Structure and behavior preservation by Petri-net-based refinements in system design

Hejiao Huanga,b,*, To-yat Cheungb, Wai Ming Makb

aDepartment of Mathematics, Shaan Xi Normal University, Xi’an, China
bDepartment of Computer Science, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, China

Received 9 December 2003; received in revised form 15 June 2004; accepted 7 July 2004
Communicated by D.-Z. Du

Abstract

A refinement is a transformation for replacing a simple entity of a system with its functional and operational details. In general, the refined system may become incorrect even if the original system is correct because some of its original properties may have been lost or some unneeded properties may have been created. For systems specified in pure ordinary Petri nets, this paper proposes the conditions imposed on several types of refinement under which the following 19 properties will be preserved: state machine, marked graph, free choice net, asymmetric choice net, conservativeness, structural boundedness, consistence, repetitiveness, rank, cluster, rank-cluster-property, coverability by minimal state-machines, siphon, trap, cyclomatic complexity, longest path, boundedness, liveness and reversibility. Such results have significance in three aspects: (1) It releases the designer’s burden for having to provide different methods for individual properties. (2) In the literature, refinements have been shown preserving several equivalence relations and behavioral properties. Our results show that they also preserve many structural properties. (3) It greatly enlarges the scope of applicability of refinements because they can now be applied on systems that satisfy more properties than just liveness and boundedness.

© 2004 Elsevier B.V. All rights reserved.

Keywords: Design; Petri net; Preservation; Property; Refinement; Specification; Verification

* Corresponding author. Department of Computer Science, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, China.
E-mail addresses: hejiao@cs.cityu.edu.hk (H. Huang), cscheung@cityu.edu.hk (T.-y. Cheung).

0304-3975/ - see front matter © 2004 Elsevier B.V. All rights reserved.
1. Introduction

In Petri-net-based modular system design, transformations, such as refinements, compositions, reductions, etc., are often applied on the nets in order to develop a correct design specification. In this process, one of the difficult tasks is to verify that the transformed nets are correct, i.e., possessing certain desirable properties. In the literature, there exist three popular approaches for such purposes. The first approach may be called direct proof where by the transformed net is directly shown (i.e., based on definitions or by constructive algorithms) whether possessing the desirable properties or not. The challenge of this approach is that distinct verification methods may have to be sought for different nets and different properties. The second approach is called property-preservation. In this approach, the original net is assumed to be satisfying some specific properties and the transformation is required to preserve these properties in the transformed net. The advantage of this approach is that the transformed net is automatically correct without the need of further verification. However, the challenge is to find the appropriate transformation that preserves the specified properties. The third approach is to use characterizations. A characterization is a relationship that relates several properties. Sometimes, for a specific property, it may be too difficult to find a direct proof or no transformations that preserve this property are available. Then, based on some known characterizations, a designer may verify the other properties appearing in the characterization instead of verifying the specified one. For example, based on Characterization AC-5 of Section 2, in order to prove the liveness of a general Petri net, it is sufficient to prove that it satisfies several structural properties.

This paper investigates a special type of transformations called refinement and its property-preserving approach for verification. It shows that several elementary refinements can preserve 19 properties. These 19 properties can accommodate many aspects of systems. As explained below, such results constitute a significant contribution to the application and theory of Petri-net-based transformations for system design.

(a) Our results extend the preservation of behavioral properties to structural properties: In Petri-net-based system design, properties are the backbone for many aspects of investigation. In the olden days, knowledge in this field was limited to a few behavioral properties, such as liveness and boundedness. At present, these few properties are inadequate for designing complex real-life systems wherein a great variety of system-dependent and domain-dependent properties are involved. As this field is becoming more mature, the number of properties under study has been greatly increased. Many new structural properties and behavioral properties have been reported in the literature.

In the survey paper, Brauser et al. [1] classified refinement techniques into two categories according to what kind of properties they preserve. The first category preserves behavioral properties (which include boundedness and liveness), whereas the second category preserves semantic equivalence (e.g., failure equivalence). Most of the refinement techniques reported in the literature (including [16,17]) belong to the first category. However, most of them considered the preservation of liveness and boundedness only. This paper follows the recent research trend of this field. It shows that, besides the three common behavioral properties boundedness, liveness and reversibility, the various refinements can also preserve 16 structural properties, namely, state machine, marked graph, free-choice-ness, asymmetric-choice-ness, conservativeness, structural boundedness, consistence, repetitive-
ness, rank, cluster, rank-cluster-property, coverability by minimal state-machines, siphon, trap, cyclomatic complexity and longest path.

(b) Our results enhance the characterization-based approach for system verification: Sometimes, in system verification, it is too difficult to verify directly a specific property or to show that a specific property is preserved. However, if some algebraic characterizations relating this property with some others are available, it may be simpler to do this for the other properties than for the specific property. Hence, if more properties are involved, it may be easier to find the appropriate characterizations or property-preserving transformations.

(c) Our results enhance the property-preserving approach for system verification: In system design, a transformation may serve two purposes. One is to permanently modify the system according to the objective in the design process. The other is to temporarily modify the system so that it is easier to verify certain properties of the original system by verifying the modified system. The transformation is temporary because, after the verification, it will be abandoned and the design process resumes from the original net.

For the first purpose, since a transformation is permanent, a single transformation should be able and enough to ‘carry’ all the properties from the original net to the transformed net. For example, suppose we want to create a live system that can be covered by state machines (SM-coverable). If we start with a draft live net that is SM-coverable, we should apply only those refinements that can preserve both liveness and SM-coverability. Hence, it is necessary to show that the refinement, besides liveness, also preserves SM-coverability. In general, the more properties a refinement is shown to preserve, the more advanced systems it can be applied to design.

For the second purpose, if a single transformation cannot preserve all the specified properties, a designer has to apply several different transformations which can preserve these properties separately. Though being able to achieve the goal of verification if such transformations are available, obviously it will not be so efficient as if applying a single transformation that can preserve all these properties.

In the early stage of research in property-preserving transformations, the scope of studies was largely quite narrow. For instance, existing results concerning refinements and reductions are mostly about liveness and boundedness and seldom about other properties. Also, most transformations are quite specific, such as merging a few places or transitions [9–11], reducing [7,13] and refining [16,17] individual places or transitions or very specific subnets. To circumvent these shortcomings, current research is expanding in two directions, one aiming at properties other than liveness and boundedness and another at more general transformations. For instance, Cheung, Zeng and Lu provided conditions for the preservation of place-invariants under five very general transformations on ordinary Petri nets [2] and colored Petri nets [3]. Mak [11] investigated the preservation of 20 properties under many transformations defined in terms of various operations (such as choice, sequential, interleave, parallel, disable, eliminations, etc.) on software processes.

Note that this paper does not propose totally new refinement techniques but focuses on the expansion of properties they can preserve. For example, as will be described below, there are some minor differences between the refinement techniques of Valette [17] and Susuki et al. [16] (referred to as VS below) and ours. In fact, the differences lie just in the ways of modeling the refinement net and stating the assumptions. However, these minor differences have led to different ways for proving those common results—the preservation
of liveness and boundedness. The major difference between these two papers and ours is that ours shows that, in addition to the few behavioral properties, refinements can also preserve many structural properties.

(a) Our refinement net B_2 has a unique entry place with multiple exit transitions and a unique exit place with multiple entry transitions. In VS’s models, the refinement net starts with a unique entry transition and ends with a unique exit transition. However, from the viewpoint of system structures, if we ignore the system properties our model and VS’s models can be easily converted to each other.

(b) In order for a refinement to work properly, B_2 should be non-re-enterable. That is, once started, B_2 cannot be initiated again until the current cycle has terminated. In VS’s models, this is ensured by requiring B_2 to be well-formed or k-well-behaved and the refined transition t_r not to be 2-enabled or $(k + 1)$-enabled in the refined net. In our model, this is ensured by requiring B_2 to initiate and terminate properly and t_r not to be 2-enabled.

The rest of the paper is organized as follows. Section 2 presents some basics about Petri nets including Petri net processes and algebraic characterizations. Transition and place refinements and their preservation of 19 properties are presented in Sections 3 and 4, respectively. In Section 5, an example is given. Some concluding remarks are given in Section 6. In order not to interrupt the flow of description in the main context of the paper and to provide convenient references to the readers, theorem proofs are put in the appendix.

2. Basics of Petri nets and Petri net processes

This section presents some basics of Petri nets. In particular, it defines Petri net processes that are used to replace the specified transitions and some new properties specifically for them.

2.1. Petri net

A net is a 4-tuple $N = (P, T, F, W)$, where P is a finite set of places, T is a finite set of transitions such that $P \cap T = \emptyset$ and $P \cup T \neq \emptyset$, $F \subseteq (P \times T) \cup (T \times P)$ is the flow relation and W is a weight function such that $W(x, y) \in \mathbb{N}^+$ (positive integers) if $(x, y) \in F$ and $W(x, y) = 0$ if $(x, y) \notin F$. A net is said to be ordinary if $W = 0$ or 1. In this case, W will be omitted.

The marking (or state) for a net is a function $M: P \rightarrow \mathbb{N}^+$ (non-negative integers). M may be represented by a multi-set expression or a $|P|$-vector $(M(p_1), \ldots, M(p_{|P|}))$, where $M(p)$ is the number of tokens in place $p \in P$. For example, if $M = (1, 0, 0, \ldots, 0)$, then the multi-set expression $M + 2p_2 + 3p_{p_1}$ represents the marking $(1, 2, 0, \ldots, 0, 3)$.

A Petri net (N, M_0) is a net with an initial marking M_0. A transition $t \in T$ is said to be k-enabled (or k-firable) for $k \in \mathbb{N}^+$ at a marking M iff $\forall p \in P: (M(p) \geq kW(p, t))$. k is omitted if being equal to 1. Firing (or executing) transition t results in changing marking M to marking M', where $M'(p) = M(p) - W(p, t) + W(t, p) \forall p \in P$.
Let \((N, M_0)\) be a Petri net. \(N\) is said to be pure or self-loop-free iff\(\forall x, y \in P \cup T: ((x, y) \not\in F \Rightarrow (y, x) \not\in F)\). \(M[N,t]\) means that transition \(t\) is enabled at \(M\). For a sequence \(\sigma = t_1 \ldots t_k \in T^*\), \(M[N, \sigma]\) means that there exist markings \(M_i, i = 1, \ldots, k\) such that \(M_0 = M = M_{i-1}[N, t_i]M_i\) and \(M_{k-1}[N, t_k]\). \(L(B, M_0)\) denotes the language of \((B, M_0)\), i.e., \(L(B, M_0) = \{\sigma | M[N, \sigma]\}\). \(M[N, \sigma]M'\) means that \(M'\) is reachable from \(M\) by firing sequence \(\sigma\). If \(\sigma\) is not explicitly specified, the notation \(M[N, \ast]M'\) is used. \(R[N, M]\) denotes the reachability set of \(N\) from marking \(M\), i.e., the smallest set of markings such that (i) \(M \in R[N, M]\) and (ii) if \(M' \in R[N, M]\) and \(M'[N, t]M''\) for some \(t \in T\), then \(M'' \in R[N, M]\). \(N\) may be omitted if understood.

\(V = \text{POST–PRE}\) is the incidence matrix of \(N\), where \(\text{PRE}\) is a \(|P| \times |T|\) matrix whose element \(w(p, t)\) is the weight of the arc from place \(p\) to transition \(t\). \(\text{POST}\) is a \(|P| \times |T|\) matrix whose element \(w(t, p)\) is the weight of the arc from transition \(t\) to place \(p\). The rank of \(V\) may be written as \(\text{Rank}(V)\) or \(\text{Rank}(N)\). For matrix \(V\) with rows in \(P\) and columns in \(T\), if \(P_1 \subseteq P\) and \(T_1 \subseteq T\), then \(V[P, T]\) denotes the sub-matrix of \(V\) with rows in \(P_1\) and columns in \(T_1\). \(V[p, T], V[P, t]\) and \(V[p, t]\) are particular cases for row \(p\) and column \(t\). Also, if it is clear from the context, we do not distinguish the symbols between column vectors and row vectors. For a Petri net \((N, M_0), M = M_0 + V \mu\), is called the state equation, where \(\mu\) is called the firing count vector of a firing sequence \(\sigma\) if \(\mu[t] = \#(\sigma, t)\) is the number of times transition \(t\) occurs in \(\sigma\). For \(x \in P \cup T, x^* = \{y | (y, x) \in F\}\) and \(x^* = \{y | (x, y) \in F\}\) are called the pre-set (input set) and post-set (output set) of \(x\), respectively. For a set \(X \subseteq P \cup T, X^* = \cup_{x \in X}x^*\) and \(X^* = \cup_{x \in X}x^*\). \(\#(\sigma, p^*) = \sum_{t \in p^*}\#(\sigma, t)\), \(\#(\sigma, p) = \sum_{t \in \sigma}\#(\sigma, t)\).

The definitions of some basic structural and behavioral properties of a Petri net \((N, M_0)\) referenced in this paper are listed below.

- A place \(p\) is said to be bounded (resp., \(k\)-bounded) iff \(\exists k > 0: (\forall M \in R[N, M_0], M(p) \leq k)\). \((N, M_0)\) is said to be bounded (resp., \(k\)-bounded) iff every place of \(N\) is bounded (resp., \(k\)-bounded). A place is said to be safe iff it is 1-bounded. \((N, M_0)\) is said to be safe iff all its places are 1-bounded. \(N\) is said to be structurally bounded iff it is bounded for every initial marking \(M_0\).

- For \(x \in P \cup T, \) the cluster \([6]\) of \(x\), denoted as \([x]\), is the smallest subset of \(P \cup T\) satisfying three conditions: (1) \(x \in [x]\); (2) if \(p \in P \cap [x]\) then \(p^* \subseteq [x]\); and (3) if \(t \in T \cap [x]\) then \(t^* \subseteq [x]\). The set of clusters of \(N\) is denoted as \(C(N) = \{[x] | x \in P \cup T\}\).

- \(N\) is connected \([6]\) iff it is not composed of two disjoint and non-empty subnets. \(N\) is strongly connected if and only if, for every pair of nodes \(x, y\), there exists a directed path from \(x\) to \(y\).

- \(N\) is conservative \([15]\) iff there exists a \(|P|\)-vector \(\alpha \geq 1\) such that \(\alpha V = 0\), consistent \([15]\) iff there exists a \(|T|\)-vector \(\beta \geq 1\) such that \(V \beta = 0\) and repetitive \([12, 15]\) iff there exists a \(|T|\)-vector \(\beta \geq 1\) such that \(V \beta \geq 0\).

- A transition \(t\) is said to be live iff \(\forall M \in R[N, M_0]: (\exists M': (M[N]M' \text{ and } M'[t]))\), or equivalently, \(\forall M \in R[N, M_0]: (\exists \sigma \in T^*: (M[\sigma t]))\). \((N, M_0)\) is said to be live iff every transition of \(N\) is live. \(N\) is said to be structurally live if there exists a marking \(M_0\) such that \((N, M_0)\) is live \([5, 8]\).

- \(N\) is said to satisfy the rank-and-cluster property (RC-property) \([15]\) if \(\text{Rank}(N) = |C(N)| - 1\).
(N, M_0) is said to be reversible [5] if ∀M ∈ R(N, M_0): (M_0 ∈ R(N, M).

- A set of places D is called a siphon (or deadlock) if *D ⊆ D^* and a trap if D^* ⊆ *D [5].

- A subnet N_i = (P_i, T_i, F_i) of N is an SM-component of N if N_i is a strongly connected SM and \(T_i = *P_i \cup P_i^* \). N is said to be SM-coverable [6] iff there exists a set of SM-components \(\{N_1, \ldots, N_k\} \) such that \(P = \cup_i P_i, T = \cup_i T_i, \) and \(F = \cup_i F_i \), where \(i \) runs from 1 to \(k \). \(\{N_1, \ldots, N_k\} \) is called an SM-cover of N and is said to be minimal iff none of its proper subsets is also an SM-cover of N.

- N is called a state machine (SM) [6,12] iff ∀t ∈ T: (\(|t| = |t^*| = 1\), a marked graph (MG) iff ∀p ∈ P: (\(|p| = |p^*| = 1\), a free choice (FC) net iff ∀\(t_1, t_2 \in T: (t_1 \cap t_2 \neq \emptyset) \Rightarrow *t_1 = *t_2 \), and an asymmetric choice (AC) net iff ∀\(t_1, t_2 \in T: (t_1 \cap t_2 \neq \emptyset) \Rightarrow *t_1 \subseteq t_2 \) or \(*t_2 \subseteq t_1 \).

- N is said to be well-formed if there exists an M_0 such that (N, M_0) is live and bounded. Some algebraic characterizations of Petri nets are summarized as follows:

AC-1 (Necessary condition for a reachable marking). Let \(z \) be a place invariant of (N, M_0).

- Then, \(VM \in R(N, M_0) \), \(zM = zM_0 \).

AC-2 (Sufficient condition for repetitiveness [12]). A consistent Petri net is repetitive.

AC-3 (Sufficient condition for strong connectedness, [8]). A conservative, consistent, and connected net is strongly connected.

AC-4 A net is structurally bounded [12] iff \(\exists \|P\| \)-vector \(z \geq 1: (zV \leq 0) \).

AC-5 (Rank Theorem for liveness, [6]). Let N be an ordinary Petri net which is connected, conservative, consistent and satisfies the RC-property. (N, M_0) is live if \(zM_0 > 0 \) for every semi-positive place invariant \(z \) of (N, M_0).

AC-6 (Rank Theorem, [6]). Let N be an ordinary Petri net. If N is connected, conservative, consistent and satisfies the RC-property, then N is well-formed. If N is well-formed, then \(\text{Rank}(N) < |\{t^* | t \in T\}| \).

AC-7 (Sufficient condition for FC net). If ∀p ∈ P: (*p^*) = \{p\}, then N is a FC net.

AC-8 (Rank Theorem for FC net, [6]). Let N be a FC Petri net. N is well-formed iff N is connected, conservative, consistent and satisfies the RC-property.

AC-9 (Sufficient condition for SM-coverability, [6]). Let N be an ordinary Petri net. If N is connected, conservative, consistent and satisfies the RC-property, then N is SM-coverable.

Throughout this paper, we consider only pure, ordinary Petri nets.

2.2. Petri net process

In a transition refinement, a transition is replaced with a Petri net process, a type of nets with a special structure, a control marking and some initiation/termination rules.

Definition 2.1 (Process). A net process (or just process) is a 3-tuple \(B = (N, p_e, p_x) \), where

- \(N = (P, T, F) \) is an ordinary, pure and connected net,
- \(p_e \) (the entry place) is the only place \(p \in P \) such that \(p^* = \emptyset \)
- \(p_x \) (the exit place) is the only place \(p \in P \) such that \(p^* = \emptyset \).

In a transition refinement, a transition is replaced with a Petri net process, a type of nets with a special structure, a control marking and some initiation/termination rules.
A Petri net process \((B, M_c)\) is a process \(B\) with a control marking \(M_c\) satisfying the constraints: \(M_c(p_c) = M_c(p_x) = 0\). \((B, M_c)\) satisfies two assumptions:

(a) **Proper initiation:** \(B\) can be initiated only at the entry marking \(M_e = p_c + M_c\).

(b) **Proper termination:** \(B\) terminates on and only on reaching any marking \(M\) for which \(M(p_x) \geq 1\). Furthermore, \(\forall M \in \{B, M_c\}, \) where \(M(p_x) \geq 1\), \(M\) can only be the exit marking \(M_X = p_x + M_c\).

Proper initiation ensures that a process can be initiated only by depositing a token into \(p_c\). Proper termination, however, does not imply that a process must terminate (which is another design issue). It only means that, whenever \(p_x\) has a token, then \(B\) must terminate; and that, if \(B\) terminates, its marking must be \(M_X\). These assumptions arise out of the activation and memorylessness requirements in the management of software processes. They serve similar purposes as the assumptions of well-formedness [17] and 1-well-behavedness [16]. Extending our model to \(k\)-well-behavedness is quite straightforward.

Definition 2.2 (Associated process, re-initiation path, ‘Almost’ properties). The associated process \(B_a\) of process \(B\) is formed from \(B\) by adding an associated transition \(t_a\) and two arcs \((p_x, t_a)\) and \((t_a, p_c)\) to \(N\). The sequence \(p_xt_at_c\) is called the re-initiation path. Process \(B\) is said to almost satisfy Property \(X\) if \(B_a\) satisfies \(X\).

\(B_a\) is introduced for describing some properties (e.g., SM-coverability in the appendix) of \(B\) that are based on strong connectedness, since \(B\) is not strongly connected but \(B_a\) is. For example, \(B\) is almost a marked graph (MG) if \(B_a\) is an MG. \(B\) is almost SM-coverable if \(B_a\) is SM-coverable.

Definition 2.3 (Elementary entry-to-exit path, sequence (e-path, e-sequence)). \(\gamma = t_1 \ldots t_j \ldots t_n \in T^*\) is called an elementary entry-to-exit path or sequence (e-path or e-sequence) if \(t_1 \in p_c^+, t_n \in p_x, t_j \neq p_c^+ \cup p_x^+ \text{ for } j = 2, \ldots, n - 1, t_j^+ \cap t_{j+1}^+ \neq \emptyset \text{ for } j = 1, \ldots, n - 1, \) and \(t_i \neq t_j\) if \(i \neq j\). The length of the longest e-path of a process \(B\) is denoted as \(LP(B) = \max\{k|k = |\gamma|, \gamma\text{ is an e-path of } B\}\).

Definition 2.4 (Cyclomatic complexity, Cheung and Zu [3]). The cyclomatic complexity of a Petri net process \(B\) without the re-initiation path is defined as \(Z(B) = |F| - |P \cup T| + 2\), where \(|F|\) is the total number of arcs and \(|P \cup T|\) is the total number of places and transitions of \(B\). If \(B\) has the initiation path (i.e., \(B_a\)), \(Z(B_a) = |F| - |P \cup T| + 1\).

Cyclomatic complexity [14] is a well-known quantitative measure of software programs that can be represented as a program graph. In the basis path testing methods, it is an upper bound on the number of independent e-paths that cover every operation of the program at least once. Cheung et al. [4,11] extended cyclomatic complexity from program graphs to Petri net processes and proved its preservation under many transformations. The number \(LP(B)\) may be used to estimate the maximum number of distinct operations needed for executing the process once. However, note that an e-sequence is not necessarily fireable.

3. Property-preserving refinements of transitions

A transition refinement expands a transition to a Petri net process. This section first formally describes the refinement technique and then derives some relationships among its
A marked refined net (Definition 3.1 of 19 properties under a transition refinement, is presented (Theorems 3.3 and 3.4).

Various ingredients. Then, one of the two major results of this paper, namely, preservation of 19 properties under a transition refinement, is presented (Theorems 3.3 and 3.4).

Definition 3.1 (Refined net, refined transition (B₁ in Fig. 1)). A refined net is a 4-tuple $B = (N, r₁, r₀, t₁)$, where

- $N = (P, T, F)$ is an ordinary net,
- $r₁ ∈ P$ is the refinement inlet place, $r₀ ∈ P$ is the refinement outlet place and $t₁ ∈ T$ is the refined transition, where $r₁^* = \{t₁\} = *r₀$ and $|t₁| = t₁^* = 1$,
- $t₁$ is not 2-enabled.

A marked refined net $(B, M₁)$ is a refined net with an initial marking $M₁$.

Transformation TR (Transition Refinement $B₁(t₁ → B₂)$). (Fig. 1). Let $(B₁, M₁)$ be a marked refined net and $(B₂, M₂)$ be a proper terminated Petri net process. Replacing transition $t₁$ of $(B₁, M₁)$ with $(B₂, M₂)$ results in a marked net $(B, M₁)$, where

- $B = B₁(t₁ → B₂) = (N, p₁, p₀); N = (P, T, F)$,
- $P = P₁ ∪ P₂ ∪ \{p₁, p₀\} − \{r₁, r₀, pₑ, pₓ\}; T = T₁ ∪ T₂ − \{t₁\}; F = F₁ ∪ F₂ ∪ \{(p₁, x)|x ∈ p₁^*\} ∪ \{(x, p₀)|x ∈ p₀^*\} ∪ \{(x, p₁)|x ∈ p₁^*\} ∪ \{(p₀, x)|x ∈ p₀^*\} ∪ \{(p₁, x)|x ∈ p₁^*\} ∪ \{(x, r₁)|x ∈ r₁^*\} ∪ \{(x, r₁)|x ∈ r₁^*\} ∪ \{(p₀, x)|x ∈ p₀^*\} ∪ \{(x, r₁)|x ∈ r₁^*\} ∪ \{(x, p₀)|x ∈ p₀^*\} ∪ \{(x, p₁)|x ∈ p₁^*\}.$
- $p₁$ is the inlet place and $p₀$ is the outlet place.
- The initial marking $M₁$ of B is derived from $M₁$ of $B₁$ and $M₂$ of $B₂$ as follows: $M₁(p₁) = M₁(r₁); M₁(p₀) = M₁(r₀); M₁(p) = M₁(p)$ for $p ∈ P₁ − \{r₁, r₀\}$ and $M₁(p) = M₂(p)$ for $p ∈ P₂ − \{pₑ, pₓ\}$.

For the rest of this paper, $B₁$ denotes the refined net, $B₂$ the refinement net process and $B = B₁(t₁ → B₂)$ the resulting net as described in Transformation TR.

Definition 3.2 (Mappings arising from Transformation TR). Let $σ ∈ L(B, M₁)$ and $M ∈ M₁[B, σ].$ The mappings of $σ$ and M from B to $B₁$ and $B₂$ are defined below, where $\tilde{λ}$ is a null sequence and $γ$ is an e-sequence of $B₂$.

$f₁ : T^* → T₁^*$ is defined as follows: $f₁(\tilde{λ}) = \tilde{λ}.$ If $f₁(σ)$ has been defined for $σ$, then

- $f₁(στ) = f₁(σ)$ if $t ∈ T₂ − *p₀$,
- $f₁(σt) = f₁(σ)t$ if $t ∈ T₁ − \{t₁\}$,
- $f₁(σ)t₁$ if $t ∈ *p₀$.
Theorem 3.1. Suppose a transition sequence \(f \), transformation \(TR \). Let \(f \)ing two propositions hold

\[M_1(r_i) = M(p_i) + (\#(\sigma, p_i^\#) - \#(\sigma, \cdot p_o)), \]
\[M_1(r_o) = M(p_o), \]
\[M_1(p) = M(p) \quad \text{if} \quad p \in P_1 - \{r_1, r_o\}. \]

\(f_2 : T^* \rightarrow T_2^* \) is defined as follows: \(f_2(\lambda) = \lambda \). If \(f_2(\sigma) \) has been defined for \(\sigma \), then

\[f_2(\sigma t) = f_2(\sigma) \quad \text{if} \quad t \in T_1 - \{t_i\} \]
\[= f_2(\sigma) t \quad \text{if} \quad t \in T_2 - \cdot p_o \]
\[= \gamma \quad \text{if} \quad t \in \cdot p_o. \]

\(M_2 \) is a restriction of \(M \) from \(P \) to \(P_2 \), where

\[M_2(p_x) = M(p_x), \]
\[M_2(p_\lambda) = 0, \]
\[M_2(p) = M(p) \quad \text{if} \quad p \in P_2 - \{p_e, p_\lambda\}. \]

Lemma 3.1. For any firable e-sequence \(\gamma \) of Petri net process \((B, M_e), M_e[B, \gamma] M_\lambda. \)

The following results describe the relationships among the transition sequences \(\sigma, f_1(\sigma), f_2(\sigma) \) and the markings \(M, M_1, M_2 \) of \(B, B_1 \) and \(B_2 \) respectively.

Lemma 3.2. For any \(\sigma \in L(B, M_i), \#(\sigma, \cdot p_o) + 1 \geq \#(\sigma, p_i^\#) \geq \#(\sigma, \cdot p_o). \)

Theorem 3.1. Suppose a transition sequence \(\sigma \) and a marking \(M \) satisfy \(M_i[B, \sigma] M \) in Transformation \(TR \). Let \(f_1, f_2, M_1 \) and \(M_2 \) be defined as in Definition 3.2. Then, the follow-
ing two propositions hold: (1) \(f_1(\sigma) \in L(B_1, M_i) \) and \(f_2(\sigma) \in L(B_2, M_e) \). (2) \(M_i[B_1, f_1(\sigma)] M_1 \) in \(B_1 \) and \(M_e[B_2, f_2(\sigma)] M_2 \) in \(B_2 \).

Let us consider the implication of two cases of Theorem 3.1.

Case 1: \(\#(\sigma, p_i^\#) - \#(\sigma, \cdot p_o) > 0 \). In this case, execution of \(B_2 \) has initiated but has not terminated yet. Furthermore, \(M(p_i) = 0 \) but \(M_1(r_i) = 1 \). This apparent inconsistence can be explained as follows. From the viewpoint of \(B \), the token at \(p_i \) that initiates \(B_2 \) has been removed; whereas, from the viewpoint of \(B_1 \), this token till stays in \(r_i \). Then, since \(t_r \) is not 2-enabled, \(B_2 \) cannot be re-entered.

Case 2: \(\#(\sigma, p_i^\#) - \#(\sigma, \cdot p_o) = 0 \). In this case, execution of \(B_2 \) either has never occurred or has terminated. If the last transition \(t \) of \(\sigma \) is in \(\cdot p_o \), then \(t \) is projected onto the single transition \(t_r \) within \(B_1 \) and the entire \(\sigma \) is the same as a firable e-sequence \(\gamma \) when observed within \(B_2 \). Furthermore, we have \(M_1(r_o) = M(p_o) = 1 \) but \(M_2(p_\lambda) = 0 \). This implies that any token in \(p_o \) is considered as belonging to \(B_1 \) rather than to \(B_2 \). That is, we have \(M_e[B_2, \gamma] M_e \) but \(M_i(B, \gamma] M_0 \).

Lemma 3.3. (1) Any \(\mu \in L(B_2, M_e) \) is a firable subsequence of some \(\sigma \in (B, M_i) \) at a marking \(M \) where \(M(p_e) \geq 1 \). (2) Suppose \((B_2, M_e) \) has at least one firable e-sequence. Then, for any \(\mu \in L(B_1, M_i) \), there exists \(\sigma \in L(B, M_i) \) such that \(\mu = f_1(\sigma) \).
Theorem 3.2. For the composite net obtained by Transformation TR, the following two propositions hold: (1) B_2 can be initiated only from B_1. (2) As far as token distribution in B_1 is concerned, executing one cycle of B_2 is equivalent to firing t_r once in B_1.

In general, it is difficult to relate the ranks of the incidence matrices of the nets involved in Transformation TR. Theorem 3.3 provides such a relation for several important special cases.

Theorem 3.3 (Relation of ranks of Petri nets in Transformation TR). Let S, S', S_1 and S_2 are S-invariants of $B_1\{t_r\}$ or B_2. Accordingly, p_i should be replaced by r_i or p_o by r_o or p_x. Then, $\text{Rank}(B_1(t_r \rightarrow B_2)) = \text{Rank}(B_1) + \text{Rank}(B_2) - h + d - 2$, where $h = 0$ if t_r appears in at least one T-invariant of B_1

1 otherwise, $d = 2$ if $\exists S_1, S_2$ such that one of the following conditions holds: (1) $p_i \in S_1$, $p_o \notin S_1$, $p_o \in S_2$, (2) $p_o \in S_2$, $p_i \notin S_2$, $p_i \in S_1$.

$= 1$ if one of the conditions holds: (1) One and only one of $\{p_i, p_o\}$ appears in some S-invariant. (2) $\exists S_1$ such that $\{p_i, p_o\} \subseteq S_1$, and $\forall S' \neq S_1, S' \cap \{p_i, p_o\} = \emptyset$. (3) $B_1\{t_r\}$ has an S-invariant S_1 of the form: $a_1p_i + b_1p_o + c_1 = 0$ (where $a_1 \neq 0$ and $b_1 \neq 0$) and B_2 has an S-invariant S_2 of the form: $a_2p_i + b_2p_o + c_2 = 0$ (where $a_2 \neq 0$ and $b_2 \neq 0$) such that $b_2/a_2 = b_1/a_1$. Furthermore, $B_1\{t_r\}$ and B_2 have no other S-invariants containing p_i or p_o.

$= 0$ if neither p_i nor p_o appears in any S-invariant of $B_1\{t_r\}$ or B_2.

Theorem 3.4 (Property preservation under Transition Refinement $B_1(t_r \rightarrow B_2)$). The following propositions are valid under Transformation TR.

1) If both B_1 and B_2 are SM (almost MG, FC nets, AC nets), so is $B_1(t_r \rightarrow B_2)$.

2) If both B_1 and B_2 are conservative (structurally bounded), so is $B_1(t_r \rightarrow B_2)$.

3) If B_1 is consistent (repetitive) and B_2 is almost consistent (almost repetitive), then $B_1(t_r \rightarrow B_2)$ is consistent (repetitive).

4) $\text{Rank}(B_1(t_r \rightarrow B_2)) = \text{Rank}(B_1) + \text{Rank}(B_2) - h + d - 2$, where h and d are computed according to Theorem 3.3.

5) $|C(B_1(t_r \rightarrow B_2))| = |C(B_1)| + |C(B_2)| - 2$.

6) If both B_1 and B_2 satisfy the RC-property, so does $B_1(t_r \rightarrow B_2)$ provided that $d - h = 1$ in Proposition 4.

7) If B_1 has a minimal SM-cover and B_2 almost has a minimal SM-cover, then $B_1(t_r \rightarrow B_2)$ has a minimal SM-cover.

8) Suppose D is a siphon of B_1. If $r_o \notin D$ or $p_x \subseteq p_{x}'$ in B_2, then D is a siphon of $B_1(t_r \rightarrow B_2)$. Suppose D is a siphon of B_2. If $p_c \notin D$ or $(p_x \in D$ and $r_1 \subseteq r_{1}'$ in B_1), then D is a siphon of $B_1(t_r \rightarrow B_2)$.

9) Suppose D is a trap of B_1. If $r_i \notin D$ or $p_{x}' \subseteq p_{x}$ in B_2, then D is a trap of $B_1(t_r \rightarrow B_2)$. Suppose D is a trap of B_2. If $p_x \notin D$ or $(p_c \in D$ and $r_o \subseteq r_{1}'$ in B_1), then D is a trap of $B_1(t_r \rightarrow B_2)$.

10) If B_1 is also a Petri net process with or without the re-initiation path, then $Z(B_1(t_r \rightarrow B_2)) = Z(B_1) + Z(B_2) - 1$.
(11) Suppose B_1 is a Petri net process and $LP(B_1, t_i)$ is the longest e-path within B_1 containing t_i. Then, $LP(B_1(t_i \rightarrow B_2)) = \max\{LP(B_1), LP(B_1, t_i) + LP(B_2) - 1\}$.
(12) If (B_1, M_t) is bounded by k_1 and (B_2, M_c) is bounded by k_2, then $(B_1(t_i \rightarrow B_2), M_t)$ is bounded by $\max\{k_1, k_2\}$.
(13) If (B_1, M_t) is live and (B_2, M_c) is almost live, then $(B_1(t_i \rightarrow B_2), M_t)$ is live.
(14) If (B_1, M_t) is reversible and (B_2, M_c) is almost reversible, then $(B_1(t_i \rightarrow B_2), M_t)$ is reversible.

4. Property-preserving refinements of places

To refine a place, our approach is to first convert the place to a transition and then refine the transition by Transformation TR of Section 3. The conversion includes splitting the place into two places connected by a transition. Therefore, in order to obtain similar results as for transition refinement, we have to show that this conversion also preserves the same properties.

Theorem 4.1 (Property preservation under Transformation PS). Suppose (B', M'_t) is obtained from (B, M_t) by Transformation PS. Then, the following propositions are valid.

1. If B is an SM (MG, FC net, AC net), so is B'.
2. If B is conservative (structurally bounded), so is B'.
3. If B is consistent (repetitive), so is B'.
4. $\text{Rank}(B') = \text{Rank}(B) + 1$.
5. $|C(B')| = |C(B)| + 1$.
6. If B satisfies the RC-property, so does B'.
7. If B has a minimal SM-cover, so does B'.
8. Suppose D is a siphon of B. If $p_t \notin D$, then D is a siphon of B'. If $p_t \in D$, then $D - \{p_t\} \cup \{r_i, r_o\}$ is a siphon of B'.
9. Suppose D is a trap of B. If $p_t \notin D$, then D is a trap of B'. If $p_t \in D$, then $D - \{p_t\} \cup \{r_i, r_o\}$ is a trap of B'.
10. Suppose B is a Petri net process. Then, $Z(B') = Z(B)$.
11. Suppose B is a Petri net process. Let $LP(B, p_t)$ be the longest e-path within B containing p_t. Then, $LP(B') = \max\{LP(B), LP(B, p_t) + 1\}$.
12–14 If (B, M_t) is bounded (live, reversible), so is (B', M'_t).
Transformation PR (Place Refinement $B_1(p_t \rightarrow B_2)$). Let (B_1, M_1) be a marked net and (B_2, M_2) be a Petri net process. Place p_t of (B_1, M_1) can be replaced with (B_2, M_2) by the following two steps, resulting in a marked net (B, M):

1. $B_1 \rightarrow B'$ (by Transformation PS), creating a new transition t_r
2. $B = B_1(p_t \rightarrow B_2)) = B'(t_r \rightarrow B_2)$ (by Transformation TR).

Theorem 4.2 (Property preservation under Place Refinement $B_1(p_t \rightarrow B_2)$). Let B_1 be a pure ordinary Petri net, B_2 be a Petri net process and $B_1(p_t \rightarrow B_2)$ be obtained from B_1 and B_2 by Transformation PR. Then, the following propositions are valid:

1. If both B_1 and B_2 are SM (almost MG, FC nets, AC nets), so is $B_1(p_t \rightarrow B_2)$.
2. If both B_1 and B_2 are conservative (structurally bounded), so is $B_1(p_t \rightarrow B_2)$.
3. If B_1 is consistent (repetitive) and B_2 is almost consistent (almost repetitive), then $B_1(p_t \rightarrow B_2)$ is consistent (repetitive).
4. $\text{Rank}(B_1(p_t \rightarrow B_2)) = \text{Rank}(B_1) + \text{Rank}(B_2) - h + d - 1$, where h and d are computed according to Theorem 3.3 (with B_1 replaced by B', the result of Transformation PS).
5. $|C(B_1(p_t \rightarrow B_2))| = |C(B_1)| + |C(B_2)| - 1$.
6. If both B_1 and B_2 satisfy the RC-property, so does $B_1(p_t \rightarrow B_2)$ provided that $d - h = 1$ in Proposition 4.
7. If B_1 has a minimal SM-cover and B_2 almost has a minimal SM-cover, then $B_1(p_t \rightarrow B_2)$ has a minimal SM-cover.
8. Suppose D is a siphon of B_1. If $p_t \notin D$, then D is a siphon of $B_1(p_t \rightarrow B_2)$. If $p_t \in D$ and $p^*_c \subseteq p^*_e$ in B_2, then $D - \{p_t\} \cup \{p_1, p_0\}$ is a siphon of $B_1(p_t \rightarrow B_2)$. Suppose D is a siphon of B_2. If $p_e \notin D$, then D is a siphon of $B_1(p_t \rightarrow B_2)$. If $p_e, p_3 \subseteq D$ and $p^*_c \subseteq p^*_e$ in B_1, then $D - \{p_e, p_3\} \cup \{p_1, p_0\}$ is a siphon of $B_1(p_t \rightarrow B_2)$.
9. Suppose D is a trap of B_1. If $p_t \notin D$, then D is a trap of $B_1(p_t \rightarrow B_2)$. If $p_t \in D$ and $p^*_c \subseteq p^*_e$ in B_2, then $D - \{p_t\} \cup \{p_1, p_0\}$ is a trap of $B_1(p_t \rightarrow B_2)$. Suppose D is a trap of B_2. If $p_3 \notin D$, then D is a trap of $B_1(p_t \rightarrow B_2)$. If $p_e, p_3 \subseteq D$ and $p^*_c \subseteq p^*_e$ in B_1, then $D - \{p_e, p_3\} \cup \{p_1, p_0\}$ is a trap of $B_1(p_t \rightarrow B_2)$.
10. Suppose B_1 is also a Petri net process with or without the re-initiation path. Then, $Z(B_1(p_t \rightarrow B_2)) = Z(B_1) + Z(B_2) - 1$.
(11) Suppose B_1 is also a Petri net process. Let $LP(B_1, p_r)$ be the longest path within B_1 containing p_r. Then, $LP(B_1(p_r \rightarrow B_2)) = \max\{LP(B_1), LP(B_1, p_r) + LP(B_2)\}$.

(12) If (B_1, M_r) is bounded by k_1 and (B_2, M_e) is bounded by k_2, then $(B_1(p_r \rightarrow B_2), M_i)$ is bounded by $\max(k_1, k_2)$.

(13) If (B_1, M_r) is live, p_r has at least one input transition and (B_2, M_e) is almost live, then $(B_1(p_r \rightarrow B_2), M_i)$ is live.

(14) If (B_1, M_r) is reversible and (B_2, M_e) is almost reversible, $(B_1(p_r \rightarrow B_2), M_i)$ is reversible.

5. An example for illustrating transition refinement

Description of a complaint-processing workflow system (Fig. 3 and Table 1):

The workflow system (B, p_1) operates as follows: When a complaint is launched, it will be registered. Then, a questionnaire is sent to the complainant while initial evaluation of the complaint is commenced. The response will be processed if returned within 2 weeks. Otherwise, it is discarded. Based on the result of the initial evaluation, the complaint is either formally processed or ignored. The actual processing of the complaint is delayed until the questionnaire is processed or a time-out has occurred. Processing of the complaint is monitored until all issues have been resolved and reprocessing may be warranted if there are any unsolved issues. Finally, the complaint is archived together with the questionnaire.

Petri net specification of the complaint-processing workflow system (Figs. 4 and 5):

System $B = B_1(t_r \rightarrow B_2)$ is obtained by Transformation TR, where

(a) B_1 specifies the main system, where t_r is the operation which triggers Process B_2
(b) B_2 specifies the process for handling the questionnaire.

![Fig. 3. Petri net representation of a workflow system B for processing complaints.](image-url)
Table 1
Interpretation of places and transitions of the workflow system (Fig. 3)

<table>
<thead>
<tr>
<th>Place and transition</th>
<th>Interpretation</th>
</tr>
</thead>
<tbody>
<tr>
<td>p_1</td>
<td>Register a complaint</td>
</tr>
<tr>
<td>p_2</td>
<td>Waiting for the return of a questionnaire</td>
</tr>
<tr>
<td>p_3</td>
<td>The activity of normal processing of a complaint</td>
</tr>
<tr>
<td>p_4</td>
<td>Ready to process or finish the whole processing of a questionnaire</td>
</tr>
<tr>
<td>p_5</td>
<td>Ready to hold a questionnaire for further processing or reprocessing of a complaint</td>
</tr>
<tr>
<td>p_6</td>
<td>Finish the whole processing of a questionnaire</td>
</tr>
<tr>
<td>p_7</td>
<td>Archive a complaint together with a questionnaire</td>
</tr>
<tr>
<td>t_1</td>
<td>Register a new complaint</td>
</tr>
<tr>
<td>t_2</td>
<td>Send a questionnaire to a complainant</td>
</tr>
<tr>
<td>t_3</td>
<td>Evaluate a complaint</td>
</tr>
<tr>
<td>t_4</td>
<td>Discard a questionnaire not returned within 2 weeks</td>
</tr>
<tr>
<td>t_5</td>
<td>Process a questionnaire</td>
</tr>
<tr>
<td>t_6</td>
<td>Process a complaint</td>
</tr>
<tr>
<td>t_7</td>
<td>Hold the questionnaire for further processing or reprocessing of a complaint</td>
</tr>
<tr>
<td>t_8</td>
<td>Quit the activity of the questionnaire</td>
</tr>
<tr>
<td>t_9 and t_{10}</td>
<td>Finish the whole processing of the complaint</td>
</tr>
</tbody>
</table>

Properties of B_1 (matrix V_1 of B_1 is shown in Fig. 5):

1. B_1 is SM, FC and AC but not MG because $|p_2^*| > 1$ and $|t_7| > 1$.
2. B_1 is conservative and structurally bounded because $x_1 = 1$ and $x_1 V_1 = 0$, where $x_1 = (x_5, x_4, \ldots, x_1) = (1, 1, 1, 1, 1)$.
3. B_1 is consistent and repetitive because $\beta_1 = 1$ and $V_1 \beta_1 = 0$, where $\beta_1 = (x_1, x_2, \ldots, x_6) = (1, 2, 1, 1, 1, 1)$.
4. Since the first four rows of V_1 are linearly independent and the last row is the negative sum of the other rows, $\text{Rank}(B_1) = 4$.
5. $|C(B_1)| = 5$. The five clusters are: $\{p_1, t_2, t_3\}, \{p_2, t_1\}, \{p_6, t_9\}, \{p_3, t_{10}\}$ and $\{t_7, t_1\}$.
6. B_1 satisfies the RC-property because $\text{Rank}(B_1) = |C(B_1)| = 1$.
7. B_1 is SM-coverable with two SM-components: $p_1 t_2 p_2 t_1 p_6 t_9 p_7 t_1 p_1$ and $p_1 t_3 p_3 t_1 p_7 t_1 p_1$.

(8) and (9) $D = \{p_1, p_2, p_3, p_6, p_7\}$ is both a siphon and a trap of B_1 because $*D = D^\ast$.

10. Since B_1 has a reinitiation path $p_7 t_1 p_1$, $z(B_1) = 2 - 1 + 1 = 2$. The two independent e-paths which cover all arcs of B_1 are: $p_1 t_2 p_2 t_1 p_6 t_9 p_7$ and $p_1 t_3 p_3 t_{10} p_7$.
11. $\text{LP}(B_1) = 3$. The longest e-path of B_1 from p_1 to p_7 is: $p_1 t_2 p_2 t_1 p_6 t_9 p_7$.
12. B_1 is safe, live and reversible.

Properties of B_2 (matrices V_2 and V_2a of B_2 are shown in Fig. 5):

1. B_2 is SM, FC and AC but is not an almost MG since $|p_2^*| > 1$, $|t_3| > 1$ and $|p_4| > 1$.
2. B_2 is conservative and structurally bounded because $x_2 = 1$ and $x_2 V_2 = 0$, where $x_2 = (y_1, y_2, y_3, y_4) = (1, 1, 1, 1)$.
3. B_2 is almost consistent and almost repetitive because $\beta_2 = 1$ and $V_2 \beta_2 = 0$, where $\beta_2 = (y_1, y_2, y_3, y_4, y_5, z) = (1, 1, 1, 2, 2)$.
(4) Since columns t_4, t_6 and t_8 are linearly independent, $\text{Rank}(B_2) = 3$.

(5) B_2 has four clusters: \{p_2, t_4, t_5\}, \{p_4, t_6, t_8\}, \{p_5, t_7\} and \{p_6\}. Hence, $|C(B_2)| = 4$.

(6) B_2 satisfies the RC-property because $\text{Rank}(B_2) = |C(B_2)| - 1$.

(7) B_2 is almost SM-coverable with B_2a as the only SM-component.

(8) Examples of siphons: \{p_2, p_4, p_5\}, \{p_2, p_4, p_5, p_6\}.

(9) Examples of traps: \{p_4, p_5, p_6\}, \{p_2, p_4, p_5, p_6\}.

(10) $Z(B_2) = 3$. The three independent e-paths which cover all arcs are: $p_2t_4p_4t_8p_6$, $p_2t_5p_4t_8p_6$ and $p_2t_5p_4t_6p_5t_7p_4t_8p_6$.

(11) LP(B_2) = 4. The longest e-path is $p_2t_5p_4t_6p_5t_7p_4t_8p_6$.

(12)–(14) (B_2, p_2) is bounded, almost live and reversible.

Properties of B: The results listed below follow from Theorem 3.4 and V (Fig. 6).

(1) B is an SM, not an almost MG, an FC net and an AC net.

(2) B is conservative and structurally bounded because $z \geq 1$ and $zV = 0$, where $z = (y_1)_{x_1} [P_1 - \{p_2, p_4\}], x_2y_1, x_1y_2, x_1z_2 [P_2 - \{p_2, p_4\}] = (1, 1, 1, 1, 1, 1, 1)$. (Note: x_1 and x_2 are taken from the descriptions of B_1 and B_2 given above, respectively.)

(3) B is almost consistent and repetitive because $\exists \beta = (z\beta_1[T_1 - \{t_1\}], x_1\beta_2[T_2]) = (z\beta_1, \ldots, z\beta_6, x_1\beta_1, \ldots, x_1\beta_3) = (4, 2, 2, 2, 1, 1, 1, 1, 1) \geq 1$, such that $V\beta = 0$. (Note: β_1 and β_2 are taken from the descriptions of B_1 and B_2 given above, respectively.)

(4) In B_1, $t_r = (0, 0, 0, -1, 1)$. t_r occurs in the T-invariant: $t_r + t_1 + t_2 + t_9 = 0$. Hence, $h = 0$. Also, $B_1 \setminus \{t_r\}$ has the unique S-invariant: $p_1 + p_3 + p_7 + p_2 + p_6 = 0$ and B_2 has the unique S-invariant: $p_2 + p_6 + p_4 + p_5 = 0$. This satisfies Condition (3) in Case 2 of Theorem 3.3. Hence, $d = 1$. It follows from Theorem 3.3 that $\text{Rank}(B) = \text{Rank}(B_1) + \text{Rank}(B_2) - h + d - 2 = 4 + 3 - 1 = 6$.

(5) $|C(B)| = |C(B_1)| + |C(B_2)| - 2 = 5 + 4 - 2 = 7$. The 7 clusters are: \{p_1, t_2, t_3\}, \{p_2, t_4, t_5\}, \{p_4, t_6, t_8\}, \{p_5, t_7\}, \{p_6, t_9\}, \{p_3, t_{10}\}$ and \{p_7, t_1\}.

(6) Since both B_1 and B_2 satisfy the RC-property and $d - h = 1$, B satisfies the RC-property. (This result is consistent with Propositions 4 and 5.)

(7) B is SM-coverable. The two SM-components of B are shown in Fig. 7.

(8) and (9) Siphon (trap) $B_1 = \{p_1, p_2, p_6, p_5, p_7\}$ of B_1 is not a siphon (trap) of B because it does not satisfy the condition of Theorem 3.4. Similarly, siphons $D_2 = \{p_2, p_4, p_5\}$ and $D_3 = \{p_2, p_4, p_5, p_6\}$ of B_2 are not siphons of B. D_3 is not a trap of B either.

(10) $Z(B) = Z(B_1) + Z(B_2) - 1 = 2 + 3 - 1 = 4$. By applying the cyclical complexity formula directly, $Z(B) = 20 - (7 + 10) + 1 = 4$. The four linearly independent e-paths which cover all arcs except (p_7, t_1) and (t_1, p_1) are: $p_1t_2p_4p_6p_6p_7$, $p_1t_2p_4p_5p_6p_7$, $p_1t_2p_5p_4t_5p_6p_5p_7$ and $p_1t_3p_5t_1p_7p_7$.

(11) LP(B) = max\{LP($B_1 \setminus \{t_1\}$), LP($B_1 \setminus \{t_1\}$, t_1) + LP(B_2) - 1\} = max\{2, 3 + 4 - 1\} = 6. The longest e-path for one iteration of $B \setminus \{t_1\}$ is: $p_1t_2p_4t_5p_6p_5p_7$.

(12)–(14) (B, p_1) is bounded, live and reversible.
6. Conclusion

In the modular approach for designing complex systems that have many desirable properties, current research aims at finding transformations that can preserve as many properties as possible. For Petri nets, transition and place refinements are important transformations for building complex systems from simple components. Previous study on refinement techniques [16,17] focused mainly on their preservation of behavioral properties such as liveness and boundedness. Based on a more general version of transition and place refinements, where the refinement net simulates a software process, this paper proposes various conditions under which nineteen properties will be preserved. These nineteen properties can accommodate the design of complex systems and most of them are structural. Our re-
sults extend capability of refinements from the preservation of behavioral properties to the preservation of structural properties. They also enhance the property-preserving approach and characterization-based approach for system verification.

Acknowledgements

This research was financially supported under Grant CityU1072/00E from Research Grant Council, the Government of Hong Kong.

Appendix

Proof for Lemma 3.1. This follows from the assumption of proper termination on \((B_2, M_c)\).

Proof for Lemma 3.2 (By mathematical induction on \(\sigma\)). For \(\sigma = \lambda\), Lemma 3.2 obviously holds because \(#(\lambda, \cdot p_o) = #(\lambda, p_i^*) = 0\). Suppose \(\forall \sigma' \in L(B, M_i)\) where \(|\sigma'| \leq n\), \(#(\sigma', \cdot p_o) + 1 \geq #(\sigma', p_i^*)\). Let \(\sigma = \sigma't\). For \(t \notin p_i^* \cup \cdot p_o\), \(#(\sigma, p_i^*) = #(\sigma', p_i^*)\) and \(#(\sigma, \cdot p_o) = #(\sigma', \cdot p_o)\). Hence, \(#(\sigma, \cdot p_o) + 1 \geq #(\sigma, p_i^*)\). For \(t \in p_i^*\), \(t\) since \(B_2\) initiates and terminates properly, we have \(#(\sigma, p_i^*) = #(\sigma', p_i^*) + 1\) and \(#(\sigma, \cdot p_o) = #(\sigma', \cdot p_o)\). Hence, \(#(\sigma, \cdot p_o) + 1 \geq #(\sigma, p_i^*)\). For \(t \in \cdot p_o\), the proof is similar.

Proof for Theorem 3.1 (By mathematical induction on the length of \(\sigma\)). For \(\sigma = \lambda\), obviously \(M = M_i\). By Definition 3.2, \(f_1(\sigma) = f_2(\sigma) = \lambda\). Hence \(f_1(\sigma) \in L(B_1, M_i)\) and
\(f_2(\sigma) \in L(B_2, M_2) \). Since \(M_i = M_t + M_c \) as defined in Transformation TR, \(M_t = M_1 \) and \(M_c = M_2 \). Since obviously \(M_t[B_1, \lambda] M_t \) and \(M_c[B_2, \lambda] M_c \), it follows that \(M_t[B_1, f_1(\sigma)] M_1 \) and \(M_c[B_2, f_2(\sigma)] M_2 \). Next, suppose Propositions 1 and 2 hold for all \(\mu \) where \(|\mu| \leq n \). That is, \(M_t[B, \mu] M' \) implies:

1. \(f_1(\mu) \in L(B_1, M_t); f_2(\mu) \in L(B_2, M_c). \)
2. \(M_t[B_1, f_1(\mu)] M'_1 \), where \(M'_1(r_i) = M'(p_i) + (#(\mu, p'_1) - #(\mu, p_o)) \), \(M'_1(r_o) = M'(p_o) \) and \(M'_1(p) = M'(p) \) for \(p \in P_1 - \{r_i, r_o\}; M_c[B_2, f_2(\mu)] M'_2, \) where \(M'_2(p_e) = M'(p_e), M'_2(p_x) = 0, M'_2(p) = M'(p) \) for \(p \in P_2 - \{p_e, p_x\}. \)

For \(\sigma = \mu \in L(B, M_i) \), i.e., \(M_t[B, \mu] M'_1[B, t] M \), proof of Propositions 1 and 2 for \(\sigma \) proceeds as follows:

1. For Proposition 1, three cases should be considered:
 a. If \(t \in T_2 - * p_o \), \(f_1(\mu) = f_1(\mu) \in L(B_1, M_t) \), \(f_2(\mu) = f_2(\mu) t \). By Definition 3.2, \(M'_2(p_e) = M'(p_e), M'_2(p_x) = 0 \) and \(M'_2(p) = M'(p) \) for \(p \in P_2 - \{p_e, p_x\}. \) Since \(p_x \) is not in * \(t \) and \(t \) is enabled at \(M' \) in \(B \), \(t \) is also enabled at \(M'_2 \) in \(B_2. \) Hence, \(f_2(\sigma) \in L(B_2, M_c). \)
 b. If \(t \in T_1 - \{t_i\}, f_1(\mu) = f_1(\mu) t \) and \(f_2(\sigma) = \gamma \in L(B_2, M_c). \) Since \(\mu \) is followed by \(t \in * p_o \), Lemma 3.2 implies that \(#(\mu, p'_1) = #(\mu, p_o) + 1. \) Hence, \(M'_1(r_i) = M'(p_i) + #(\mu, p'_1) - #(\mu, p_o) \geq 1 \) and \(t_i \) is enabled at \(M'_1 \) in \(B_1. \) Hence, \(f_1(\sigma) \in L(B_1, M_t). \)
 c. If \(t \in * p_o, f_1(\sigma) = f_1(\mu) t \) and \(f_2(\sigma) = \gamma \in L(B_2, M_c). \) Since \(\mu \) is followed by \(t \in * p_o \), Lemma 3.2 implies that \(#(\mu, p'_1) = #(\mu, p_o) + 1. \) Hence, \(M'_1(r_i) = M'(p_i) + #(\mu, p'_1) - #(\mu, p_o) \geq 1 \) and \(t_i \) is enabled at \(M'_1 \) in \(B_1. \) Hence, \(f_1(\sigma) \in L(B_1, M_t). \)

2. By Proposition 1, we can assume that \(M'_1[B, t] M, M'_1[B_1, f_1(t)] M_1 \) and \(M'_2[B_2, f_2(t)] M_2. \) Proposition 2 will follow if \(M_1 \) and \(M_2 \) can be derived from \(M_1 \) according to Definition 3.2. To show this, we consider the following five cases:
 a. If \(t \in T_2 - * p_o \), \(f_1(\mu) = f_1(\mu) \in L(B_1, M_t) \), \(f_2(\mu) = f_2(\mu) t \). By Definition 3.2, \(M'_2(p_e) = M'(p_e), M'_2(p_x) = 0 \) and \(M'_2(p) = M'(p) \) for \(p \in P_2 - \{p_e, p_x\}. \) Also, the token distribution within \(B_1 \) is not affected, i.e., \(M_1(p) = M'_1(p) = M'(p) \) \(\forall p \in P_1. \) Within \(B_2, \) firing \(t \) does not affect the tokens in \(p_e \) and \(p_x. \) Hence, \(M_2(p_e) = M'_2(p_e) = M'(p_e) = M_2(p_x) = M'_2(p_x) = 0, \) \(M_2(p) = M'_2(p) + w(t, p) - w(p, t) = M'(p) + w(t, p) - w(p, t) = M(p) \) for \(p \in P_2 - \{p_e, p_x\}. \)
 b. If \(t \in T_1 - \{t_i\}, then #(\sigma, p'_1) = #(\mu, p'_1), #(\sigma, p_o) = #(\mu, p_o). \) Within \(B_1, \) we have: \(M_1(r_i) = M'_1(r_i) + w(t, r_i) = M'(p_i) + (#(\mu, p'_1) - #(\mu, p_o)) + w(t, r_i) = M'(p_i) + #(\sigma, p'_1) - #(\sigma, p_o) \), \(M_1(r_o) = M'_1(r_o) - w(r_o, t) = M'(p_o) - w(r_o, t) = M(p_o) \) and \(M_1(p) = M'_1(p) + w(t, p) - w(p, t) = M'(p) + w(t, p) - w(p, t) = M(p) \) for \(p \in P_1 - \{r_i, r_o\}. \) Within \(B_2, \) firing \(t \) does not affect the tokens distribution in \(B_2. \) Hence, \(M_2(p_e) = M'_2(p_e) + w(t, p_e) = M'(p_e) + w(t, p_e) = M(p_e) \) and \(M_2(p_x) = M'_2(p_x) = 0, M_2(p) = M'_2(p) = M'(p) + w(t, p) = M(p) \) for \(p \in P_2 - \{p_e, p_x\}. \)
 c. If \(t \in * p_o \), then \(#(\sigma, p'_1) = #(\mu, p'_1) + 1, #(\sigma, p_o) = #(\mu, p_o) \) and \(f_1(\mu) = \lambda. \) Within \(B_1, \) firing \(t \) does not affect the token distribution in \(B_1, \) \(M(p) = M'(p) \) for \(p \in P_1 \) and \(M(p) = M'(p) - 1. \) Hence, \(M_1(r_i) = M'_1(r_i) = M'(p_i) + #(\mu, p'_1) - #(\mu, p_o) = M'(p_i) + #(\sigma, p'_1) - #(\sigma, p_o) \), \(M_1(r_o) = M'_1(r_o) - w(r_o, t) = M'(p_o) - w(r_o, t) = M(p_o) \) and \(M_1(p) = M'_1(p) = M'(p) = M(p) \) for \(p \in P_1 - \{r_i, r_o\}. \) Within \(B_2, \) it follows from Definitions 2.1 and 3.2 that \(f_2(\mu) = \lambda \) or \(\gamma \) and \(f_2(\sigma) = t. \) Hence, \(M_2(p_e) = M'_2(p_e) - 1 = M'(p_e) - 1 = M(p_e), M_2(p) = M'_2(p) + w(t, p) - w(p, t) = M(p) + w(t, p) - w(p, t) = M(p) \) for \(p \in P_2 - \{p_e, p_x\}. \)
This is guaranteed by the assumptions that B termination on has been removed. This is guaranteed by the assumptions of proper initiation and proper reenterable. According to the discussions following Definition 3.2, from the viewpoint of B_2, $B \in L(B,M)$ is any marking of B_1. (2) Let $\gamma = t_1 \ldots t_n$ be a fireable e-sequence of B_2, where $t_i \in p^*_o$ and $t_i \in p^*_e$. Any $\mu \in L(B_1,M_1)$ can be expressed as $\mu_1 \ldots t_1 \ldots \mu_2 \ldots t_2 \ldots t_3 \ldots$. It follows from Definition 3.2 that $\mu = f_1(\sigma)$. Next, we shall show that $\sigma \in L(B,M)$ by induction on μ. For $\mu = \lambda$, it is trivial that $\sigma = \lambda \in L(B,M)$. Suppose that, $\forall \mu' \in L(B_1,M_1)$ where $|\mu'| \leq n$, $\exists \sigma' \in L(B,M)$ such that $\mu' = f_1(\sigma')$. Let $M'_i = M_i[B_1,\mu']$ and $M' = M_1[B,\sigma']$. By Definition 3.2, $M'_i(p) = M'_i(r_i) - \#(\sigma', p^*_i) - \#(\sigma', p^*_0)$ and $M'(p) = M'_i(p)$ for $p \in P_1 - \{r_1\}$. By Lemma 3.2, $M'(p) \geq M_1(p)$ $\forall p \in P_1$. For $\mu = \mu' t \in L(B_1,M_1)$, consider two cases: (a) $t \in T_1 - \{t_1\}$. Let $\sigma = \sigma' t$. Since t is fireable at M'_i in B_1, it is fireable at M' in B. Hence, $\sigma \in L(B,M_1)$. (b) $t = t_1$. Let $\sigma = \sigma' \gamma$. By the result of Part (1), $\sigma \in L(B,M_1)$.

Proof for Theorem 3.2. Proposition 1 follows from the fact that B_2 initiates and terminates properly and that B_2 itself is initially marked with M_c which cannot initiate any firing in B_2. Proposition 2 follows from two facts: (a) B_2 is not re-enterable (i.e., B_2 cannot be initiated again unless its current execution cycle has terminated at M_c and the token deposited at p_r has been removed. This is guaranteed by the assumptions of proper initiation and proper termination on B_2. (b) The only initial marking that B_1 can create for B_2 is $M_c = p_c + M_c$. This is guaranteed by the assumptions that B_1 is not 2-enabled at t_i and that B_2 is non-reenterable. According to the discussions following Definition 3.2, from the viewpoint of B_1, a token deposited into r_1 is held there during execution of B_2 and is removed only after B_2 has terminated. Hence, since B_1 is not 2-enabled at t_i, no more token can be put into r_1 during the execution of B_2.

Proof for Lemma 3.3. (1) It is obvious that if $M_c[B_2,\mu]M_2$, then $\exists \sigma \in L(B,M)$ such that $(M_1 + M_2)[B,\sigma](M_1 + M_2)$, where μ is a subsequence of σ and M_1 is any marking of B_1. (2) Let $\gamma = t_1 \ldots t_n$ be a fireable e-sequence of B_2, where $t_i \in p^*_o$ and $t_i \in p^*_e$. Any $\mu \in L(B_1,M_1)$ can be expressed as $\mu_1 \ldots t_1 \ldots \mu_2 \ldots t_2 \ldots t_3 \ldots$. It follows from Definition 3.2 that $\mu = f_1(\sigma)$. Next, we shall show that $\sigma \in L(B,M)$ by induction on μ. For $\mu = \lambda$, it is trivial that $\sigma = \lambda \in L(B,M)$. Suppose that, $\forall \mu' \in L(B_1,M_1)$ where $|\mu'| \leq n$, $\exists \sigma' \in L(B,M)$ such that $\mu' = f_1(\sigma')$. Let $M'_i = M_i[B_1,\mu']$ and $M' = M_1[B,\sigma']$. By Definition 3.2, $M'_i(p) = M'_i(r_i) - \#(\sigma', p^*_i) - \#(\sigma', p^*_0)$ and $M'(p) = M'_i(p)$ for $p \in P_1 - \{r_1\}$. By Lemma 3.2, $M'(p) \geq M_1(p)$ $\forall p \in P_1$. For $\mu = \mu' t \in L(B_1,M_1)$, consider two cases: (a) $t \in T_1 - \{t_1\}$. Let $\sigma = \sigma' t$. Since t is fireable at M'_i in B_1, it is fireable at M' in B. Hence, $\sigma \in L(B,M_1)$. (b) $t = t_1$. Let $\sigma = \sigma' \gamma$. By the result of Part (1), $\sigma \in L(B,M_1)$.
Proof for Theorem 3.3 (Fig. 8). (Note: The proof presented below is based on two facts: (1) Eliminations are always achieved by applying Gaussian row operations over V though their effects may be considered within individual submatrices. (2) If a non-isolated place (transition) is contained in an S-invariant (T-invariant), its corresponding row (column) in the incidence matrix can be expressed as a linear combination of the other rows (columns) of the invariant.) The conclusion of this theorem follows from two results: (a) $\text{Rank}(B_1) = \text{Rank}(B_1 \setminus \{t_i\}) + h$. (b) $\text{Rank}(B_1(t_i \rightarrow B_2)) = \text{Rank}(B_1 \setminus \{t_i\}) + \text{Rank}(B_2) + d - 2$.

(a) It is obvious that $\text{Rank}(B_1) = \text{Rank}(B_1 \setminus \{t_i\}) + h$, where $h = 0$ or 1. If t_i occurs in any T-invariant of B_1, column t_i is linearly dependent on the other columns and hence $h = 0$. Otherwise, column t_i is linearly independent and $h = 1$.

(b) Let V be divided into three horizontal blocks: BK_1 contains its top $|P_1| - 2$ rows, BK_2 its middle 2 rows, and BK_3 its bottom $|P_2| - 2$ rows. Consider the following three cases:

Case 1: $d = 2$. We shall prove for Condition (1) only. Proof for Condition (2) is similar. Consider four cases: (i) Both S_1 and S_2 belong to $B_1 \setminus \{t_i\}$. Within $B_1 \setminus \{t_i\}$, since $p_0 \in S_2$, row p_0 can be expressed as a linear combination of rows of BK_1 and row p_i. It can thus be eliminated to zero. Also, since $p_i \in S_1$ and $p_0 \notin S_1$, row p_i can be expressed as a linear combination of the rows of BK_1 alone and can be eliminated to zero. After these two eliminations, V becomes diagonal with diagonal blocks $BK_1[T_1 - \{t_i\}]$ and B_2. Also, $\text{Rank}(BK_1[T_1 - \{t_i\}]) = \text{Rank}(B_1 \setminus \{t_i\})$ and the rank of B_2 remains unchanged. Hence, $\text{Rank}(B) = \text{Rank}(BK_1[T_1 - \{t_i\}]) + \text{Rank}(B_2) = \text{Rank}(B_1 \setminus \{t_i\}) + \text{Rank}(B_2)$. (ii) S_1 and S_2 both belong to B_2. Proof is similar as (i). (iii) S_2 belongs to $B_1 \setminus \{t_i\}$ whereas S_1 belongs to B_2. Without affecting the ranks of $B_1 \setminus \{t_i\}$, B_2 and V, row p_0 can be eliminated to zero within $B_1 \setminus \{t_i\}$ and row p_i to zero within B_2 (by means of the rows of BK_3 alone). Again, V becomes diagonal and hence $\text{Rank}(B) = \text{Rank}(B_1 \setminus \{t_i\}) + \text{Rank}(B_2)$. (iv) S_1 belongs to $B_1 \setminus \{t_i\}$ whereas S_2 belongs to B_2. Proof is similar as (iii).

Case 2: $d = 1$. Without loss of generality, suppose that S_1 belongs to $B_1 \setminus \{t_i\}$ and that $p_1 \in S_1$. Then, within $B_1 \setminus \{t_i\}$, row p_1 is linearly dependent on the other rows and can thus be eliminated to zero without altering the ranks of $B_1 \setminus \{t_i\}$, B_2 as well as V. On the other hand, for the reasons stated in Remark below, row p_o is linearly independent of the other rows within $B_1 \setminus \{t_i\}$ and B_2 (and thus within V as well). Hence, by ignoring row...
Proof for Theorem 3.4 (Fig. 8). For brevity, throughout the proof below, B denotes $B_1(t_t \rightarrow B_2)$.

(1) According to its construction, B satisfies the definition of SM (resp., almost MG, FC and AC) if both B_1 and B_2 are SM (resp., almost MG, FC and AC nets).

(2) Since B_1 and B_2 are conservative, there exists $x_{l_1} = (x_{l_11}, \ldots, x_{l_12}, x_{l_13}) \geq 1$ and $x_2 = (y_1, y_2, \ldots, y_{l_23}) \geq 1$ such that $x_1 V_1 = x_2 V_2 = 0.$ In particular, the first column of $x_1 V_1 = 0$, i.e., $x_1 V_1[P_1 \{t_t\}] = 0$, leads to $x_1 = x_2.$ By Lemma 3.1, $M_e[B_2] \ast M_x$. It follows from AC-1 that $x_2(p_e + M_e) = x_2(p_e + M_e)$ and $y_1 = y_2.$ Next, let $x = (y_1 x_{l_11}[P_1 - \{r_1, r_0\}], x_2 y_1, x_1 y_2, x_1 x_2, p_e - \{p_x, p_e\}) = (x_{l_11}, y_1, \ldots, x_3 y_1, x_2 y_1, x_1 y_2, x_1 y_3, \ldots,$
\[x_1y(P_2)\]. Then, \(x \geq 1\) and \(xV = (-x_2y_1 + x_1y_2, y_1x_1[P_1 - \{r_1, r_0\}])V_1\{P_1 - \{r_1, r_0\}, T_1 - \{t_1\} + x_2y_1[V_1\{r_1, T_1 - \{t_1\} + x_1y_2[V_1\{r_0, T_1 - \{t_1\}\}, x_2y_1V_2[p_c, T_2] + x_1y_2[V_2[p_c, P_1]\{r_0, T_1 - \{t_1\}\}, x_2y_1V_2[p_c, T_2]\} = (0, y_1x_1[V_1\{P_1, T_1 - \{t_1\}\}, x_2y_1V_2) = 0.

That is, \(B\) is conservative. Similar argument as above shows that \(x_1V_1 \leq 0\) and \(x_2V_2 \leq 0\) lead to \(xV \leq 0\). It follows that \(B\) is structurally bounded.

(3) Since \(B_1\) is consistent, \(\exists \beta_1 = (x_1, \ldots, x_{|T_1|}) \geq 1\) such that \(V\beta_1 = 0\). Since \(B_2\) is almost consistent, \(\exists \beta_2 = (y_1, \ldots, y_{|T_2|}, z) \geq 1\) such that \(V_2\beta_2 = 0\). Let \(\beta = (z\beta_1[T_1 - \{t_1\}], x_1, \beta_2[T_2]) = (z\beta_1[T_1 - \{t_1\}], \beta_2[T_2]).\) Then, \(\beta \geq 1\) and, since \(V[P, t_1] + V[p, t_1] = 0\), we have \(V\beta = (z\beta[V_1\{P_1, T_1 - \{t_1\}] + (0, x_1V_2\beta[T_2]) = (0, x_1V_1\{P_1, T_1 - \{t_1\}] + (0, x_1V_2\beta[T_2])\).\) Then, \(B\) is consistent. Similar argument as above shows that \(V\beta_1 \geq 0\) and \(V_2\beta_2 \geq 0\) lead to \(V\beta \geq 0\). It follows that \(B\) is repetitive.

(4) Refer to Theorem 3.3.

(5) In forming \(B\), since \(t_1\) is deleted, cluster \(\{r_1, t_1\}\) of \(B_1\) is destroyed and \(r_1\) is absorbed into the cluster \(\{p_c\}\) of \(B_2\) to form the new cluster \(\{p_1\}\) of \(B\). Also, the clusters \(\{r_0\}\) of \(B_1\) and \(\{p_0\}\) of \(B_2\) are merged to form the new cluster \(\{p_0\}\) of \(B\). Also, no other clusters are created or destroyed. Hence, \(|C(B)| = |C(B_1)| + |C(B_2)| - 2\).

(6) From Propositions 4 and 5, if \(d - h = 1\), \(\text{Rank}(B) = \text{Rank}(B_1) + \text{Rank}(B_2) - 1\).

(7) Let \(K_1\) and \(K_2\) be the minimal SM-covers of \(B_1\) and \(B_2\), respectively. Any SM-component in \(K_1\) containing \(r_0\) must also contain \(r_1, t_1\), and a directed path from \(r_0\) to \(r_1\). Similarly, any SM-component in \(K_2\) containing \(p_c\) must also contain \(p_c, t_1\), and a directed path from \(p_x\) to \(p_c\). A minimal SM-cover for \(B\) can be formed as follows. Let \(H_1 = \{S \in K_1[r_1, t_1, r_0] \subseteq S\}\) and \(H_2 = \{S \in K_2[p_c, t_1, p_x] \subseteq S\}\). Create \(S'\) by merging all SM-components of \(H_1\) with all SM-components of \(H_2\) at their common places \(p_1\) and \(p_0\) (i.e., fuse \(r_1\) with \(p_c\) and \(r_0\) with \(p_x\) and delete all \(t_1\) and \(t_0\)). Obviously, \(S'\) is an SM-component. Then, \(K_1 \cup K_2 \cup \{S'\} - H_1 - H_2\) forms a minimal SM-cover of \(B\).

(8) For \(D \subseteq P_1\), consider two cases: \textbf{Case 1:} \(r_0 \notin D\). This implies that \(t_1 \notin *D\) and \(D' = *D\). If \(t_1 \notin *D\), then \(t_1 \notin *D\) and \((D')^* = *D\). Hence, \(*D' \subseteq (D')^*\) provided that \(*D \subseteq D'\). If \(r_1 \notin D\), then \(t_1 \in D^*\) and \((D')^* = D^* - \{t_1\} \cup p_c\). Since \(*D\) does not contain \(t_1\), we have \(*D' \subseteq (D')^*\) provided that \(*D \subseteq D^*\). \textbf{Case 2:} \(r_0 \in D\). Since \(*D \subseteq D^*\), \(t_1 \in D^*, \{p_c, p_0\} \subseteq D', \{p_c, p_0\} \subseteq D^*\). Hence, \(*D' \subseteq (D')^*\) provided that \(*p_c \subseteq p_t\) in \(B\), or equivalently, \(*p_c \subseteq p_c^*\) in \(B_2\).

For \(D \subseteq P_2\), consider two cases:

\textbf{Case 1:} \(p_c \notin D\). This implies \(*D' = *D\). If \(p_x \notin D\), then \((D')^* = D^* \cup p_c\) and \(*D' = *D \subseteq D^* \subseteq (D')^*\). \textbf{Case 2:} \(p_c \in D\). If \(p_x \notin D\), then \((D')^* = D^*\) and \(*D' = *D \cup p_c\). Since \(*p_c \notin D^*\), we have \(*D' \subseteq (D')^*\). If \(p_x \in D\), then \((D')^* = D^* \cup p_c\). Since \(*p_c \notin D^*\), we have \(*D' \subseteq (D')^*\) provided that \(*p_c \subseteq p_t\) in \(B\), or equivalently, \(*t_1 \subseteq t_0^*\) in \(B_1\).

(9) For \(D \subseteq P_1\), consider two cases:

\textbf{Case 1:} \(r_1 \notin D\). This implies that \(t_1 \notin *D\) and that \(D\) gains no new output transitions, i.e., \((D')^* = *D^*\). As for the input transitions of \(D\), two subcases should be
distinguished: (i) \(r_0 \notin D \). This implies that \(t_r \notin *D \) and that \(*D' = *D \). Hence, \((D')^* \subseteq *D' \) provided that \(D^* \subseteq *D \). (ii) \(r_0 \in D \). This implies that \(t_r \in *D \) and that \(*D' = *D - \{t_r\} \cup *p_0 \). Hence, since \(D^* \) does not contain \(t_r \), we have \((D')^* \subseteq *D' \) provided that \(D^* \subseteq *D \). Case 2: \(r_1 \in D \). This implies \(t_r \in D^* \). If \(D^* \subseteq *D \), then \(t_r \in *D \), \(\{p_1, p_0\} \subseteq D' \), \((D')^* = D^* - \{t_r\} \cup *p_1 \) and \(*D' = *D - \{t_r\} \cup *p_0 \). Hence, \((D')^* \subseteq *D' \) provided that \(p_1 \subseteq *p_0 \) in \(B \), or equivalently, \(p_1 \subseteq *p_x \) in \(B_2 \).

For \(D \subseteq P_2 \), consider two cases:

Case 1: \(p_x \notin D \). Then \((D')^* = D^* \). Since \(*p_1 \not\subseteq *D \), then \(D \subseteq *D' - *p_1 \) and \((D')^* = D^* \subseteq *D' \).

Case 2: \(p_x \in D \). Then, \((D')^* = D^* \cup *p_0 \). If \(p_e \in D \), then \(*D' = *D \cup *p_1 \) and \((D')^* \subseteq *D' \) provided that \(p_0 \subseteq *p_1 \) in \(B \), or equivalently, \(r_0 \subseteq *r_{1} \) in \(B_1 \). If \(p_e \notin D \), \(*D' = *D \). Since \(p_0 \not\subseteq D \) and \((D')^* = D^* \cup *p_0 \), \((D')^* \subseteq *D' \).

(10) \(B \) is obtained by first deleting \(t_r \), \((r_1, r_3) \), and \((r_2, r_0) \) from \(B_1 \) and then fusing \(r_1 \) with \(p_e \) and \(r_0 \) with \(p_x \). This results in a total loss of three nodes and two arcs. If \(B_1 \) and \(B_2 \) are both Petri net processes, so is \(B \). Hence, \(Z(B) = |F| - |P \cup T| + 2 = (|F_1| + |F_2| - 2) - (|P_1 \cup T_1| + |P_2 \cup T_2| - 3) + 2 = |F_1| - |P_1 \cup T_1| + 2 + |F_2| - |P_2 \cup T_2| + 2 - 1 = Z(B_1) + Z(B_2) - 1 \).

(11) The result is trivial.

(12) Let \(M \in R(B, M_1) \). By Definition 3.2, \(M(p) = M_1(p) \) if \(p \in P_1 \) and \(M(p) = M_2(p) \) if \(p \in P_2 - \{p_e, p_x\} \). By Theorem 3.1, \(M_1 \in [B_1, M_1] \) and \(M_2 \in [B_2, M_2] \). Since \(M_1 \) is bounded by \(k_1 \) and \(M_2 \) by \(k_2 \), \(M(p) \leq \max(k_1, k_2) \) \(\forall p \in P \).

(13) \(\forall M : M_1[B, \sigma M], \) where \(\sigma \in L(B, M_1) \), let \(M = (m_1, m_2) \), where \(m_1 \) is the component of \(M \) over \(P_1 \) and \(m_2 \) over \(P_2 - \{p_e, p_x\} \). \(\forall t \in T = T_1 \cup T_2 - \{t_r\} \), consider four cases.

Case 1: \(t \in T_1 - \{t_r\} \) and \(m_2 = M_c \). This implies that \(M_1[B_1, f_1(\sigma)]m_1 \). Since \(t_r \) is live in \(B_1 \), \(\exists \mu : m_1[B_1, \mu] \). Let \(\sigma_1 = \mu \) if \(\mu \) does not contain \(t_r \). Otherwise, let \(\sigma_1 \) be the result of replacing each \(t_r \) within \(\mu \) with a fireable e-sequence of \(B_2 \). Then, in \(B \), we have \(M_1[B, \sigma_1](m_1, M_c) \), where \(m_1' = m_1 + p_0 \). This becomes Case 1.

Case 2: \(t \in T_1 - \{t_r\} \) and \(m_2 \neq M_c \). Since \(B_2 \) is almost live and terminates properly, \(\exists \sigma_2 : m_2[B_2, \sigma_2]M_c \). Then, in \(B \), we have \(M_1[B, \sigma_2](m_1', M_c) \), where \(m_1' = m_1 + p_0 \). This becomes Case 1.

Case 3: \(t \in T_2 \) and \(m_2 = M_c \). This implies that \(M_2[B_1, f_1(\sigma)]m_1 \). Since \(t_r \) is live in \(B_1 \), \(\exists \sigma_1 : t_r \notin \sigma_1 \) and \(M_1[B_1, \sigma_1](m_1', t_r) \), where \(m_1'(p_e) = 1 \). Since \(t_r \) is live in \(B_2 \), \(\exists \mu : M_c(B_2, \mu) \). Then, in \(B \), we have \(M_1[B, \sigma_1 \mu]M_1 \). That is, \(t_r \) is live in \(B \).

Case 4: \(t \in T_2 \) and \(m_2 \neq M_c \). The proof follows from a combination of Cases 2 and 3.

(14) \(\forall M : M_1[B, \sigma M], \) where \(\sigma \in L(B, M_1) \), let \(M = (m_1, m_2) \), where \(m_1 \) is the component of \(M \) over \(P_1 \) and \(m_2 \) over \(P_2 - \{p_e, p_x\} \). Consider two cases.

Case 1: \(m_2 = M_c \). Then, \(m_1 = M_{11}B_1, f_1(\sigma) \). Since \(B_1 \) is reversible, \(\exists \sigma_1 \), such that \(M_{11}B_1, \sigma_1 M_1 \). By Lemma 3.3, \(\exists \sigma_1' \), such that \(f_1(\sigma_1') = f_1(\sigma)\sigma_1 \in L(B_1, M_1) \). Hence, \(M(B, \sigma_1')M_1 \). That is, \(B \) is reversible.

Case 2: \(m_2 \neq M_c \). Since \(B_2 \) terminates properly, \(\exists \sigma_2 : m_2[B_2, \sigma_2]M_1 \). Then, in \(B \), we have \(M(B, \sigma_2)(m_1', M_c) \), where \(m_1' = m_1 + p_0 \). This becomes Case 1. Hence, \(B \) is reversible.
Proof for Theorem 4.1 (Fig. 9).

(1) According to its construction, \(B' \) obviously satisfies the definition of SM (MG, FC and AC) if \(B \) is SM (resp., MG, FC and AC).

(2) Since \(B \) is conservative, \(\exists x = (x_1, \ldots, x_{|P|}) \geq 1 \) such that \(zV = 0 \). Let \(x' = (x_1, \ldots, x_{|P|}, x_{|P|}) \). Then, \(x' \geq 1 \) and \(x'V'(zV, -x_{|P|} + x_{|P|}) = 0 \). That is, \(B' \) is conservative. Similar argument shows that \(zV \leq 0 \) leads to \(x'V' \leq 0 \).

Hence, \(B' \) is structurally bounded.

(3) Since \(B \) is consistent, \(\exists \beta = (x_1, \ldots, x_{|D|}, y_1, \ldots, y_{|C|}) \geq 1 \) such that \(V\beta = 0 \), where \(a = |T - *p_t - p_t^*|, b = |p_t| \) and \(c = |p_t^*| \). Let \(y = y_1 + \cdots + y_c \) and \(z = z_1 + \cdots + z_c \). Then, the bottom equation of \(V\beta = 0 \), i.e., \(V[p_t, T]\beta = 0 \), leads to \(y = z \). Let \(\beta' = (\beta, y) \). Then, \(\beta' \geq 1 \) and \(V\beta' = 0 \). The latter follows from the three horizontal components of \(V' : V'[P' - r_i, r_o]T |\} = |C(B')| = |C(B)| + 1 \). Lastly, \(\text{Rank}(B') = \text{Rank}(B) + 1 = |C(B)| + 1 + 1 = |C(B')| - 1 \). Let \(K = \text{a minimal SM-cover of } B \). \(\forall S \in K : (t_t \in S) \), create \(S' \) by replacing \(p_t \) with \([r_i, r_o] \cup \{t_t\} \cup \{t_t^*, (t_t^*) - (t_t)^*\} \) (with some obvious relabeling of connections) and replace \(S \) with \(S' \) in \(K \). Since \(S' \) is a SM, the resulting \(K \) is a minimal SM-cover of \(B' \).

(8) and (9) If \(p_t \notin D \), then \(r_i \notin D' \), \(r_o \notin D' \) and \(t_t \notin (D')^* \). This implies that \(*D' = *D \) and \((D')^* = D^* \). Hence, \(*D' \subseteq (D')^* \) provided that \(*D \subseteq D^* \) and \((D')^* \subseteq *D' \) provided that \(D^* \subseteq *D \). If \(p_t \in D \), let \(D' = D - \{p_t\} \cup \{r_i, r_o\} \). Then, \((D')^* \subseteq D' \cup \{t_t\} \) and \(*D' = *D \cup \{t_t\} \). Hence, \(*D' \subseteq (D')^* \) provided that \(*D \subseteq D^* \) and \((D')^* \subseteq *D' \) provided that \(D^* \subseteq *D \).

(10) \(Z(B') = |F' - |P' - T'| + 2 = |F| + 2 - (|P| + 1) - (|T| + 1) + 2 = Z(B) \).

(11) If, in \(B \), the longest e-path containing \(p_t \) has length \(LP(B, p_t) \), then, in \(B' \), the longest e-path containing \(r_i \) and \(r_o \) has length \(LP(B, p_t) + 1 \). Since the length of those paths not containing \(r_i \) and \(r_o \) remains unchanged, \(LP(B') = \max\{LP(B), LP(B, p_t) + 1\} \).
(12)–(14) Since, in B', r_i and r_o together play the same role as p_i in B, the initial marking, token distribution and firability of the transitions all remain unchanged. Hence, boundedness, liveness and reversibility of B are preserved in B'.

Proof for Theorem 4.2. By combining the corresponding properties of Theorems 3.4 and 3.5.

References

