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SUMMARY
We show that in melanoma cells oncogenic BRAF, acting through MEK and the transcription factor BRN2,
downregulates the cGMP-specific phosphodiesterase PDE5A. Although PDE5A downregulation causes a
small decrease in proliferation, its major impact is to stimulate a dramatic increase inmelanoma cell invasion.
This is because PDE5A downregulation leads to an increase in cGMP, which induces an increase in cytosolic
Ca2+, stimulating increased contractility and inducing invasion. PDE5A downregulation also this leads to an
increase in short-term and long-term colonization of the lungs by melanoma cells. We do not observe this
pathway in NRAS mutant melanoma or BRAF mutant colorectal cells. Thus, we show that in melanoma cells
oncogenic BRAF induces invasion through downregulation of PDE5A.
INTRODUCTION

Melanocytes are specialized pigment cells located primarily in

the skin, where they determine complexion and hair color and

provide protection from the damaging effects of ultraviolet

radiation (Gray-Schopfer et al., 2007; Kasper et al., 2007). These

cells are also the precursors of melanoma, a potentially deadly

skin cancer that kills about 8,000 people in the United States

and about 12,000 people in Europe each year. In many Western

societies, melanoma incidence almost doubles every decade. If

treated early, melanoma can be cured by surgical resection, but

due to its proclivity to metastasize, in about 20% of patients it

progresses to an aggressive invasive disease that is refractory

to treatment and has a poor prognosis, with median survival

rates of 6–9 months and 5 year survival rates of 5%–10%. These

data highlight the need for improved understanding ofmelanoma

biology to facilitate development of therapeutic strategies.

An important signaling pathway in melanoma is the RAS/RAF/

MEK/ERK cascade (Gray-Schopfer et al., 2007). RAS is a small G
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melanoma (Hingorani et al., 2003; Karasarides et al., 2004; Liang

et al., 2007). BRAF-selective drugs can achieve dramatic clinical

responses in patients who have melanomas that express mutant

BRAF, although most patients appear to eventually relapse on

treatment (Flaherty et al., 2010). These data demonstrate the

promise of BRAF drugs but also highlight the need to fully under-

stand this pathway to overcome resistance and to learn how to

use these drugs in effective combination therapies.

We recently performed expression array analysis in melanoma

cells and demonstrated that oncogenic BRAF upregulates

expression of many genes but downregulates expression of a

much smaller number (Packer et al., 2009). One of the genes

identified as potentially downregulated by oncogenic BRAF in

melanoma cells was the cyclic GMP (cGMP)-specific phospho-

diesterase PDE5A. Cyclic AMP (cAMP) and cGMP are generated

downstream of peptide hormone, cytokine, and other cell

surface receptors. The intensity and duration of signaling by

these second messengers is controlled by their relative rates

of synthesis by adenylyl (cAMP) and guanylyl (cGMP) cyclases

and their rates of degradation by a large family of phosphodies-

terases (Omori and Kotera, 2007).

Classically, cGMP is implicated in phototransduction in retinal

cells and in relaxation of the smoothmuscle cells lining the veins.

However, in other cells cGMP modulates glyconeogenesis, ion

channel conductance, proliferation, and apoptosis. It regulates

two protein kinases (PRKG1 and PRKG2), several Ca2+ chan-

nels, and the cAMP-specific phosphodiesterases PDE2,

PDE3A, and PDE3B (Biel and Michalakis, 2009; Mongillo et al.,

2006; Pilz and Broderick, 2005). Through alternative splicing,

the PDE5A gene produces three proteins (PDE5A1, PDE5A2,

and PDE5A3) that differ in their N termini and range in mass

from 95 to 105 kDa (Lugnier, 2006). PDE5A1 and PDE5A2 are

ubiquitous, whereas PDE5A3 is restricted to vascular smooth

muscle (VSM) cells (Lin et al., 2006). Importantly, PDE5A is the

therapeutic target of drugs including sildenafil (Viagra), vardenafil

(Levitra), and tadalafil (Cialis) that are used to treat erectile

dysfunction and pulmonary arterial hypertension (Ghofrani

et al., 2006).

Previous studies have established that there is crosstalk

between RAS/RAF and cAMP signaling in melanoma cells

(Dumaz and Marais, 2005), but the role of cGMP in melanoma

is poorly characterized. The identification of PDE5A as a possible

transcriptional target of V600EBRAF suggests that cGMP metab-

olism is regulated by oncogenic BRAF, and the aim of this

study was to investigate the role of this second messenger in

melanoma cells.

RESULTS

Oncogenic BRAF Downregulates PDE5A
in Melanoma Cells
To investigate the role of cGMP in melanoma, we first wished

to confirm that PDE5A is downregulated by oncogenic BRAF

in melanoma cells. Using qRT-PCR, we show that BRAF deple-

tion with two small-interfering RNA (siRNA) probes or BRAF

inhibition with the selective inhibitors PLX4720 or SB590885

caused a substantial (5- to 8-fold) increase in PDE5A mRNA in
V600EBRAF-expressing A375P melanoma cells (Figure 1A). MEK

inhibition by U0126 or PD184352 also caused a 6- to 12-fold
46 Cancer Cell 19, 45–57, January 18, 2011 ª2011 Elsevier Inc.
increase in PDE5A mRNA (Figure 1A). Similar results were seen

in V600DBRAF-expressing WM266.4 cells (Figure 1B), confirming

that oncogenic BRAF downregulates PDE5A in melanoma cells.

In agreement with PDE5A downregulation by oncogenic

BRAF, relative to diploid normal human melanocytes (NHMs),

PDE5A mRNA is strongly downregulated in nine out of ten

melanoma lines expressing oncogenic BRAF, with only 501mel

cells expressing similar levels to NHM (Figure 1C). We also

show that PDE5A protein is downregulated in eight of these lines,

and by Western blot is only detectable in 501mel and, albeit

weakly, Skmel24 cells (Figure 1D). However, note that

PD184352 and U0126 still increase PDE5A mRNA and protein

in 501mel and Skmel24 cells (Figure 1E), demonstrating that

even in these cells V600EBRAF/MEK downregulates PDE5A.

Oncogenic BRAF Downregulates PDE5A1 through BRN2
Next, we investigated how V600EBRAF regulates PDE5A

expression in melanoma cells. We previously reported that
V600EBRAF upregulates expression of the POU-domain tran-

scription factor BRN2 (POU3f) in melanoma cells (Goodall

et al., 2004). In silico analysis (http://www.cbrc.jp/research/db/

TFSEARCH.html) of the PDE5A promoter revealed two putative

BRN2-binding sites at �890/�870 and �720/�690 relative to

the transcription start site (Figure 2A). Using chromatin immuno-

precipitation (ChIP) assays, we show that BRN2 was bound to

the PDE5A promoter in both A375P (Figure 2B) and Skmel13

(Figure 2C) cells. To demonstrate the specificity of the antibody

used for these studies, we show that the PDE5A promoter was

not immunoprecipitated by this antibody when BRN2 was

depleted using siRNA (Figure 2C) and that BRN2 did not bind

to a region of the promoter away from the putative BRN2-binding

sites (see Figure S1 available online).

To examine directly PDE5A transcriptional regulation byBRAF,

we cloned a 1080 bp fragment upstream of the transcription start

site of the PDE5A promoter into the promoter-less luciferase

reporter vector pGL2 (�1080wt) (Figure 2A). We also generated

a version of this reporter in which the putative BRN2 site at

�720wasmutated (�1080mut) (Figure 2A) and a version consist-

ing of a 497 bp upstream fragment that lacks both sites (�497)

(Figure 2A). In A375 cells the promoters lacking the putative

�720 site (�1080mut, �497) both had higher basal activity than

the wild-type (�1080wt) promoter (Figure 2A). Moreover,

whereas the activity of the �1080wt promoter increased signifi-

cantly following BRAF depletion using siRNA, or following

BRAF or MEK inhibition with PLX4720 and PD184352, respec-

tively, the �1080mut and �497 promoters were not significantly

affected by BRAF depletion, or BRAF or MEK inhibition (Fig-

ure 2D). Furthermore, BRN2 depletion upregulated PDE5A

mRNA and protein in several melanoma lines (Figures 2E and

2F), whereas its expression downregulated PDE5A in normal

humanmelanocytes (Figure 2G).We conclude that BRN2, a tran-

scription factor that is upregulated by oncogenic BRAF, directly

suppresses PDE5A expression in melanoma cells.

PDE5A Regulates Melanoma Cell Invasion
We next tested if PDE5A regulates melanoma cell growth.

Re-expression of PDE5A1 did not significantly affect A375 cell

growth in vitro (Figure 3A), but it caused a small increase in

WM266.4 cell growth (Figure 3B). Conversely, stable depletion

http://www.cbrc.jp/research/db/TFSEARCH.html
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Figure 1. Oncogenic BRAF Downregulates PDE5A in Melanoma Cells

(A and B) A375P (A) and WM266.4 (B) cells were transfected with scrambled control (SC) or BRAF (B1, B2) siRNA for 48 hr, or treated with DMSO (D) PLX4720

(PX; 0.3 mM), SB590885 (SB; 0.3 mM), PD184352 (PD; 1 mM), or UO126 (UO; 10 mM) for 24 hr. PDE5AmRNAwasmeasured by qRT-PCR. The results are relative to

the scrambled control for siRNA or relative to DMSO for the drugs. The Western blots show phosphorylated ERK (ppERK), total ERK, and BRAF in the cell

extracts. (C) PDE5A mRNA levels were measured by qRT-PCR in ten BRAF mutant melanoma lines. The levels are presented relative to those in normal diploid

human melanocytes (NHM). (D) Western blot showing PDE5A protein in NHM and ten BRAF mutant melanoma lines with ERK2 (ERK) as a loading control.

(E) Skmel24 and 501mel cells were treated with DMSO (D) PD184352 (PD; 1 mM) or UO126 (UO; 10 mM). PDE5A mRNA levels were determined by qRT-PCR

and are presented relative to DMSO. The Western blots show PDE5A, phosphorylated ERK (ppERK), and ERK2 (loading control). Data are means of triplicate

samples; error bars indicate ± standard error. ***p < 0.001, **p < 0.01.
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of PDE5A using short-hairpin RNA (shRNA) caused a small

decrease in growth of 501mel cells (Figure 3C). We observed

similar effects in vivo: PDE5A re-expression did not affect growth

of A375 xenografts in nude mice (Figure 3D) but increased

growth of WM266.4 xenografts (Figure 3E). Note that the lack

of effect in A375 cells was not because PDE5A expression was

lost during in vivo culture (Figures 3F and 3G), and we were

unable to examine how PDE5A depletion affected 501mel cell

growth in vivo because they do not grow as xenografts.

Thus, although PDE5A provides a small growth advantage to

some melanoma cells, it is nevertheless downregulated in the

majority of the cell lines we examined, suggesting that it regu-
lates functions other than growth. Recent studies have shown

that V600EBRAF and BRN2 both regulate melanoma cell invasion

(Goodall et al., 2008; Pinner et al., 2009), and because we show

here that they also both regulate PDE5A expression, we investi-

gated if PDE5A regulates melanoma cell invasion. Using a

recently described approach (Sanz-Moreno et al., 2008), we

confirm that PLX4720, SB590885, PD184352, and U0126 all

strongly suppressed WM266.4 cell invasion into collagen I

matrices in vitro (Figure 4A). Furthermore, we show that BRAF

and BRN2 depletion also inhibited invasion of these cells (Fig-

ure 4B). Importantly, stable (Figure 4C) or transient (Figure S2A)

re-expression of PDE5A1, PDE5A2, or PDE5A3 strongly
Cancer Cell 19, 45–57, January 18, 2011 ª2011 Elsevier Inc. 47
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Figure 2. BRN2 Downregulates PDE5A

(A) Schematic representing PDE5A1 promoter reporter constructs. The promoter fragments span the 1080 (�1080wt) or 497 (�497) bp region upstream of the

transcription start site. The position of two putative BRN2-binding sites is indicated, and in the �1080mut construct, the putative site at �720 is mutated (X).

Promoter-less pGL2 is also represented. To the right the basal activity of these reporter constructs is shown relative to pGL2. Data are the average for one

experimentmeasured in triplicate with error bars to show standard deviations from themean. (B) ChIP assays fromA375P cells using no antibody (�), nonspecific

antibody (IgG), or BRN2 antibody (BRN2). Controls of direct amplification of input DNA (In.) and no input DNA (n/i) are shown. The regions spanning �890 to

�870 (Site 1) and �720 to�690 (Site 2) of the PDE5A promoter were amplified, with the GAPDH promoter as the internal control. (C) ChIP assays from SkMel13

cells using no antibody (�), nonspecific antibody (IgG), or BRN2 antibody (BRN2). Direct amplification of input DNA (In.) was included as a control. The region

spanning�890 to�870 (Site 1) of the PDE5A promoter was amplified, with the GAPDHpromoter as an internal control. The upper panel shows specific capture of

this promoter region. In the lower panels, Skmel13 cells were transfected with scrambled (SC) or BRN2 (BRN2) siRNA. The left panel shows a Western blot for

BRN2 and MEK2 (loading control) to confirm efficient BRN2 knockdown, and the right panel shows the ChIP assay using nonspecific (IgG) or the BRN2 antibody

(BRN2). (D) PDE5A (�1080wt,�1080mut, and�497) promoter activity wasmeasured by luciferase assay in A375 cells transfected with scrambled control (SC) or

BRAF (B) siRNA, or treated with DMSO (D), PLX4720 (PX: 0.3 mM), or PD184352 (PD: 1 mM). Extracts were prepared 48 hr after siRNA transfection, or 24 hr after

addition of PLX4720 or PD184352. The BRAF siRNA transfected sample activity is relative to the scrambled control, whereas PLX4720 and PD184352 activity is

relative to DMSO-treated cells. Data are the average of triplicate measurements for one experiment with error bars to represent standard deviations from the

mean. The inset shows a Western blot for BRAF, phospho-ERK2, and ERK2 (loading control) in the cell lysates. (E) Melanoma cell lines were transfected with

BRN2 siRNA for 48 hr, and the relative levels of BRN2 (black) and PDE5A (gray) mRNA were measured by qRT-PCR. The results are presented relative to scram-

bled siRNA controls, which is represented by the dotted line. (F) A375M2, Colo829, and WM266.4 cells were transfected with scrambled control (SC) or BRN2
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Figure 3. Effects of PDE5A on Melanoma

Cell Growth

(A and B) The growth of A375M2 (A) or WM266.4

(B) cell clones engineered for stable re-expression

of PDE5A1 or an empty vector control (EV) was

measured over 4 days. Data are the means of

triplicate samples with error bars to represent

standard error. The Western blots show expres-

sion of PDE5A and ERK2 (loading control). (C)

The growth of 501mel cell clones engineered

for stable expression of PDE5A-targeting

shRNA (shRNA-3, shRNA-4) or a control shRNA

(shRNA-C) was measured over 4 days. Data are

the means of triplicate measurements with error

bars to represent standard error. The Western

blots show expression of PDE5A1 and ERK2

(loading control). (D) The growth of tumor xeno-

grafts formed from A375M2 cells expressing

PDE5A1 (A375-PDE5A1) or empty vector (A375-

EV) in nude mice is shown. The results show

mean volumes for groups of five animals with error

bars to represent standard error. (E) The growth of

tumor xenografts formed from WM266.4 cells

expressing PDE5A1 (WM266.4-PDE5A1) or empty

vector (WM266.4-EV) in nude mice is shown. The

results show mean volumes for groups of five

animals with error bars to represent standard

error. (F) PDE5A mRNA levels for the tumor from

(D) above were determined by qRT-PCR. (G)

PDE5A mRNA levels for the tumor from (E) above

were determined by qRT-PCR. Each data point

represents the mean for an individual tumor

analyzed in triplicate, and the bars represent the

mean value for each group.
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suppressed A375 and WM266.4 cell invasion. Conversely, we

show that PDE5A depletion by siRNA enhanced 501mel and

Skmel24 cell invasion (Figure 4D) and that the PDE5A inhibitors

sildenafil, tadalafil, and vardenafil also increased 501mel cell

invasion (Figure 4E). As important specificity controls for these

experiments, we show that sildenafil, tadalafil, and vardenafil

did not increase 501mel cell invasion when PDE5A was depleted

by siRNA (Figure 4E) and that PDE5A siRNA, tadalafil, and silde-

nafil did not increase A375 or WM266.4 cell invasion (Figures 4F

and 4G), consistent with the fact that these cells do not express

PDE5A (Figures 1C and 1D). Thus, we conclude that PDE5A
(BRN2.1 and BRN2.2) siRNAs, and after 48 hr, lysates were Western blotted for PDE5A, BRN2, and a-tubulin

fected with an empty vector (EV) or a BRN2 expression construct for 48 hr. The relative levels of PDE5A mRN

show Western blots for BRN2 and ERK2 (loading controls) in the cell lysates. Error bars indicate ± standard

Cancer Cell 19, 45–5
blocks invasion in BRAF mutant mela-

noma cells, and, therefore, when it is

downregulated or inhibited, the cells

invade.

To determine if ERK signaling regulates

this pathway in other cells, we examined

PDE5A expression and its regulation

of invasion in RAS mutant melanoma

cells (Figure S2B). Compared to NHM,

PDE5A mRNA was substantially downre-

gulated in three RAS mutant lines
(WM1366, Skmel2, WM3629), was not downregulated in two

others (WM852, Sbcl2), and was substantially upregulated in

a sixth (WM1361). MEK inhibition increased PDE5A mRNA in

WM1361 cells (Figure S2C), but PDE5A depletion in WM1361,

Sbcl2, or WM3629 cells did not increase invasion substantially,

and PDE5A re-expression in Skmel2 cells did not suppress

invasion (Figure S2D). Thus, although oncogenic RAS downre-

gulates PDE5A in melanoma cells, PDE5A does not appear to

regulate invasion in this background. We also analyzed invasion

and PDE5A expression in three BRAF mutant colorectal lines

(HT29, Colo205, SW1417). BRAF and MEK inhibitors
(loading control). (G) NHMs were transiently trans-

A were determined by qRT-PCR. The lower panels

error. ***p < 0.001, **p < 0.01. See also Figure S1.

7, January 18, 2011 ª2011 Elsevier Inc. 49
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Figure 4. PDE5A1 Suppresses Melanoma Cell Invasion

(A) Invasion ofWM266.4 cells in the presence of DMSO (D), PLX4720 (PX; 0.3 mM), SB590885 (SB; 0.3 mM), PD184352 (PD; 1 mM), or UO126 (UO; 10 mM). Invasion

is presented relative to DMSO-treated control cells. The Western blots show phosphorylated (ppERK) and total ERK (loading control) in similarly treated cells. (B)

Invasion of WM266.4 cells following transfection with scrambled control (SC), BRAF, or BRN2 (BRN2.1, BRN2.2) siRNA. The Western blots show BRAF, BRN2,

phosphorylated ERK (ppERK), and ERK2 (loading control) in similarly treated cells. (C) Invasion of clones of A375M2 or WM266.4 cells engineered for stable

expression of PDE5A1 or an empty vector control (EV). (D) Invasion of 501mel and Skmel24 cells following transfection with PDE5A (si1, si2) or scramble control

(SC) siRNA. TheWestern blot shows PDE5A and a-tubulin (loading control) expression in transfected cells. (E) Invasion of 501mel cells following transfection with

scrambled control (scramble) or PDE5A siRNA and treated with DMSO (D), sildenafil (Sil; 1 mM), tadalafil (Tad; 0.1 mM), or vardenafil (Var; 5 mM). (F) Invasion of

A375P andWM266.4 cells following transfection with siRNA against PDE5A (si1, si2) or scrambled control (SC). (G) Invasion of WM266.4 cells treated with DMSO

(D), tadalafil (Tad; 0.1 mM), or sildenafil (Sil; 1 mM). Error bars indicate ± standard error. ***p < 0.001, **p < 0.01, *p < 0.05. See also Figure S2.
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downregulated PDE5A mRNA in HT29 cells and caused a small

but insignificant upregulation in SW1417 cells and a significant

upregulation in Colo205 cells (Figure S2E). Surprisingly, despite

upregulating PDE5A in Colo205 and SW1417 cells, BRAF and

MEK inhibitors increased rather than reduced invasion (Fig-
50 Cancer Cell 19, 45–57, January 18, 2011 ª2011 Elsevier Inc.
ure S2F). Note that HT29 cells do not invade and so could not

be assessed (data not shown). Thus, although V600EBRAF does

appear to downregulate PDE5A in some colorectal cells, it

does not regulate invasion in these cells in the same manner

as it does in melanoma cells.
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Figure 5. PDE5A Regulates Invasion

through Ca2+ in Melanoma Cells

(A) Intracellular cGMP in WM266.4 or A375 clones

re-expressing PDE5A1, or in a 501mel clone ex-

pressing PDE5A shRNA. The results are presented

relative to their respective empty vector control

clones (dotted line). (B) Intracellular cGMP in

501mel cells transfected with scrambled (SC) or

two PDE5A siRNA (si1 and si2), or treated for 90

min with DMSO (D), tadalafil (Tad; 0.1 mM), sildena-

fil (Sil; 1 mM), or vardenafil (Var; 5 mM). cGMP levels

are expressed as pMol cGMP/million cells. (C)

Invasion of 501mel cells treated with Sp-8-Br-

PET-cGMPS (Br-cGMP; 100 mM), 8-pCPT-cGMP

(8-pCPT; 50 mM), sodium nitroprusside (SNP;

100 mM), or YC-1 (0.2 mM). The results are pre-

sented relative to vehicle-treated controls (H2O

for SNP; DMSO for all other compounds). As an

experimental control, tadalafil (Tad; 0.1mM) treated

cells are included. (D) Intracellular-free Ca2+ in an

A375M2 clone re-expressing PDE5A1, and

a 501mel clone expressing PDE5A shRNA. The

data are presented relative to their respective

empty vector control clones (dotted line). (E)

Intracellular-free Ca2+ in 501mel cells treated

with Sp-8-Br-PET-cGMPS (Br-cGMP; 100 mM),

8-pCPT-cGMP (8-pCPT; 50 mM), sodium nitroprus-

side (SNP; 100 mM), YC-1 (0.2 mM), tadalafil (Tad;

0.1 mM), sildenafil (Sil; 1 mM), or vardenafil (Var;

5 mM). The data are presented relative to vehicle-

treated controls (H2O for SNP; DMSO for all other

compounds; dotted line). (F) Invasion of A375M2

cells was measured following treatment with

DMSO (D), or the indicated concentrations of

BAPTA (mM). (G) Invasion of 501mel cells was

measured following transfection with scrambled

control (SC) or PDE5A siRNA and treated with

DMSO (D) or BAPTA (0.1 mM). (H) Invasion of

501mel cells was measured following transfection

with scrambled control (SC) or PDE5A siRNA and

treatedwith DMSO (D) or A23187 (0.5 mM). Invasion

is presented relative to the scrambled control

transfected, DMSO-treated cells. (I) Invasion was

measured in A375M2 and WM266.4 cells treated

with DMSO (D) or A23187 (0.2 mM). Error bars

indicate ± standard error. ***p < 0.001, **p < 0.01,

*p < 0.05. See also Figure S3.
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PDE5A Regulates Melanoma Cell Invasion through
cGMP, Ca2+, and Increased Contractility
Next, we examined how PDE5A regulates invasion. We con-

firmed that stable re-expression of PDE5A caused the expected

reduction in cytosolic cGMP in A375 and WM266.4 cells,

whereas stable depletion of PDE5A by shRNA increased cGMP

in 501mel cells (Figure 5A). Transient PDE5A depletion by siRNA

also caused a substantial increase in cGMP in 501mel cells, as

did the PDE5A inhibitors sildenafil, tadalafil, and vardenafil (Fig-

ure 5B). The difference in magnitude of response of 501mel cells

to shRNA and siRNA presumably reflects differences in knock-

down efficiency and cell adaptations to long-term protein loss.

Importantly, two cell permeable cGMP analogs (Sp-8-Br-PET-

cGMPS, 8-pCPT-cGMP) and two activators of soluble guanylate

cyclases (YC-1, sodiumnitroprusside [SNP]) induced 501mel cell

invasion (Figure 5C), establishing that cGMP induces invasion in

these cells. This was unexpected because melanoma cell inva-
sion requires the forces generated by actin-myosin contractility

(Pinner and Sahai, 2008; Sahai and Marshall, 2003), and in VSM

cells, cGMP suppresses contractility (Surks, 2007). Therefore,

we investigated how cGMP regulates melanoma cell invasion.

First, we examined PRKG1 and PRKG2 because PRKG1

induces cytoskeletal relaxation through Ca2+ in VSM cells.

However, although PRKG1 was expressed in NHM, it was not

expressed in melanoma cells (Figures S3A and S3B), and in

agreement with this, PRGK1 siRNA did not affect invasion in

501mel cells (data not shown). We also found PRKG2 to be

undetectable in both melanocytes and melanoma cells (data

not shown). We next examined the cGMP-regulated, cAMP-

specific phosphodiesterases PDE2, PDE3A, and PDE3B. Their

expression varied greatly in melanoma cells (Figures S3C–

S3E), and siRNA against them did not produce consistent effect

on invasion (data not shown). We conclude that the cGMP effec-

tors PRGK1/2, PDE2, PDE3A, and PDE3B do not regulate
Cancer Cell 19, 45–57, January 18, 2011 ª2011 Elsevier Inc. 51
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Figure 6. PDE5A Controls Melanoma Cell

Invasion by Regulating Contractility

(A) Invasion of 501mel cells following transfection

with scrambled control (SC) or PDE5A siRNA and

treated with DMSO (D) or blebbistatin (Bleb; mM).

The results are presented relative to scrambled

control transfected and DMSO-treated cells. (B)

Western blot for phosphorylated MLC2 (ppMLC2)

or a-tubulin (loading control) in 501mel cells

transfected with scrambled control (SC) or

PDE5A siRNAs (si1, si2), or treated with DMSO

(D), sildenafil (Sil; 10 mM), or tadalafil (Tad;

10 mM). The lower panel shows PDE5A expression

in the siRNA-transfected cells. Values below

the upper panels represent fold increase in MLC

phosphorylation. (C) Western blots showing

MLC2 phosphorylation (ppMLC2) and a-tubulin

(loading control) levels in A375M2 clones engi-

neered to reexpress PDE5A1 (C.1, C.2) or an

empty vector (EV) control. As a control for MLC2

dephosphorylation, the EV cells were also treated

with Y27632 (Y; 10 mM). (D) Western blot showing

MLC2 phosphorylation (ppMLC2) and a-tubulin

(loading control) levels in 501mel cells treated

with DMSO (D) or A23187 (mM) as indicated. Error

bars indicate ± standard error. **p < 0.01.
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invasion in melanoma cells. In contrast, Ca2+ does appear to be

important. Re-expression of PDE5A1 in A375 cells reduced intra-

cellular Ca2+, whereas its depletion in 501mel cells increased

intracellular Ca2+ (Figure 5D). We show that Sp-8-Br-PET-

cGMPS, 8-pCPT-cGMP, YC-1, and SNP all increased intracel-

lular Ca2+ in 501mel cells (Figure 5E), and importantly, sequestra-

tion of intracellular Ca2+ by the cell-permeable chelator BAPTA

suppressed A375 cell invasion (Figure 5F) and 501mel cell inva-

sion induced by PDE5A depletion (Figure 5G). Conversely,

501mel cell invasion was substantially increased when intracel-

lular Ca2+ was elevated using the calcium ionophore A23187 in

501mel cells (Figures 5H and S3F). However, note that A23187

did not further increase 501mel cell invasion following PDE5A

depletion (Figure 5H) and did not increase invasion of A375M2

or WM266.4 cells (Figure 5I), which do not express PDE5A

(Figures 1C and 1D).

Ca2+ has previously been implicated in invasion because it

stimulates myosin light chain 2 (MLC2) phosphorylation, thereby

inducing contractility (Somlyo and Somlyo, 2003). Therefore, we

examined if Ca2+ regulated contractility in melanoma cells. First,

we established that actin-myosin contractility was essential for

invasion induced by PDE5A depletion in 501mel cells by showing

that it was blocked by blebbistatin, a small molecule inhibitor of

non-muscle myosin IIA (Figure 6A). We also show that PDE5A

depletion by siRNA, or its inhibition by sildenafil and tadalafil,

increased MLC2 phosphorylation in 501mel cells (Figure 6B).

Conversely, MLC2 phosphorylation decreased when PDE5A

was reexpressed in A375 cells (Figure 6C). A375 invasion and

contractility have also been shown to be regulated by the Rho-

kinases ROCKI and ROCKII (Sahai and Marshall, 2003), and

notably, the reduction in MLC2 phosphorylation observed

following PDE5A re-expression was similar to that seen when

A375 cells were treated with the ROCK inhibitor Y27632 (Fig-

ure 6C). Finally, we also show that A23187 induces MLC2 phos-

phorylation in 501mel cells (Figure 6D).
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PDE5A Regulates Melanoma Cell Invasion In Vivo
We next used intravital imaging to investigate the role of PDE5A

in regulating melanoma cell invasion in vivo. WM266.4 cells

expressing green fluorescent protein (WM266.4-GFP) were

engineered to reexpress PDE5A1 (WM266.4-GFP/PDE5A1)

and injected subcutaneously into the flanks of nude mice to

establish palpable xenografts (3–4 weeks). The mice were anes-

thetized, and the movement of the fluorescently tagged cells in

the tumors was recorded using two-photon microscopy. Images

from representative videos of tumors of WM266.4-GFP and

WM266.4-GFP/PDE5A cells are shown (Figure 7A), and to

demonstrate cell motion the cells in still images taken from these

videos at 0, 11, and 22 min were false colored red, green, or blue

(RGB) and superimposed (Figure 7B). In these compilation

images the red, green, and blue images of non-migrating cells

overlap, making them appear white. In contrast the red, green,

and blue images of migrating cells do not overlap, making

them appear colored. The results of this analysis show that

WM266.4-GFP cells were migrating, whereas WM266.4-GFP/

PDE5A cells were not (Figure 7B). To quantify the migration,

the number of individual moving cells in 40 (WM266.4-GFP) or

34 (WM266.4-GFP/PDE5A) movies from 8 tumors for each cell

type was counted. The results (number of cells moving/mm2/hr)

corroborate the RGB analysis and show that PDE5A1 re-expres-

sion strongly suppressed the in vivo migratory behavior of

WM266.4 cells (p% 0.0033; Figure 7C). Importantly, we confirm

that PDE5A1 expression is not lost during the course of these

in vivo experiments (Figure 7D).

In addition to being important for metastatic spread, cancer

cells also need to invade to colonize distant sites. To examine

this aspect of metastatic spread, we used a short-term lung

colonization assay to investigate the in vivo consequences of

PDE5A expression. For these studies we used WM266.4-GFP/

PDE5A cells and as a control WM266.4 cells expressing

cherry-red fluorescent protein (WM266.4-chRFP). These cells
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weremixed in equal proportions and injected into the tail veins of

nude mice. At various times the lungs from the mice were exam-

ined for the presence of the GFP and chRFP-expressing cells.

Thirty minutes after injection, there were similar numbers of

WM266.4-chRFP than WM266.4-GFP/PDE5A-expressing cells

in the lung parenchyma of the recipient mice, but within 6 hr

a greater proportion of WM266.4-chRFP cells remained (Figures

7E and 7F). Using analogously engineered A375 cells (A375-

chRFP, A375-GFP/PDE5A), we show that PDE5A expression

also reduces persistence of these cells in the lungs (Figure 7G).

We next examined the long-term consequences of PDE5A

expression. We recently described a mouse model of melanoma

driven by V600EBraf expressed from the endogenousmouse gene

(Dhomen et al., 2009). We show that endogenous Pde5a1 is up-

regulated by PD184352 and U0126 in cells derived from these

tumors (Figure 7H), demonstrating that the mouse Pde5a gene

is also downregulated by oncogenic Braf in melanoma cells.

We engineered these cells to express human PDE5A1

(4599.PDE5A cells; Figure 7I) and injected the cells into the tail

veins of nude mice. Strikingly, PDE5A1 expression caused a

substantial reduction in lung colonization by these cells, as

demonstrated by the reduced weight of the lungs from the

mice that received the PDE5A1-expressing cells, compared to

the nonexpressing cells (Figure 7J). Thus, Pde5a/PDE5A down-

regulation increases lung colonization by melanoma cells, so we

tested if PDE5A inhibition would achieve similar results.

4599.PDE5A cells were injected into the tail veins of mice that

received sildenafil 1 hr prior to cell injection and then daily for

the following 7 days. The lungs were harvested after a further

7 days, and the results show that sildenafil did not increase

tumor burden (Figure 7K).
PDE5A Is Downregulated in Metastatic Melanoma
Finally, we used immunohistochemistry (IHC) to examine PDE5A

expression in a tissue microarray (TMA) containing triplicate

samples for 28 primary and 29 metastatic melanomas. Each

sample was scored blind for intensity as low (score of one), inter-

mediate (score of two), or high (score of three) (Figure 8A). We

found a statistically significant (p % 0.037) correlation with

PDE5A expression and tumor grade, with the primary tumors

showing higher overall PDE5A expression than the metastatic

tumors (Figure 8B).
DISCUSSION

The ability of cancer cells to migrate within a tumor and invade

the surrounding matrix is thought to be critical to the process

of metastatic spread. Previous studies have implicated onco-

genic BRAF in melanoma metastasis but without elucidating

the underlying mechanism(s) (Hingorani et al., 2003; Liang

et al., 2007). We now show that one of the key steps in BRAF-

induced invasion in melanoma cells appears to be downregula-

tion of the cGMP phosphodiesterase PDE5A. Our interest in

PDE5A was kindled when we identified it as potentially being

downregulated by oncogenic BRAF in melanoma cells (Packer

et al., 2009), suggesting a negative role in melanoma progres-

sion. Here, we confirm that oncogenic BRAF downregulates

PDE5A in melanoma cells.
We previously demonstrated that V600EBRAF increases

expression of the transcription factor BRN2 in melanoma cells

(Goodall et al., 2004). BRN2 upregulation is associated with

increased melanoma cell invasion (Pinner et al., 2009), and it

was also recently shown to suppresses the expression of several

genes (Kobi et al., 2010). We now show that BRN2 binds to the

PDE5A promoter and using reporter constructs show that one

of the putative BRN2-binding sites in the promoter is essential

for the suppression of PDE5A transcription by oncogenic

BRAF.Weshow thatBRN2depletion increasesPDE5A transcrip-

tion in melanoma cells, whereas PDE5A re-expression downre-

gulates PDE5A in melanocytes. Thus, we establish a direct link

between oncogenic BRAF, BRN2, and the regulation of PDE5A

transcription, and we add PDE5A to the list of genes that are

downregulated by BRN2. We note that BRN2 is upregulated in

small cell lung cancer and neuroblastoma (Schreiber et al.,

1992, 1994), raising the possibility that BRN2 could also regulate

PDE5A expression and invasions in those cancers. Furthermore,

because BRN2 is expressed in melanoblasts (Cook et al., 2003;

Yamaguchi et al., 2007), the highly migratory melanocyte precur-

sors, our data suggest that BRN2may also regulate melanoblast

migration through PDE5A during development.

Previously, studies have shown that Ca2+ regulates migration

and metastasis of breast cancer cells (Yang et al., 2009), and we

now establish that PDE5A regulates invasion of melanoma cells

by regulating intracellular Ca2+ through cGMP. We show that

cGMP and Ca2+ levels are inversely correlated with PDE5A

expression in melanoma cells and that cGMP elevates Ca2+ in

501mel cells. The changes in cGMP and Ca2+ that we describe

may appear modest, but we measured total cytosolic levels of

these second messengers, and as has been established in

cAMP signaling (Houslay, 2010), the actual changes in cGMP

are likely to be restricted to local microdomains where the effec-

tive changes in concentration will be considerably higher. We

were unable to determine the subcellular localization of PDE5A

in the cells to establish the existence of these microdomains

(data not shown), but importantly, we did show that artificially

increasing either cGMP or Ca2+ using a variety of pharmacolog-

ical agents was sufficient to induce 501mel cell invasion.

Conversely, Ca2+ sequestration was sufficient to inhibit A375

cell invasion and invasion induced in 501mel cells when

PDE5A was depleted. Our initial attempts to identify the

cGMP-gated calcium channels responsible for regulating Ca2+

in melanoma cells were unsuccessful (possibly due to redun-

dancy), but nevertheless, our data reveal a direct link between

cGMP metabolism by PDE5A, intracelllular Ca2+, and invasion

downstream of oncogenic BRAF in melanoma cells. Notably,

this response appears to be specific to BRAF mutant melanoma

cells. It was not seen in NRAS mutant melanoma cells, or BRAF

mutant colorectal cells. A reason for the difference with colo-

rectal cells could be that they do not express BRN2, but it is

still curious that MEK inhibition increased rather than reduced

invasion in these cells. Clearly, more studies are needed to

understand invasion in NRAS mutant melanoma and BRAF

mutant colorectal cells.

Melanoma cells escape the tumor and invade the surrounding

tissue using forces generated by actin-myosin contractility

(Pinner and Sahai, 2008; Sahai and Marshall, 2003), and indeed,

increased contractility drives melanoma invasion (Carreira et al.,
Cancer Cell 19, 45–57, January 18, 2011 ª2011 Elsevier Inc. 53
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Figure 7. PDE5A Regulates Melanoma Cell Invasion In Vivo

(A) Low-resolution still images taken from video recordings of subcutaneous tumors formed from WM266.4-GFP (GFP) or WM266.4-GFP/PDE5A (GFP/PDE5A)

cells. Scale bar, 80 mm. (B) High-resolution images of the region highlighted in the dotted boxes in (A). Three images of the cells were taken at 0, 11, and 22 min,

false colored red, green, and blue, respectively, and then overlaid. Scale bar, 30 mm. (C) Quantification of moving cells (cells/hr/mm2) of 40 movies from 8 tumors

formed using WM266.4-GFP (GFP) or WM266.4-GFP/PDE5A (GFP/PDE5A) cells. The solid bars represent the average number of moving cells for the two

populations with error bars to represent standard deviations from the mean. (D) PDE5A1 mRNA expression in WM266.4-GFP (GFP) or WM266.4-GFP/PDE5A

(GFP/PDE5A) tumors was determined by qRT-PCR. Five tumors for each cell typewere analyzed in triplicate, and average values for individual tumors are shown,

relative to the value for endogenous PDE5A in WM266.4-GFP cells. The bars represent the average level for each tumor group. (E) Fluorescent images of

WM266.4-chRFP (red) or WM266.4-GFP/PDE5A (green) cells in the lungs of mice 30 min or 6 hr after injection with equal number of each line. Scale bar,

75 mm. (F) Quantification of 10 fields of cells/lung from 3 mice 30 min, 6 hr, or 24 hr after injection with equal numbers of WM266.4-chRFP (chRFP) or

WM266.4-GFP/PDE5A (GFP/PDE5A) cells. (G) Quantification of 10 fields of cells/lung from 3 mice 30 min, 6 hr, or 24 hr after injection with equal numbers

of A375M2-chRFP (chRFP) or A375M2-GFP/PDE5A (GFP/PDE5A) cells. (H) Expression of Pde5a mRNA quantified by qRT-PCR in V600EBraf-expressing

4599-mouse melanoma cells treated with DMSO (D), PD184352 (PD; 1 mM), or U0126 (U0; 10 mM) for 24 hr. (I) Western blot showing PDE5A1 and ERK2 (loading

control) levels in 4599 melanoma cells engineered for stable expression of PDE5A1 or an empty vector (EV) control. (J) Lung weights frommice following tail vein

injection of 4599 melanoma cells expressing empty vector (EV) or PDE5A1. The weights of the individual lungs are shown, with the bars representing the mean
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Figure 8. PDE5A Is Downregulated in Metastatic Melanoma

(A) Representative photomicrograph of the three grades of staining intensity

used to score PDE5A expression in tissue microarrays. Scale bar, 25 mm.

(B) Proportion (%) of tumor samples stained for high, intermediate, and low

PDE5A in a tissue microarray consisting of triplicate cores of 28 primary

(blue segments of bars) and 29 metastatic malignant (red segments of bars)

melanoma cases. The numbers within the bars represent the number of

samples found in each group.
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2006). We show that PDE5A downregulation in 501mel cells

increases contractility (shown by increased MLC2 phosphoryla-

tion) and induces invasion, whereas PDE5A re-expression in

A375 cells reduces contractility (MLC2 dephosphorylation) and

impairs invasion. Although the changes observed inMLC2 phos-

phorylation also appear modest, they are similar to the levels

previously reported by others (Gadea et al., 2008; Krndija

et al., 2010), and we confirm that contractility is essential for

invasion in PDE5A-depleted melanoma cells because it is

inhibited by blebbistatin. The induction of contractility following

PDE5A depletion or inhibition in melanoma cells was unex-

pected because in VSM cells the opposite appears to occur.

Specifically, cGMP induces relaxation rather than contractility

in VSM cells (Surks, 2007), and it was recently shown that

PDE5A inhibition by Pak causes RhoA downregulation, also

leading to relaxation (Sauzeau et al., 2010). A notable difference

between VSM and melanoma cells is that whereas PRKG1

modulates cGMP responses in VSM cells, PRKG1 (and

PRKG2) is not expressed in melanoma cells.

PDE5A stimulates leukemia, colorectal carcinoma, and breast

cancer cell proliferation and survival (Sarfati et al., 2003; Tinsley
weight for each population. (K) Lungweights frommice 14 days after tail vein injec

were treated with sildenafil (1.3 mg/kg) or (DMSO). Treatment was given 1 hr befo

individual lungs are shown, with bars to represent the mean weight for each pop
et al., 2009; Zhu et al., 2005), identifying it as a potential thera-

peutic target in cancer. We also found that PDE5A downregula-

tion slowed the growth of some melanoma cells, but the major

impact of its downregulation or inhibition was to induce invasion.

Proliferation and invasion are inversely related in breast cancer

cells (Giampieri et al., 2009), and our data suggest that PDE5A

balances these behaviors in melanoma cells. More pertinently,

because PDE5A is generally downregulated in BRAF mutant

melanoma cells, its inhibition would presumably be without

impact. Thus, we conclude that PDE5A is not a therapeutic target

in melanoma, and our data even raise the possibility that PDE5A

drugs could promote melanoma metastasis. This is important

because patients with small primary tumors or stage I/II disease

oftenalreadyhavedistant secondarymetastases, andmelanoma

cells can rapidly evolve to become invasive (Balch andCascinelli,

2001), so any acceleration to this process is undesirable.

However, we donot perceive this to be a problem. There are no

reports linking these drugs to increased risk ofmelanomametas-

tasis, and we found that sildenafil did not increase mouse

lung colonization bymelanoma cells. Furthermore, PDE5A drugs

are generally used as needed rather than persistently and are

generally cleared rapidly (T1/2 �2 hr) because their effects must

be short lived. Moreover, in addition to being able to degrade

cGMP, phosphodiesterases appear to possess enzyme-inde-

pendent functions, as implied by their interactionwithmany other

cellular proteins (Houslay, 2010). Thus, we posit that complete

loss of PDE5A protein is not akin to its transient and reversible

inhibition that is mediated by drugs. Furthermore, as mentioned,

because PDE5A is already downregulated in most BRAF mutant

melanomacases, its further inhibition is presumably not possible.

Therefore, our data should be interpreted with care, and we do

not immediately suggest that PDE5A inhibitors will drive mela-

noma metastasis. However, we caution that with the ever-

widening clinical use of these drugs, it is not possible to discount

this risk completely. Perhapsmore compelling, recent data show

that BRAF drugs can achieve dramatic clinical responses in

patients with melanomas expressing mutant forms of BRAF

(Flaherty et al., 2010). Our data suggest that in addition to being

anti-proliferative, these drugs could be anti-invasive because

BRAF inhibition would allow PDE5A re-expression.

In conclusion we provide improved insight into the biology of
V600EBRAF signaling in melanoma cells, showing that this onco-

gene downregulates PDE5A through the transcription factor

BRN2, leading to increased cGMP and Ca2+ and the induction

of invasion through increased cell contractility. Clearly, PDE5A

does not appear to be a therapeutic target in BRAF mutant

melanoma.
EXPERIMENTAL PROCEDURES

Refer to Supplemental Experimental Procedures for detailed protocols.
Cell Culture and Transfection Procedures

NHMs were from Cascade Biologics Inc. (Portland, OR) and cultured as

recommended. WM266.4, A375P, A375M2, Skeml28, Skmel24, Colo829,
tion of 4599melanoma cells expressing empty vector (EV) or PDE5A1. Themice

re the cells were injected and then daily for the following 7 days. The weights of

ulation. Error bars indicate ± standard error. *p < 0.05.
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Skeml5, Skmel13, MEL-HO, 501mel, and 4599 were cultured in DMEM

(GIBCO/Invitrogen) supplemented with 10% fetal bovine serum (FBS).

For culture on thick collagen layers, 2.5 ml serum-free fibrillar bovine dermal

collagen (2.3 mg/ml) was dispensed into 6 well tissue culture plates coated

with bovine serum albumin. The collagen was coagulated at 37�C/10% CO2

(30 min), then cells were seeded in DMEM/10% serum for 24 hr, washed

into DMEM/0.1% serum for 16 hr prior, and treated.

For stable expression of GFP or RFP, cells were transfected with pEGFP-C1

or pchERFP (Clontech) for G418 selection (Sigma). For stable PDE5A1 expres-

sion, cells were transfected with pEF-PDE5A1 and pBabepuro for puromycin

selection. PDE5A shRNA stable clones (SA Biosciences) were selected by hy-

gromycin and BRN2 expression and luciferase assays have been described

(Wellbrock et al., 2008). For transient depletion of specific proteins, cells

were transfected with 20 nM siRNA oligonucleotides (sequences in Supple-

mental Experimental Procedures) using LipofectAMINE (GIBCO/Invitrogen).

In Vitro Invasion Assays

A total of 5 3 103 cells in 100 ml serum-free collagen I at 2.3 mg/ml was

dispensed into 96-well ViewPlates (Perkin-Elmer, UK) coated with bovine

serum albumin. The cells were sedimented at 300 3 g and incubated at

37�C/10% CO2 for 30 min to coagulate the collagen, then overlaid with

DMEM/10% FBS. After 24 hr, cells were fixed (4% formaldehyde) and stained

with Hoechst 33258 (Invitrogen). Confocal Z sections were collected at the

bottom of the wells and at 50 mm in an INCELL3000 high-content microscope.

Nuclear staining was quantified with INCELL3000 software with the Object

Intensity module. Invasion indices = [cells at 50 mm]/[cells at 1 mm]. Means

of quadruplicate samples are presented as fold compared to controls.

Biochemical Techniques

Western blots were performed by standard techniques using fluorescent-

labeled secondary antibodies (Invitrogen; or Li-COR Biosciences) and

analyzed on an Odyssey Infrared Scanner (Li-COR Biosciences). The anti-

bodies used were: rabbit anti-PDE5A (H-120, sc-32884), rabbit anti-ERK2

(C-14, sc-154), mouse anti-BRAF (F-7, sc-5284), and goat anti-(BRN2 (C-20,

SC-6029) from Santa Cruz; mouse anti-a-tubulin and mouse anti-phospho-

ERK2 (M8159) from Sigma; mouse anti-MEK2 (clone 96, 610235) from BD

Biosciences; rabbit anti-phosphoMLC2 (ser19) (3671) from Cell Signaling

(Cambridge-Biosciences); and rabbit anti-PKGI (KAP-PK005D) from Stress-

gen (Cambridge-Biosciences). PD184352 and PLX4720 were synthesized in-

house, SB590885 was from Symansis (Auckland, New Zealand), and UO126

from Promega. A23187 and BAPTA were from Tocris. Ca2+ concentration

was measured using Fluo-4mDirect Calcium Assay kits (Invitrogen) and

cGMP using Direct cGMP kits (Biomol).

Quantitative Real-Time PCR

RNA extracted from 2 3 105 cells by RNeasy Kits (QIAGEN) was reverse

transcribed to generate cDNA using M-MLV Reverse Transcriptase (Sigma).

Quantitative real-time PCR was performed using Precision Mastermix

(PrimerDesign) and TaqMan Gene Expression Assay probes on an Applied

Biosystems 7900HT Fast Real Time Machine (Applied Biosystems). Relative

expression was calculated using the DDCt method and b-2 microglobulin as

an internal control.

In Vivo Studies

All procedures involving animals were approved by the Animal Ethics Commit-

tees of the Institute of Cancer Research and the CR-UK London Research

Institute in accordance with National Home Office regulations under the

Animals (Scientific Procedures) Act 1986 and according to the guidelines of

the Committee of the National Cancer Research Institute (Workman et al.,

2010). For xenografts, 13 106 cells in 0.1 ml PBS were inoculated subcutane-

ously into the flanks of female (five per group) CD1 nude mice (Charles River;

UK). Tumor volumes were determined using volume = length3 width3 depth

(mm)3 0.5236. For short-term lung colonization assays, 53 105 cells express-

ing GFP or chRFP (each) were mixed in 100 ml PBS and injected into the tail

veins of nude mice. Mice were sacrificed after 30 min, 6 hr, or 24 hr, and the

surface of the lungs was examined for GFP or chRFP-expressing cells. Cell

numbers (average of ten measurements per lung, three mice per experiment)

are expressed as percentage of total number of cells counted. For long-term
56 Cancer Cell 19, 45–57, January 18, 2011 ª2011 Elsevier Inc.
lung colonization, 1 3 106 4599.EV or 4599.PDE5A1 cells in 100 ml PBS

were injected into the tail veins of nudemice, and the lungs were weighed after

14 days.

For intravital imaging, 1 3 106 WM266.4-GFP/PDE5A1 or WM266.4-GFP

cells were injected subcutaneously into the flank of nude mice. When tumors

were 3–7 mm2, the mice were anesthetized, and the tumors were exposed to

a two-photon microscope for video imaging. To quantify movement, several

regions from eight tumors were video recorded for 25 min, and moving cells

were defined as those that moved 10 mm or more during the video period.

IHC

All procedures using human tissues were approved by the Ethics Committees

of the Institute of Cancer Research and the Royal Marsden Hospital Founda-

tion Trust in accordance with the Human Tissue Act 2004 (c.30). The high-

density melanoma tissue microarray (Tissue Microarray ME207 061) was

purchased from Biomaxx (Rockville, MD, USA) and contains multiple primary

andmetastaticmelanoma samples collected with full donor consent under IRB

and HIPPA-approved protocols.

PDE5A antigen was retrieved by microwave (18 min in citrate buffer) and

detected with rabbit polyclonal antibody (PDE5A; NBP1-00639, Novus Biolog-

icals Inc., 1:50) and the Vectastain Elite ABC kit (Vector Laboratories). The

samples were blind scored by A.V. as low (1), intermediate (2), or high (3),

and scores were validated in 30 randomly selected cores by B.S.-L. Interob-

server agreement was excellent (kappa score >0.8). Average staining intensity

per sample is presented.

Statistical Analysis

The Student’s t test was performed for mRNA expression, fold-invasive index,

cell adhesion, and lung extravasation assays, the Mann Whitney U test was

performed for the scatter plots, and the chi-square test was performed for

the TMAs.

SUPPLEMENTAL INFORMATION

Supplemental Information includes Supplemental Experimental Procedures

and three figures and can be found with this article online at doi:10.1016/

j.ccr.2010.10.029.
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