

and, if &Y”(n) exists, this result depends only on a finite initial part of the se-

quence Q. Moreover, the finite initial parts of arbitrary length of these sequences

can effectively be put here by the FAP _&, depending on the input components of r.

Herein, the tuple r is only used for simple order tests implementing the conditions

204 A. Hemmerlingl Theoretical Computer Science 219 (1999) 185-223

“Y E intd[2- (k+i)Z,2-(k+l)(Z + I)]“, f or some k E N, z E Zd. Thus, the simulations

can be performed as long as A?‘“(n) exists, for all such sequences Q.

If sz(‘) , . . , d’), 16 I< 2d, are the distinguished sequences with target r and all the

AZ”(‘)(n) exist, & finally obtains the set

R(‘)(n) = lJ A?+‘(n).
I<i$l

The sets &@“(n) are closed rational intervals, each with a length ~2~” and con-

taining the value f(r) if it exists.

Let procedure ,01 halt at Stage n on input (v, y) if y g@‘)(n); otherwise, let it

continue with Stage n + 1.

If some I&‘““’ does not exist, Stage n does not terminate on the input (u,y).

Remark that the number 1 of sequences is not known a priori. If Y has a component

Of fOlXi Yi =Z2-(k+‘), where k is minimal, the corresponding “splitting” of the distin-

guished sequences at level k is realized at Stage n only if, in the course of computing

JP(n), an oracle query “m ?” is put, for some m 2 k. Within the computation tree &,

the path, which is determined by the input (r, y) up to Stage N has been performed,

depends only on the set of the initial parts (Qf))sGkGK,~, 1 <i < 1, where Kf’ is the

maximal index of an element of sZ(‘) to which A&’ queries in the course of computing

A?@‘(n).

If some result A’““‘(n) does not exist, the corresponding simulation by d in Stage

n does never halt, i.e., d remains within this stage ad infinitum and does not reject a

further input. If this happens (for the first time) at Stage n, then

{V} x R(‘)(n - 1) c Passd+i(&) if n>O,

{rl x LQ c Passd+l(dpe> if n =O.

Remember that R@)(O) >R(‘)(1) > . . . >R@)(n) by Supposition (ii), as long as these

sets are defined. Moreover, their diameters, diam(R(‘)(n)) = sup{ Iyi - y2 I: yi, yz E R(‘)

(n)}, are properly greater than 0, because of Suppositon (i).

Thus, if f(v) is not defined, then A”“‘(n) does not exist, for some n E N and a

distinguished sequence Q(‘) converging to r, and it follows that G.d,d(r) is undefined

due to Condition (1).

Otherwise, if f(r) exists, then all the results who”’ are obtained by d. So it

successively runs through all the stages, computes the R(‘)(n) and halts on input (r, y),

for all Y @ nnEN R(‘)(n). Since _&Y approximately computes function ,f, it follows

U(r)]= n W4 and (r,f(r)) E Passd+l(d) C n Cl(Pd+l,t(d)).
nEN EN

Moreover, since each R(‘)(n) is a union of intervals of lengths <2-” that contains

f(r), it holds diam(R(‘)(n)) < 2-(“-I).

It remains to show that Condition (1) of the definition of G.d,d(r) holds. To this

purpose, let be given some m E N.

A. Hemmerlingl Theoretical Computer Science 219 (1999) 185-223 205

Case 1: r always belongs to the interior of its cells in the grids, for all mesh

widths 2-(kf1). Then there is just one distinguished sequence Q(‘) with tar(Q(‘)) =Y.

We consider a level t in the computation tree & at which Stage m + 1 has been

performed, for the input (r,f(r)). Let K, be the maximal index k such that the oracle

query “k ?” was put in the course of performing Stages 0,. . . , m, m + 1. Now we choose

a natural number 1 in such a way that

If (YI,~I),(YZ,Y~)EP~+I,~(~) and rl,r2EC$,, then d works, up to Stage m + 1,

on the inputs (q,yl) and (r2,yz) like on (r,f(r)). Thus, yl,y2~R(‘)(m + l), and

IYI - Y2I <rm.

Case 2: r has components of form ri =22- @+I), for some z E Z, k E N. Let

52(l), . . . , Q(l), 1 < 1 Q 2d, be the distinguished sequences with target r. Now we con-

sider a level t in 9-d, at which Stage m + 1 has been performed both for the input

(r,f(r)) and also for all the other inputs whose distinguished sequences coincide with

some of the 52(‘) up to the maximal query index used up to Stage m + 1. Let K, de-

note the maximal index of an oracle element used in the course of performing Stages

O,...,m,m+ 1. We choose an IEN such that

If (rl,yl),(rz,y2) EPd+l,t(d) and rl,rz E C-,, it follows again that 1~1 - y21 ~2~“.

This completes the proof of the theorem. Cl

5. Robustness and some discussion

It is possible to avoid the closure operator in Condition (3) of the definition of G.d,d

or in Proposition 4.2, simply by the requirement that the sets Pd+t,[(&) have to be

closed. This leads to an interesting special type of FAPs.

A FAP JZZ acting on variables xl,. . . ,Xd, . . ., is called robust with respect to dimension

d (briefly: d-robust) if Pd,f(&) is closed, for every t E N. From this it follows that

Passd(d) is closed, but not conversely (see Lemma 5.4 below).

FAP d is d-robust iff its halting sets &t(d) are open, on all depths t. So we see
that robustness represents a certain kind of stability of the halting sets. Indeed, it means

that any set &r(d) contains, with some tuple r E I@, always a certain neighbourhood

C,“(r), a > 0. By Proposition 5.1 below, the halting sets of robust procedures are just

the recursively open sets which were originally defined as unions of effective sequences

of rational open cubes. It follows that r E Haltd(&) is recognizable by the validity of

some proper inequalities of form ai <ri < biy with rational numbers ai, bi produced by

a classical procedure working over Q. In particular, any equality tests for irrational

numbers can be avoided in the halting computations of robust FAPs.

206 A. Hemmerling I Theoreticul Computer Science 219 (1999) 185-223

The example at the end of Section 3 can be used to show that not every (continuous,

total) algebraically computable function f : Rd + R! can be computed by a d-robust

FAP. If the function _? : R’+ R defined there would be algebraically computable by a

l-robust FAP d, the special halting problem HP would be recursively decidable.

Indeed, by the Heine-Bore1 covering theorem , to every n E N, a level tn E RJ would

exist such that [n, nf I] C HI,~,(&). By means of EQE, this tn is recursively computable

from IZ. Now, n E HP iff there is an r E [n,n + l] such that I(Y) = 1. This could be

decided by means of the term representations of the values of variable x2, which are

given by Y/i (v, 2), for length(v) d tn + 1, according to CTA (Tool 2).

Proposition 5.1. A set S C lRd is the halting set of a d-robust FAP $fit is recursively

open. S is the passing set of a d-robust FAP 18 it is recursively closed.

Proof. The second assertion is only another formulation of the first one. For direction

“+” of the proof of the first assertion, we use a representation of the halting set of

some FAP d according to Proposition 4.1,

Hd,Jd) = set(@(t)) for all t E N,

with a recursive function @ of N into the set of FO-formulas. Then

Haltd(&) = lJ set(@(t)),
IEN

and if & is d-robust, by means of Proposition 3.1, we have that Haltd(,d) is recursively

open.

Conversely, let S = UnEN Q(n), where @ is a recursive function of t% into the set

of d-dimensional rational open cubes. Then there is a FAP d which, given any input

tuple y E lRd, successively for IZ = 0,1,2,. . . , generates the open cubes @(n) and halts

when Y E Q(n). It follows that every Hd,t(~) is some finite union of open cubes. 0

We remark that the notion of robust FAP is closely related to the concept of locally

time bounded BSS machine used by Boldi and Vigna [3]. In particular, Theorem 3

from [3] corresponds to our Proposition 5.1. A set S C Rd is recursively open iff it is

open and semidecidable by a locally time bounded BSS machine with rational constants

in the sense of Boldi and Vigna. Notice that the constants of BSS machines can usually

be introduced into the parameter-free FAPs in place of additional variables.

By Proposition 4.2, we immediately have

Lemma 5.1. For every (d + 1)-robust FAP &,
_ dom(G,d,d) = {Y E [Wd: I=’ y[(V, y) E PaSsd+l(JCf)]},

- graph(G.ti,d) = Passd+l(dr9) n (d0MG.d.d) x 4.

Now we show that approximately computable functions can always be determined

by (the passing sets of) robust procedures.

A. Hemmerlingl Theoretical Computer Science 219 (1999) 185-223

Theorem 5.1. A function f : Rd F+ R is approximately computable ifs
a (d + l)-robust FAP d.

207

Proof. To show this, for any FAP .d acting on variables x1,. . . ,xd,xd+i,. . ., we define

its (d + 1)-robustification do which works as follows, on inputs (r, y) E Rd+’

For t=0,1,2 ,..., let ~2’ check whether (Y, y) E in(&+t,,(d))

and halt in this case (otherwise, it continues with Stage t + 1).

By “in”, the interior operator applicable to subsets of [Wd+’ is denoted.

Remark that the required checks are effectively executable by a FAP, by means

of EQE. Indeed, let @ be a recursive function according to Proposition 4.1, i.e.,

&+[,,(&)=set(@(t)), for all t E N. Then it holds

(rYY) 6 in(Hd+l,,(d)) iff

3z[z>OA\dx~~~~~x~~y’((x~,...,x~,y’)EC,d+’(r,y) 4 @(t)(x{,...,xL,y’))].

From the definition of do, it follows that there is a (recursive) strictly monotone

sequence of natural numbers, (nt)fE~, such that

8=&+,,@‘)= ... =&+,,no_,(&O) and

in(Hd+l,r(~))=Hd+l,n,(-cg’)= “’ =&+l,n,+,_I(~“) for all tE N.

Thus, ~2’ is a (d + 1)-robust FAP, and

Haltd+i(d’) = u in(ffd+I,t(d)h
fEN

Cl(Pd+l.t(d)) =pd+Ln,(do)> for all t E Ni,

Passd+l(d’)= n Cl(Pd+l.t(d)).
EN

By Proposition 4.2 and Lemma 5.1, it follows G,do,d = G,d,d. 0

As mentioned already in the previous section, Proposition 4.2 like Lemma 5.1 charac-

terize the function G.&,d by the sets & cl(Pd+t,f(&)) and Passd+t(&), respectively,

considered as relations from [Wd to [w and restricted then to those arguments for which

they are unique. It naturally arises the question if the approximate determination of a

function f can always be performed by a FAP &’ such that

graph(f) = n Cl(Pd+l,t(-QI)).
EN

If this equation holds, for the just defined robustification do, we obtain

graph(f) = Passd+i(&‘).

Thus, we can equivalently ask for the existence of a (d + 1)-robust FAP do which

satisfies this equation. From Proposition 5.1, it follows that this is equivalent to the

condition that graph(f) is recursively closed. Therefore, we have

208 A. Hemmerlingi Theoretical Computer Science 219 (1999) 185-223

Corollary 5.1. For a function f : Rd F+ R, there is a FAP SZ! satisfying graph(f) =

n lEN ~l(Pd+l,~(YCg)) or, equivalently, a (d + I)-robust FAP do satisfying graph(f) =
Passd+l (do) ifs graph(f) is a recursively closed set.

For example, the approximately KF-computable unary function fo(x) = sin(I/x), de-

fined on R\(O), IS not representable in that special way, since the closure of its graph

contains the set (0) x [-l,+l].

The following lemma gives a sufficient condition for the recursive closedness of a

graph.

Lemma 5.2. If the function J’is approximately computable and, moreover, dom(f) is
recursively closed, then graph(f) is recursively closed, too.

Proof. Let d be a (d + 1)-robust FAP with f = G_d,d, and @\dom(f) =

U tEN set(Y(t)), according to Proposition 3.1. Then @+‘\graph(f) is effectively ex-

hausted, in the sense of Proposition 3.1, by the following sequence of open sets:

One easily sees that the function fi (x) = l/x, dom(f,) = R\(O), is representable in

the form graph(fi) = Passd+l (&I), for a (d + 1)-robust FAP -r91. Its domain is open,

however. Thus, the conversion of the lemma does not hold in general.

It can be shown for bounded functions, however. As usual, a function f : Rd ti R

is said to be (globally) bounded if graph(f) C lRd x [-K,K], for some constant K.

Lemma 5.3. Let f : Rd +t R be a boundedfunction. Zf graph(f)

then dom(f) is recursively closed, too.

is recursively closed,

Proof. To prove this, let I@+’ \graph(f) = UtEm, set(Y(t)) be an effective exhaustion

by open FO-representable sets according to Proposition 3.1. Then

Rd\dom(f) = U S,, where S, = Y E Rd: {r} x [-K,K] C (J set(Y(t))
nEN t<n

and K is a bound of function f. Indeed, if r ES,, i.e., {Y} x [-K,K] C

U t 4n set(Y(t)) 2 Rdfl \graph(f), then it holds r 4 dom(f).

Conversely, if Y $ dom(f), then {r} x [-K,K] & U,,, set(Y(t)). By the Heine-

Bore1 covering theorem, there is some n E N such that {Y} x [-K,K] C UrG, set(Y(t)).
0

There is no nontrivial set S # 0, R“ which is both (recursively) open and (recur-

sively) closed. Thus, Lemma 5.3 implies that for no approximately KF-computable

bounded function f with 0 c dam(f) c Rd the equation graph(f) = Passd+,(&) is

satisfiable by a robust FAP &.

A. Hemmerling I Theoretical Computer Science 219 (1999) 185-223 209

The example below will show that one would leave the scope of approximate com-

putability if one would only require, for functions f, that graph(f) = Passd+i (d), for

a not necessarily (d + 1)-robust FAP &‘.

Next we are going to deal again with computable real numbers which also can

simply be characterized by means of FAPs.

Proposition 5.2. For any real number r the following are equivalent:

(i) r is (approximately) computable,

(ii) {r} = Pass,(&), for a l-robust FAP d,

(iii) jr> = l&N cZ(E’iJd)), for a FAP d.

Proof. If r is computable, the set R\(r) is recursively open, by Lemma 3.3. From

Proposition 5.1 it follows (ii) and this trivially implies (iii).

If {r) = f&EN cl(Pi,,(~~‘)), for a FAP -01, one easily defines a FAP ~2’ that approx-

imately determines the function fr = [w x {r}: d’ can simply be obtained by replacing

the variables xi by Xi+i, everywhere in the instructions of d. Then, on any input

(s, r) E R2, d’ does not change the value s of the first variable. Thus, for any t E N,

it holds &(&‘) = R x J’r,J&). By Proposition 4.2, d’ approximately determines fr.

0

Now we give an example showing that, for Proposition 5.2, it is essential to take the

closures of the halting sets in (iii) and to require the robustness of procedure JZ! in (ii).

More precisely, we define a real number r-0 which is not computable but, nevertheless,

allows a representation of form {ro} = Passi(for a (non robust) FAP d.

Then, by Lemma 3.3(ii), the function 3 = R x {ro} is not approximately computable.

On the other hand, there is a representation of the graph as graph(T) = Passz(2), for

a FAP 2 This demonstrates the necessity to take the closures within the definition of

function G,d,d, or to require the robustness of d within Lemma 5.1.

Let (-c4,: n E IV) be a standard numbering of the FAPs, as used at the end of Section

3, and K: f’V2 --+ (0, 1) be the corresponding step-counting function defined there.

The sequences U$),GM and (k,J,E~ are inductively defined as follows.

0. Let /Jo=0 and ko=O.

1. Assume that k,, and pi, for 0 <i < k,, have been defined.

- If there is no I E N with rc(n, I) = 1 (i.e., n +! HP),

then k,,+l = k,, + 2,

Pk.+1 = Bk,+2 = 0.

- If Ic(n, I) = 1, for some 1 E N (which is uniquely determined),

then k,+l = k, + 1 + 1,

bk,+l = 0, and

Pk.+2 = ’ ’ ’ = pk.+, = pk.,, = 1.

We always have k,,+l 2 k,, + 2, by the supposition that no JzZ,, begins with the stop in-

struction. The sequence (Pn)n E N never becomes stationary. Finally, let the real number

210 A. Hemmerling I Theorrticul Computer Science 219 (I 999) 185-223

ro E (0,l) be defined by

ro = &Yn22”.
n=O

Lemma 5.4. The number ro is not computable. There is a FAP ~such that

{ro} = Pass,(d).

Proof. The first assertion easily follows. From a classically computable regular se-

quence Q(O) with tar(Q(‘)) = ~0, one would obtain a recursive decision of the set HP:

~EHP iff j&,+2=1.

Now we sketch the work of a FAP gsatisfying {rs} = Pass,(g).

Starting with an input assignment x1 = Y E R, and xi = 0, for all i > 1, 2 performs the

following Stages IZ, for n = 0, 1,2,. . ., up to reaching the stop instruction, possibly.

In Stage n, gsimulates the first n steps (as long as no stop instruction is reached)

of the FAPs 5$0,-01,,..., dn, always starting with the empty assignment.

Then it halts iff the initial part of length n + 1 of the binary expansion of input r is

not consistent with the results obtained.

More precisely, JZ? computes rc(i, I), for Odi, 1 <n. Input Y passes Stage n (i.e., it

does not belong to the corresponding halting set) iff

r E c f-p, 2 jji2_’ + 2-w+‘))
i=O)

for some finite sequence $0,. . . , p,,) such that

PO = 0, and

if k=k,,,, for some mE{O,l,..., n},k<n,
then Pk+, = 0 and, moreover,
_ if j3k+2 = 0 (and k + 2 <n),

then &, performs at least n + 1 steps on the empty input assignment;
_ if /?k+2 = . . =jk+,=l (and k-tldn),

then &m performs at least 1 steps on the empty input;
_ if&+2=...=j?k+,=1,&+ltl=O(andk+I+ldn),

then &m performs exactly 1 steps on the empty input up to reaching the stop

instruction.

It is easily seen that r-0 passes all the stages of .$ i.e., ro E Pass, (.pT).
If Y’ E (0, 1), r’ = CT=, p!2-‘, r’ # ra, there is a minimal index n such that /3I, # fl,l.

Then at the latest in Stage n, Y’ belongs to the halting set of &? i.e., ro 4 Pass, ($.
0

In the basic definition of G.d,d, cf. also Proposition 4.2, or in Lemma 5.1, the function

G.N’,d is treated as a set suitably determined by the (d + 1)-dimensional passing sets

P Ci+l,t(d) and Passd+, (&‘), respectively. For the definition of a function, the reader

A. Hemmerlingl Theoretical Computer Science 219 (1999) 185-223 211

would probably prefer a procedure which leads from a given argument Y E Rd to a

value G.d,d(~). The following proposition is devoted to this point of view.

Herein we use the notion of quasi-FAP, i.e., parameter-dependent FAP. Any quasi-

FAP can be thought to be obtained from a FAP & by replacing some variables, say

XI,. . ,xd, by real numbers rt , . . . , rd (called parameters) and replacing all the remaining

variables Xi+d by Xi then, such that the procedure refers to x1,x2,. . . again. Let us

denote such a quasi-FAP by d[rl/xl, . . . , rd/Xd]. These parameter-dependent FAPs are

originally used by Friedman [9]. Moreover, they correspond to finite-dimensional BSS

machines [1,2].

The notion of passing set is straightforwardly transferable to quasi-FAPs. Now the

approximate determination of a function by a FAP can be expressed in the following

way.

Proposition 5.3. A function f : Rd F+ R is approximately computable ifs there is a

(d + 1)-robust FAP & such that, for any Y = (rl,. . . ,rd) E Rd, the quasi-FAP

,Nrl/xl,..., rd/xd] determines f(r) as follows:

r E dam(f) ifs Passl(d[rl/xl,. . .,rd/xd])= {yr}, for some y, E R,

i.e., Passl(d[rl/xl,. . . ,rd/xd]) is a sinqleton,

and then let f(r)=yr.

Proof. This immediately follows from the definition of &[rl/xI, . . , rd/Xd] and Lemma

5.1 by means of Theorem 5.1. q

We close this section with a result on the avoidability of multiplications and divi-

sions in approximate determinations of functions by FAPs. This will be of some interest

in connection with the definition of (time) complexity classes of approximately com-

putable functions on the basis of FAPs. The details of this application are beyond the

scope of this paper, however.

Proposition 5.4. Let d E N+. To every d-robust FAP d, one can efictively construct
a d-robust FAP d’ such that
_ the instructions of ~8 do not use multiplications or divisions,
- it holds Haltd(&‘) = Haltd(S’).

Proof. If &’ is a d-robust FAP, by Proposition 5.1, the set Haltd(&) is recursively

open. Thus,

Haltd(.&) = IJ Q(n),
ntrm

where @ is a recursive function of k4 into the set of ddimensional rational open cubes.

Given an input Y E Rd, let the FAP &’ successively compute the (codes of the)

cubes Q(n), for n = 0, 1,2,. . ., and stop when it realizes that Y E Q(n). Then, for any

212 A. Hemmerliny I Theoretical Computer Science 219 (1999) 185-223

depth t,

Hd,tw’)= ; Q(n),
n=O

for some number n,. Thus, &” is d-robust and Haltd(S) = Haltd(&‘).

Moreover, the computations of Q(n) can be performed without using multiplications

or divisions. Remember that rational numbers q can be encoded by pairs of integers

(k, I) such that q = k/Z, I # 0. The checks if Y E Q(n) require only order tests of form

“ani < ri < b,i”, for rational components a,,i and b,i encoded by pairs of integers. Hence,

these tests are also executable without using multiplications or divisions: it holds k/f <r

iff k <r + . + r (I times r). 0

By means of Theorem 5.1, now we have

Corollary 5.2. Every approximately computable function f : Rd ti R cun approxi-

mately be determined by u (d + 1)-robust FAP which does not use multiplications or

divisions.

6. Arithmetical hierarchies

We are now going to introduce two modifications of the classical arithmetical hier-

archy which seem to be quite suitable to classify subsets of some lRd from the point

of view of algebraic and approximate computability, respectively. Below they will be

used to compare the domains, ranges and graphs of algebraically resp. approximately

computable functions.

The classes of our first hierarchy, called the discrete arithmetical hierarchy (briefly:

DAH), are denoted by

qp, Ilp and Ai (k> 1).

The second one, called topological arithmetical hierarchy (briefly: TAH), consists

of the classes

g, Ii’: and A; (k3 1).

By Ci, I7:, and Ai, the classes of the well-known classical arithmetical hierarchy (AH)

are denoted. They consist of subsets of the Cartesian products Nd, for d E N+.

A set S belongs to Cp (we also say that S is a Cp-set), for k E N+, if

- Sc[Wd, for some dEN+, and
_ there is a total recursive function Y of Nk into the set of FO-formulas with the

free variables xl,. . . , xd such that

S= U n IJ ... 0 set(Y(nl,nz ,..., nk)),
IllEN nzEN QEN IlkEN

A. Hemmerling I Theoretical Computer Science 219 (1999) 185-223 213

where 0 E {U,n> such that the prefix of unions and intersections becomes

alternating.

If, moreover, for all (ni,nz,_. .,nk) E IV,
_ set(Y(nl,nz,.. ., nk)) is an open set if k is an odd number, and
_ set(Y(nl,nz,..., nk)) is a closed set if k is an even number,

then the set S belongs to Cp (or is said to be a ,X:-set).

Due to EQE, we can suppose that the FO-formulas Y(nl, n2,. . . , nk) within the def-

inition are quantifier free.

As usual, the nk-sets are defined to be the complements of the Ck-sets, and the

dk-sets are the corresponding intersections. More precisely,

S’ E @? iff S’ = I!@\S for some Cp-set S C_ Rd,

dba=ZbarlIT,b” for ba~{da,ta}. k k

It immediately follows that the classes of the TAH are included in the corresponding

classes of the DAH.

c; c c;l”, nta c zzda k- k, A; c A$?

The DAH is similar to Cucker’s arithmetical hierarchy over the reals, see [5]. In

contrast to the BSS setting, however, we here consider sets of tuples of some dimension

d instead of sets of strings (which are finite sequences of arbitrary length). More es-

sentially, we do not allow the use of real parameters within the programs. This implies

that our concepts are closely related to classical theory of computability. In particu-

lar, the sets in the classes of our hierarchies are generated by complementations and

efictive unions and intersections from the FO-representable sets and FO-representable

open sets, respectively.

By means of EQE, cf. Proposition 2.1, one obtains

Lemma 6.1. SE Cy isf S = Haltd(&‘), for some FAP d and a dimension d.

So A? consists just of the sets which are decidable by FAPs, i.e., whose (to-

tal) characteristic functions are algebraically computable. For example, N E A? and

Q E cp\np.

The TAH connects computational aspects with topological ones. The CF-sets can

also be represented by means of enumerations of open cubes.

Proposition 6.1. A set S G Rd belongs to CF ifs there is a recursive function @ of Nk

into the class of d-dimensional rational open cubes such that

u n-. U @h,n2,..., nk) if k is odd,
nlEN @EN flkEN

S=

u n- n @(nl,n2,..., nk) if k is even.
n,EN nzEi% nkEN

214 A. Hemmrrlingl Theoretical Computer Science 219 (1999) 185-223

Herein the overhne denotes the complement: @(nl, n2,. . . ,rzk) = [Wd\@(nl,n2,. . . , nk).

Proof. Every representation of S like in the proposition fulfils the requirements from

the definition of the Cf-sets.

Conversely, in the proof of Proposition 3.1, we have shown that every representa-

tion of form UnkEN set(Y(nl,nz,. . . ,nk)), where any set(Y(nl,n2,. . . ,nk)) is open, can

effectively be transformed into a form UnktN @(nt , ~22,. . . , nk), with rational open cubes

@(m,n2,..., nk). This shows the direction “+” if k is odd.

If k is even and any set(Y(nr,nz,..., nk)) is closed, we consider the sets

Now SC,,,,? ,.._, ni-,) = UniEN set(Wnl,m,. . . , nk)), and the set(Y(nt,nz,...,nk)) are open

sets. Thus, one effectively obtains a representation

S, n,,nz ,..., II_,) = U @(m,n2,...,nk),
&EN

with rational open cubes @(nl,nz,. . . ,nx-), and

4 n,,nz ,..., n,_,) = n @h,n2,...,nk>. 0
rq.Erm

The sets of Cp are just the recursively open sets, whereas II: consists of the recur-

sively closed sets, and dy = (0, R, R2, iw3,. . .}. So the l-dimensional sets from IIF are

well-known as recursively Gg sets, cf. [39,20], CF consists of the recursively F, sets,

etc. More generally, the TAH represents just the effective counterpart of the hierarchy

of Borelian subsets of finite order in the spaces Rd, see also [14,251. Moreover, like

in classical recursion theory [29,26], our hierarchies contain d-ary relations over R,

S C R“, for arbitrary dimensions d E IV+.

By Proposition 5.1, it follows

Lemma 6.2. Let S C Rd. Then S E Cy ifs S = Haltd(zzZ), for a d-robust FAP .&‘; and

S E III? ifs S = Passd(zZ), for a d-robust FAP .d.

Considering the discrete parts of the (sets contained in the) classes of DAH or TAH,

we essentially obtain the classical AH. More precisely, let

dis(S) = S n Nd for S C R!,

and

dis(r) = {dis(S): S E r} for a class r,

It is easily seen that Nd E A;’ and N” E fly (but Nd @ Zy). Moreover, the classes of

the DAH and TAH are closed under (finite) intersections and under (finite) unions. So

we have

A. Hemmerlingl Theoretical Computer Science 219 (1999) 185-223 215

Lemma 6.3. For all classes r of the DAH and TAH, with the exception of 1: and

A?, dis(r) & r.

Lemma 6.4. For any k E N+, we have

dis(CF) = dis(Cz) = Ci,

dis(@) = dis(@) = I$.

Moreover, dis(A;fa) = Ai fbr all k E N+, and dis(AF) = Ai for all k > 1.

Proof. We show the first line of equations, the second one follows analogously. Using

Lemma 6.3, one obtains the assertion on the A-sets. If SE Cp or SE Cy, there is a

representation of form

s = {r E [Wd: 3(21 E h!)v(Z2 e N)3(23 l N). . . o(zk E N) P E set(Y/(Zl,Z2,. . . ,Zk))},

where Y is a recursive function of Nk into the set of FO-formulas with the free vari-

ables xi,... ,xd, and 0 E (3,V’) such that the block of quantifiers becomes alternating.

The (d + k)-ary predicate over N, $(x1,. . . ,xd,z~, . . . ,Zk) e “x E set(Y(zi , . . . ,zk))”

is recursively decidable. Thus, the set dis(S) = {r E Nd: r E S} possesses a presentation

characterizing the Cf-sets of the classical AH.

Conversely, let S E Ci. Then there is a representation

s = {(fll Y..+d)ENd: 3(zlEN)v(Z2EN)3(z~E~)...0(Zk~~)

where $ is a recursive (d + k)-ary predicate over the natural numbers, and 0 E (3,Y’)

as above.

If k is odd, from $ one easily obtains a recursive total function @ of Nk into the

set of d-dimensional rational open cubes such that, for all (nl,. . . ,nd,zl,. . . ,Zk-I) E

Nid+k- I

3(Zk E ~)ll/(nl,...9fld,zl , . . . ,Zk) iff 3(Zk E N) (nl, . . . , nd) l @@I,. . . ,zk).

Here the @(zi,. . . , zk) may have the form Cf,2(nl,. ..,a(~). Then S=dis(?), for

s^= u ,-, .” u @(z,,z2 ,..., zk).
:,EN -ZEN -i E N

For an even index k, a corresponding representation is analogously obtained. 0

From Lemma 6.4 and the related property of the classical AH, we have the following

proposition.

216 A. Hemmerlingl Theoretical Computer Science 219 (1999) 185-223

Proposition 6.2. For all k E N+ and ba E {da, ta},

Aba c k c Cba u lZba c Aba k k kfl,

From Proposition 6.2 and Lemma 6.3, it follows that Cz+i n fl:+i $Z Cp u III?. So

also the classes CF+, or lIF+, cannot be subsets of Cp U II7p. On the other hand, the

k-level classes of DAH are included in the (k + I)-level classes of TAH.

To show this, we consider a quantifier-free FO-formula Y = Y(xl, . . . ,xd). It is equiv-

alent to a (finite) disjunction of conjunctions of rational polynomial inequations,

WXl,...,Xd) * \j j;(Pij(Xl,.-.,Xd)@ijO),
i=l j=l

with (rational) polynomials pq and eij E { <, > }. In other words,

set(Y(xi, . . ,Xd)) = ;1 fi Set(Pij(Xl, . . . ,Xd) &j 0).
ix1 j=l

It holds

Set(Pij(Xl,..., xd)>O)=
1

pij(xl,...,xd)- -
kfl

Set(pij(Xl, . . . ,Xd) GO) = n set
1

pij(Xl).. . ,Xd) - -

kEN kfl

Therefore, we have representations

set(Y(xi ,..., xd))= ;1 fi U set(p>k(xi ,..., xd)<O)
i=l j=lkEN

n M

= u n n set(p~k(xl,...,Xd)>o),
i=l j=lkEN

with rational polynomials pbk, p$k. By the distributive laws saying that n;=, Uj,-N Sij =

U.jl,...,j.)EW nyz, Sijr and d ua 11 y, combined with suitable modifications of the enumer-

ations by means of Cantor’s recursive n-tuple denumeration, one obtains

set(Yy(xl ,...,x~))= U fi set(~%(xI,...,xd)~O)
kEN I=1

with certain (rational) polynomials &, @,& and ~5 E N.

A. Hemmerling I Theoretical Computer Science 219 (1999) 185-223 217

Obviously, these representations of set(Y(xi, . . . , Xd)) can effectively be obtained

from the originally given formula Y. Applying Cantor’s recursive pairing function

over N, two consecutive intersections and unions, respectively, can be combined in

one. We now have the following proposition.

Proposition 6.3. For any k E N+,

c;l” c .q+,, @%@+a,,, LIda c P k - kil.

So we have seen that the classes of DAH and TAH are rather related to each other.

It is still open if ZF c Cp, for all k E N+.

Now we want to classify the domains, graphs and ranges of computable functions

within the corresponding arithmetical hierarchy, DAH resp. TAH.

With respect to the algebraic computability, we already know that Cp consists ex-

actly of the domains of computable functions. Moreover, it is well-known that every

range S of an algebraically computable function can also be represented as a domain

of such a function, and conversely if S c [w, cf. [l I]. Remark that the latter conversion

would hold for any range S & IWd if algebraic computability would have been defined

straightforwardly for vector-valued functions of types f : Rdl ++ Rd2.

If a function f is algebraically computable, then the set graph(f) is the domain

of another algebraically computable function, see [111; thus, graph(f) E Cp. The con-

version does not hold: for &(r) = m, graph (_&) E Cp, but f, is not algebraically

computable.

Since the class of algebraically computable functions of natural numbers, f : Nd M

N, coincides with the class of recursive functions, their domains and ranges are just

the Cy-sets. Moreover, f : Nd F+ N is algebraically computable iff graph(f) E Cy.

In the remaining part of this section, the related questions with respect to approximate

computability will be discussed.

Proposition 6.4. The domains of approximately computable functions f : Rd ti R are

just the II:-sets.

Proof. For d = 1, this was already shown i n [22]. To prove direction “+-” within

our framework, let S E @. By Proposition 6.1 and the definition of TAH, there is a

representation

S= n U @(nl,n:!),
nlEN fl2EN

where @ maps recursively N2 into the set of rational open cubes (of some

dimension d).

To compute approximately the function fs = S x { 0}, let an OTM J?’ work as fol-

lows, on an input n E FV and an oracle Sz = (SZI)I~N.

For all nl dn, compute @(n,, k) and Q,, for the pairs (k, 1) E N2 (according to the

ordering induced via Cantor’s pairing function by the ordering of natural numbers)

and decide whether 52, C @(nl, k).

21x A. Hemmerlinq I Theoretical Computer Science 2 I9 (1999) 185-223

When such a pair (k, E) has been found for every n I< n,

let ,& stop with the output [-2--(nt2), 2-(“+‘)].

If such a pair does not exist for some n, <n,

let J&’ work ad infinitum, i.e., &Y”(n) is undefined.

If r E S and tar(Q) = Y, then, for every IEI E N, there is a k E N such that Y E @(nl , k).

Since the @(nl, k) are open cubes, it follows G?, C: @(n,,k), for some 1 E IV. Thus,

d’(n) is always defined. Obviously, tar((&R(n))nEN) = 0.

Conversely, let J?“(n) be always defined, for some regular sequence Q2. Then it holds

tarG@%4),E~) = 0, and for any ~11 f N, there is a pair (k, l) such that SZI C @(nl,k).

It follows tar(Q) E S.

So we have seen that J&! approximately computes the function fs.

For direction “ -+ ” of the proof, we first remark that every bounded function, say

f : Rd w [-K,K], which is approximately computable, can approximately be deter-

mined by a (d + I)-robust FAP &’ such that

Pd+~,r(~.&) C 69 x [-(K + l),K + I] for all t E RJ.

Indeed, given a FAP d’ approximately determining f, the tuples (v, y) E Pd+l,t(_~‘)

with y $ [-(K + l), K + 11 can be replaced by the two tuples (r, -(K + 1)) and

(v,K -t 1). This yields a FAP &1 determining the same function f. Its robustification,

according to the proof of Theorem 5.1, satisfies all the required properties. The details

and verification are left to the reader.

Now let S = dom(fs), for an approximately computable function fs : Rd N R. By

Lemma 3.2, we can suppose that f’ = S x (0). By Lemma 5.1, we have

S = {Y: 7’ y[(r, y) E Passd+l(.92)]},

for a (d + 1)-robust FAP &. Due to the remark above, we can suppose that

P~+I,~(&) s Rd x [-1, l] on all levels t.

Now we have

xES iff (~,O)EPassd+l(&)r\Vy[(x,y)EPassd+l(&)+y=O].

The first condition is expressible as

Since the sets Pd+l,t(&) are closed, this formula defines a np-set $1 = {r E Rd: cpl(v)}.

We consider the second condition,

q2(x) = “vy[(x, y) E Passd+l(d) + y = o]“.

A. Hemmerlingl Theoretical Computer Science 219 (1999) 185-223 219

Since & is (d + 1)-robust,

Due to our supposition on d,

-(p2(x) ifl 3(m E N>Wt E ~)[~Y((~,Y)EP~+I,~(~)

A y E [-1, 1]\(-2-m,2-“))].

The sets

{x E Rd: gY((x,y) EPd+l,t(d) A y E I-1, 11\(-2-m,2-m))}

are closed, and, by Proposition 4.1 and EQE, representing FO-formulas (P(~,~J(x) can

effectively be obtained.

Therefore, S2 = {r E I@: (pz(x)} is a n!-set, and S = Si n S2 E fly, too. 0

Corollary 6.1. The classes of domains of algebraically computable functions and of

approximately computable functions, respectively, are incomparable.

Proof. For any computable transcendental number ro, (r-0) E IZ~\Z~ G ZZ~\@. In-

deed, by Lemma 3.3, R\{ro} is recursively open, i.e., {ro} E II?. From {ro} E Cp, by

Corollary 2.1, it would follow that ro is an algebraic number.

On the other hand, it is easily seen that Q E CF, but Q $ II!j’. To show the latter,

let QGS= n,,,,u,,,, @(nl,nz), with open sets @(nl,nz), for some S & R. Then

Q c: % = UnzEN @(nl,nz), for all nl E N, and all these sets S,, are open. Thus, S = R,

due to the density of Q in R. 0

Proposition 6.5. For every function f : lRd ti R, if f is approximately computable

then graph(f) E IIF, but not conversely, not even if f is total, continuous and alge-

braically computable.

Proof. If f is approximately computable, then the function f= graph(f) x (0) is

approximately computable, too. One easily shows this via OTMs. By Proposition 6.4,

graph(f) = dom(f-) E Z7:.
On the other hand, for the function f from the example at the end of Section 3,

which is not approximately computable, graph(f) is an algebraically decidable set. By

Lemma 6.1 and Proposition 6.3, graph(f) E A? C_ A:. 0

The class of ranges of approximately computable functions exceeds IIF considerably.

It coincides with the class of l-dimensional projections of II?-sets. These are the sets

S C R, which are representable as

S={sER: 3(rERd)V(n~EN)3(n2EN)[(r,s)E@(n~,n2)]}~

220 A. Hemmerlingl Theoretic& Computer Science 219 (1999) 185-223

where @ recursively maps N2 into the set of (d + 1)-dimensional rational open cubes,

cf. Proposition 6.1.

To show this assertion, let S = ran(f), for some approximately computable function

f : Rd F-+ R. Then graph(f) E IL’:, by Proposition 6.5. This yields a representation of

S as given above.

Conversely, let S be a projection of a Ii’:-set as described above. Then the function

f : l@+’ h R defined by

if \J(nl E NFKfi2 E ~Mr,s) E @(fi1,n2)1,
undefined otherwise,

can easily be shown to be approximately computable, and S = ran(f).

Since Nd E II? G ZIT, every Cy-set (of arbitrary dimension) is also a projection of

a @-set. The conversion does probably not hold, but it would require a more detailed

investigation of TAH to confirm this.

We have shown

Proposition 6.6. A set SC R is the range of an approximately computable function

ifs it is the l-dimensional projection of a II?-set. In particular, every l-dimensional

X:-set is such a range.

Finally, we are going to deal with the domains, graphs and ranges of approximately

computable discrete functions f : Nd * N. For a function f : lRd F+ R, the discrete

part is defined to be the function

dis(f)= f n(Nd x N).

Lemma 6.5. If a real function f is approximately computable, then dis(f), too.

Proof. One easily shows that the approximate computability from f transfers to the

restriction Ji Md. Moreover, the identical function idN is approximately computable (over

R). By Lemma 3.2, dis(f) = idN o firmd is approximately computable, too. 0

Therefore, the domains and graphs of approximately computable discrete functions

are just the discrete parts of the domains and graphs, respectively, of approximately

computable real functions. So the domains are just the I7;-sets, and all discrete graphs

are IIt-sets. An example of a function f : N2 + N, which is not approximately com-

putable, whose graph belongs to II; however, can be obtained as follows from the

function / in the example at the end of Section 3:

A
fhln2) if n2 #o,

f(v,n2>=

1 0 if n2 = 0.

We leave the details of verification to the reader.

A. Hemmerling I Theoretical Computer Science 219 (1999) 185-223 221

The ranges of approximately computable discrete functions are just the

l-dimensional Ci-sets. Indeed, from f : Nd H N and graph(j) E LZi, it follows that

ran(f) = {y E N: 3(n E N)[((rrf(n), . . . , r&r)), y) E graph(f)]} E Ci.

Herein rc” denotes the ith component function of Cantor’s recursive d-tuple function.

Conversely, similar to the related part of the proof of Proposition 6.6, every

l-dimensional Ci-set can be represented as a range of an approximately computable

discrete function.

So we have shown

Proposition 6.7. The domains of approximately computable discrete functions of form

f : Nd F-+ N are just the II!-sets, and the ranges of these functions are just those
subsets of N which belong to Ci. All graphs of such functions are II!-sets, but not

conversely.

7. Final remarks

The main result of this paper is the characterization of approximate computability

of real functions from the algebraic point of view. This has been done by Theorems

4.1 and 5.1 for the generalized concept including functions with not necessarily re-

cursively open domains. Proposition 3.2 and Corollary 3.1 state the relationship to the

KoFriedman variant of approximate computability.

Our characterization of approximate computability by means of the passing sets of

FAPs does not depend on a special naming system or representation of the reals. We

treat the real numbers as actual objects of algorithms. To deal with both algebraic and

approximate computability from a uniform point of view, this should contribute to a

better understanding of both the settings, their special features and mutual relationships.

For example, our results also stress the naturalness and usefulness of the generalized

notion of approximate computability in considering partial real functions.

Further research will try to find out whether the algebraic characterization of approx-

imate computability leads also to substantially new results or at least to easier proofs

of known results. To this purpose, more detailed investigations of the passing sets of

(robust) FAPs are necessary. With respect to both variants of computability, further re-

sults on the arithmetical hierarchies, DAH and TAH, also compared with Cucker’s [5]

hierarchy, are desirable. Finally, like in the K-Friedman approach, a theory of com-

putational complexity can be founded on the approximate determinations of functions

by FAPs and seems to be a promising subject of further effort.

Acknowledgements

I am indebted to G. Asser and H. Kijhler for discussions, critical remarks, and for

reading previous versions of this paper. K. Weihrauch informed me about his results

222 A. Hemmrrliny I Theoreticul Computer Scierw 219 (1999) 185-223

from [22]. Moreover, some hints and remarks by anonymous referees are gratefully

acknowledged.

References

[1] L. Blum, F. Cucker, M. Shub, S. Smale, Complexity and Real Computation, Springer, New York, 1998.

[2] L. Blum, M. Shub, S. Smale, On a theory of computation and complexity over the real numbers:

NP-completeness, recursive functions and universal machines, Bull. AMS 21 (1) (1989) l-46.

[3] P. Boldi, S. Vigna, &uniform BSS machines, Preprint 1997, J. Complexity, to appear.

[4] V. Brattka, P. Hertling, Feasible real random access machines, Informatik-Berichte, Fern Univ. Hagen

193, 1995; revised version 1998, Theoret. Comput. Sci., to appear.

[5] F. Cucker, The arithmatical hierarchy over the reals, J. Logic Comput. 2 (3) (1992) 375395.

[6] L. van den Dries, Alfred Tarski’s elimination theory for real closed fields, J. Symbolic Logic 53 (1988)

7719.

[7] E. Engeler, Algorithmic properties of structures, Math. System Theory 1 (1967) 1833195.

[8] A.P. Ershov, Abstract Computability on Algebraic Structures, Lecture Notes in Computer Science, vol.

122, 1981, pp. 397-420.

[9] H. Friedman, Algorithmic procedures, generalized Turing algorithms, and elementary recursion theory,

Logic Colloquium 1969, North-Holland, Amsterdam, 1971, pp. 36 l-390.

[lo] H. Friedman, R. Mansfield, Algorithmic procedures, Trans. AMS 332 (1992) 2977312.

[1 I] A. Hemmerling, Computability of string functions over algebraic structures, Math. Log. Quart. 44 (1998)

l-44.

[I21 P. Herding, K. Weihrauch, Levels of degeneracy and exact lower bounds for geometric algorithms,

Proc. 6th Canadian Conf. on Computational Geometry, Saskatoon, 1994, pp. 237-242.

[13] H. Heuser, Das Unendliche in Philosophie, Theologie und Mathematik. DMV-Mitteilungen 3/97 (1997)

35-38.

[141 P.G. Hinman, Recursion-Theoretic Hierarchies, Springer, Berlin, 1978.

[15] G. Hotz, T. Chadzelek, Analytic machines, Preprint 1997.

[161 G. Hotz, G. Vierke, B. Schieffer, Analytic machines, Electron. Colloq. Comput. Complexity (1995) TR

95-025.

[171 hr. I. Janov, The logical schemes of algorithms, Problems Cybemet. 1 (1960) 82-140.

[181 A.J. Kfoury, Definability by programs in first-order structures, Theoret. Comput. Sci. 25 (1983) l-66.

[191 SC. Kleene, Introduction to Metamathematics, North-Holland, Amsterdam, 1952.

[20] K.-I. Ko, Complexity Theory of Real Functions, Birkhauser, Boston, 1991.

[21] K.-I. Ko, H. Friedman, Computational complexity of real functions, Theoret. Comput. Sci. 20 (1982)

323-352.

[22] C. Kreitz, K. Weihrauch, Complexity Theory on Real Numbers and Functions, Lecture Notes in

Computer Science, vol. 145, 1983, pp. 1655174.

[23] D.C. Luckham, D.M.R. Park. MS. Paterson, On formalised computer programs, JCSS 4 (1970)

220-249.

[24] F. Meyer auf der Heide, J. Wiedermann, Numerical RAM: a realistic machine model for scientific

computing, Preprint 1997.

[25] Y.N. Moschovakis, Descriptive Set Theory, North-Holland, Amsterdam, 1980.

[26] P. Odifreddi, Classical Recursion Theory, North-Holland, Amsterdam, 1989.

[27] M.B. Pour-El, J.J. Richards, Computability in Analysis and Physics, Springer, Berlin, 1989.

[28] F.P. Preparata, M.I. Shamos, Computational Geometry, Springer, Berlin, 1985.

[29] H. Rogers Jr., Theory of Recursive Functions and Effective Computability, McGraw-Hill, New York,

1967.

[30] J.C. Shepherdson, On the definition of computable function of a real variable, Zeitschr. f. math. Logik

und Grundlagen d. Math., Bd. 22 (1976) 391-402.

[3 1] J.C. Shepherdson, Algorithmic procedures, generalized Turing algorithms, and elementary recursion

theory, in: L.H. Harrington et al. (Eds.), Harvey Friedman’s Research on the Foundations of

Mathematics, North-Holland, Amsterdam, 1985, pp. 285-308.

A. Hemmerlingl Theoretical Computer Science 219 (1999) 185-223 223

[32] J.C. Shepherdson, Computational complexity of real functions, in: L.H. Harrington et al. (Eds.),

Harvey Friedman’s Research on the Foundations of Mathematics, North-Holland, Amsterdam, 1985.

pp. 309-315.
[33] A. Tarski, A Decision Method for Elementary Algebra and Geometry, University of California Press,

Berkeley, 195 1.
[34] J.V. Tucker, J.I. Zucker, Program Correctness Over Abstract Data Types, with Error-State Semantics,

North-Holland P.C., Amsterdam, 1988.

[35] J.V. Tucker, J.I. Zucker, Computation by ‘while’ programs on topological partial algebras, McMaster

University, Department. of Computer Science, 1998, TR 98 -02.

[36] J.V. Tucker, J.I. Zucker, Computable functions and semicomputable sets on many-sorted algebras,

Preprint 1998, in: S. Abramsky, D.M. Gabbay, T.S.E. Maibaum (Eds.), Handbook of Logic in Computer

Science, vol. 5, Oxford Univ. Press, Oxford, to appear.

[37] A.M. Turing, On computable numbers, with an application to the Entscheidungsproblem, Proc. London

Math. Sot., vol. 42, 1936, pp. 230-265; vol. 43, 1937, pp. 544546.

[38] K. Weihrauch, Computability, Springer, Berlin, 1987.

[39] K. Weihrauch, A simple introduction to computable analysis, Informatik-Berichte 171-711995, FemUniv.

Hagen, 1995.

[40] N. Zhong, Recursively enumerable subsets of R4 in two computing models - Blum-Shub-Smale machine

and Turing machine, Theoret. Comput. Sci. 197 (1998) 79-94.

