Appl. Math. Lett. Vol. 6, No. 4, pp. 87-90, 1993 Printed in Great Britain. All rights reserved

0893 - 9659 / 93 \$6.00 + 0.00Copyright@ 1993 Pergamon Press Ltd

A NOTE ON A COLLECTIVELY COMPACT APPROXIMATION FOR WEAKLY SINGULAR INTEGRAL OPERATORS

ALAIN LARGILLIER AND MAURICIO LEVET

Équipe d'Analyse Numérique de Saint-Étienne, (member of the U.R.A. nº 740 to C.N.R.S.) Université Jean Monnet, 23, rue du Docteur Paul Michelon 42023 Saint Etienne cedex 2 - France

(Received and accepted December 1992)

Abstract—We prove the collectively compact convergence of the Nyström method when applied on a truncated version of a weakly singular integral operator. As a consequence, we get the quasi compact convergence of finite rank projection operators derived from the Kantorovitch singularity subtraction approximation.

1. INTRODUCTION

Let $C^0[0,1]$ denote the space of continuous functions $\varphi:[0,1]\to \mathbb{C}$ and $\|\cdot\|_{\infty}$ the L^{∞} norm. $T: \mathcal{C}^0[0,1] \to \mathcal{C}^0[0,1]$ is an integral operator

$$(T\varphi)(t) = \int_0^1 k(t,s)\,\varphi(s)\,ds,\tag{1.1}$$

with weakly singular kernel k(t,s) = g(|t-s|) h(t,s), where $h: [0,1]^2 \to \mathbb{C}$ is continuous and $g:]0,1] \rightarrow \mathbb{R}$ satisfies (cf. [1]):

$$q \in \mathcal{C}^0([0,1]) \cap L^1(0,1),$$
 (1.2a)

$$\exists \delta \in]0,1]$$
 such that $g \ge 0$ and g is a nonincreasing function on $]0,\delta].$ (1.2b)

T is then a compact operator and examples of g are $g(u) = u^{-\alpha}$, $(\alpha \in]0,1[)$, $g(u) = -\ln u$. We consider the following approximation T_n^N to T (N for Nyström): For $\mu \in]0, \delta]$ we define g_{μ} by $g_{\mu}(u) = g(\mu)$ if $u \in [0, \mu]$ and $g_{\mu}(u) = g(u)$ if $u \in [\mu, 1]$ and we set

$$(T_n^N arphi)(t) \equiv \sum_{i=1}^n \omega_{i,n} \, g_{\mu_n}(|t-t_{i,n}|) \, h \, (t,t_{i,n}) arphi(t_{i,n}),$$

where the real sequences $t_{i,n}$, $\omega_{i,n}$ and μ_n satisfy:

$$\forall n \in \mathbb{N}, \qquad 0 \le t_{1,n} < t_{2,n} < \dots < t_{n,n} \le 1,$$
 (1.3a)

$$\forall n \in \mathbb{N}, \qquad \forall i = 1, 2, \dots, n, \quad \omega_{i,n} \ge 0,$$
 (1.3b)

For any continuous function
$$f$$
, $\sum_{i=1}^{n} \omega_{i,n} f(t_{i,n}) \to \int_{0}^{1} f(t) dt$, as $n \to \infty$, (1.3c)

 $\exists c > 0$ such that $\forall n \in \mathbb{N}$ and any interval \mathcal{G} of type [a, b] or [a, b],

such that
$$b - a \le \frac{1}{n}$$
, $\sum_{t_{i,n} \in \mathcal{G}} \omega_{i,n} \le \frac{c}{n}$, (1.3d)

$$\forall n \in \mathbb{N}, \ \mu_n \in]0, \delta] \quad \text{and} \quad \mu_n \downarrow 0 \text{ as } n \to \infty,$$
 (1.3e)

$$\exists \rho > 0 \text{ such that } \forall n \in \mathbb{N}, \qquad \mu_n \ge \frac{\rho}{n}.$$
 (1.3f)

Typeset by A_MS -TEX

2. THE MAIN RESULT

It has been said but never used nor proved, that T_n^N is a collectively compact approximation to T. We give here a proof and we show some of its consequences. We begin by a lemma proved in [1]:

Lemma 2.1. Under conditions (1.3) any continuous nonincreasing function f satisfies

$$\sum_{i=1}^{n} \omega_{i,n} f(t_{i,n}) \le \frac{c}{n} f(0) + c \int_{0}^{1} f(t) dt.$$

Theorem 2.2. Under conditions (1.3) T_n^N is a collectively compact approximation to T.

PROOF. We prove that $\exists n_0 \in \mathbb{N}$ such that $W \equiv \{T_n^N \varphi : \varphi \in \mathcal{C}^0[0,1] : \|\varphi\|_{\infty} \leq 1, \ n > n_0\}$ is relatively compact. By (1.3e) $\forall \xi \in]0, \delta]$, $\exists n_0 \in \mathbb{N}$ such that $n > n_0 \implies \max\{1/n, \rho/n, \mu_n\} < \xi$. Take $\xi \in]0, \delta]$, $n > n_0$, $\varphi \in \mathcal{C}^0[0,1]$ with $\|\varphi\|_{\infty} \leq 1$ and $t \in [0,1]$. Then

$$|(T_{n}^{N}\varphi)(t)| = \left|\sum_{i=1}^{n} \omega_{i,n} g_{\mu_{n}}(|t-t_{i,n}|) h(t,t_{i,n}) \varphi(t_{i,n})\right| \leq ||h||_{\infty} \sum_{i=1}^{n} \omega_{i,n} |g_{\mu_{n}}(|t-t_{i,n}|)|$$

$$\leq ||h||_{\infty} (\sum_{|t-t_{i,n}|<\xi} \omega_{i,n} g_{\mu_{n}}(|t-t_{i,n}|) + \sum_{|t-t_{i,n}|\geq\xi} \omega_{i,n} |g_{\mu_{n}}(|t-t_{i,n}|)|).$$

But, from Lemma 2.1,

$$\sum_{|t-t_{i,n}|<\xi} \omega_{i,n} \, g_{\mu_n}(|t-t_{i,n}|) \leq \frac{2c}{n} \, g(\mu_n) + 2c \int_0^\xi g(u) \, du \leq 2c \, 1 + \frac{1}{\rho} \, \int_0^\xi g(u) \, du.$$

Besides

$$\sum_{|t-t_{i,n}| \ge \xi} \omega_{i,n} |g_{\mu_n}(|t-t_{i,n}|)| = \sum_{|t-t_{i,n}| \ge \xi} \omega_{i,n} |g(|t-t_{i,n}|)| \le c \sup_{u \in [\xi,1]} |g(u)|.$$

Then $|(T_n^N \varphi)(t)| \leq C \equiv c \|h\|_{\infty} \max\{\sup_{u \in [\xi,1]} |g(u)|, 2(1+1/\rho) \int_0^{\xi} g(u) \, du\}$ and W is bounded. We now show that W is equicontinuous. Take $t \in [0,1]$ and $\varepsilon > 0$. By $(1.2) \exists \xi \in]0, \delta]$ such that $\int_0^{\xi} g(u) \, du < \frac{\varepsilon \rho}{16c \|h\|_{\infty} (3\rho + 2)}$. The uniform continuity of h in $[0,1]^2$ and of g in $[\xi,1]$ imply that $\exists \eta(\varepsilon,t) > 0$ such that $\forall t' \in [0,1], \ \forall s \in [0,1], \ |t'-t| < \eta \implies |h(t',s)-h(t,s)| < \frac{\varepsilon \|h\|_{\infty}}{2C}$ and $\forall u',u \in [\xi,1], \ |u'-u| < \eta \implies |g(u')-g(u)| < \frac{\varepsilon}{12c \|h\|_{\infty}}$. So that $\forall t' \in [0,1]$ satisfying $|t'-t| < \eta$, we have

$$\begin{aligned} |(T_{n}^{N}\varphi)(t') - (T_{n}^{N}\varphi)(t)| &= \left| \sum_{i=1}^{n} \omega_{i,n} \left[g_{\mu_{n}}(|t'-t_{i,n}|) \, h\left(t',t_{i,n}\right) - g_{\mu_{n}}(|t-t_{i,n}|) \, h\left(t,t_{i,n}\right) \right] \varphi(t_{i,n}) \right| \\ &\leq \left| \sum_{i=1}^{n} \omega_{i,n} \, g_{\mu_{n}}(|t'-t_{i,n}|) [h\left(t',t_{i,n}\right) - h(t,t_{i,n})] \, \varphi\left(t_{i,n}\right) \right| \\ &+ \left| \sum_{i=1}^{n} \omega_{i,n} \left[g_{\mu_{n}}(|t'-t_{i,n}|) - g_{\mu_{n}}(|t-t_{i,n}|) \right] h\left(t,t_{i,n}\right) \varphi\left(t_{i,n}\right) \right| \\ &\leq \frac{\varepsilon \|h\|_{\infty}}{2C} \sum_{i=1}^{n} \omega_{i,n} |g_{\mu_{n}}(|t'-t_{i,n}|)| + \|h\|_{\infty} (S_{1} + S_{2} + S_{3} + S_{4}) \\ &\leq \frac{\varepsilon}{2} + \|h\|_{\infty} (S_{1} + S_{2} + S_{3} + S_{4}), \end{aligned}$$

where

$$\begin{split} S_1 &\equiv \sum_{\substack{|t'-t_{i,n}| < \xi \\ |t-t_{i,n}| < \xi}} \omega_{i,n} |g_{\mu_n}(|t'-t_{i,n}|) - g_{\mu_n}(|t-t_{i,n}|)| \\ &\leq \sum_{\substack{|t'-t_{i,n}| < \xi \\ |t-t_{i,n}| < \xi}} \omega_{i,n} \, g_{\mu_n}(|t'-t_{i,n}|) + \sum_{\substack{|t-t_{i,n}| < \xi \\ |t-t_{i,n}| < \xi}} \omega_{i,n} \, g_{\mu_n}(|t-t_{i,n}|) \\ &\leq 4c \, 1 + \frac{1}{\rho} \int_0^\xi g(u) \, du, \\ S_2 &\equiv \sum_{\substack{|t'-t_{i,n}| \ge \xi \\ |t-t_{i,n}| \ge \xi}} \omega_{i,n} |g_{\mu_n}(|t'-t_{i,n}|) - g_{\mu_n}(|t-t_{i,n}|)| \\ &= \sum_{\substack{|t'-t_{i,n}| \ge \xi \\ |t-t_{i,n}| \ge \xi}} \omega_{i,n} |g(|t'-t_{i,n}|) - g(|t-t_{i,n}|)| < \frac{\varepsilon}{12||h||_{\infty}}, \\ S_3 &\equiv \sum_{\substack{|t'-t_{i,n}| < \xi \\ |t-t_{i,n}| \ge \xi}} \omega_{i,n} |g_{\mu_n}(|t'-t_{i,n}|) - g_{\mu_n}(|t-t_{i,n}|)| \\ &\leq \sum_{\substack{|t'-t_{i,n}| < \xi \\ |t-t_{i,n}| \ge \xi}} \omega_{i,n} g_{\mu_n}(|t'-t_{i,n}|) + g(\xi) \sum_{\substack{|t'-t_{i,n}| < \xi \\ |t-t_{i,n}| < \xi}} \omega_{i,n} \\ &+ \sum_{\substack{|t'-t_{i,n}| \le \xi \\ |t-t_{i,n}| \ge \xi}} \omega_{i,n} |g(\xi) - g(|t-t_{i,n}|)| \\ &< 2c \, 2 + \frac{1}{\rho} \int_0^\xi g(u) \, du + \frac{\varepsilon}{12||h||_{\infty}}, \\ &< 2c \, 2 + \frac{1}{\rho} \int_0^\xi g(u) \, du + \frac{\varepsilon}{12||h||_{\infty}}, \\ &< 2c \, 2 + \frac{1}{\rho} \int_0^\xi g(u) \, du + \frac{\varepsilon}{12||h||_{\infty}}, \\ &< 2c \, 2 + \frac{1}{\rho} \int_0^\xi g(u) \, du + \frac{\varepsilon}{12||h||_{\infty}}, \\ &< 2c \, 2 + \frac{1}{\rho} \int_0^\xi g(u) \, du + \frac{\varepsilon}{12||h||_{\infty}}, \\ &< 2c \, 2 + \frac{1}{\rho} \int_0^\xi g(u) \, du + \frac{\varepsilon}{12||h||_{\infty}}, \\ &< 2c \, 2 + \frac{1}{\rho} \int_0^\xi g(u) \, du + \frac{\varepsilon}{12||h||_{\infty}}, \\ &< 2c \, 2 + \frac{1}{\rho} \int_0^\xi g(u) \, du + \frac{\varepsilon}{12||h||_{\infty}}, \\ &< 2c \, 2 + \frac{1}{\rho} \int_0^\xi g(u) \, du + \frac{\varepsilon}{12||h||_{\infty}}, \\ &< 2c \, 2 + \frac{1}{\rho} \int_0^\xi g(u) \, du + \frac{\varepsilon}{12||h||_{\infty}}, \\ &< 2c \, 2 + \frac{1}{\rho} \int_0^\xi g(u) \, du + \frac{\varepsilon}{12||h||_{\infty}}, \\ &< 2c \, 2 + \frac{1}{\rho} \int_0^\xi g(u) \, du + \frac{\varepsilon}{12||h||_{\infty}}, \\ &< 2c \, 2 + \frac{1}{\rho} \int_0^\xi g(u) \, du + \frac{\varepsilon}{12||h||_{\infty}}, \\ &< 2c \, 2 + \frac{1}{\rho} \int_0^\xi g(u) \, du + \frac{\varepsilon}{12||h||_{\infty}}. \end{aligned}$$

Thus, $\forall t \in [0,1], \ \forall \varepsilon > 0, \ \exists \eta(\varepsilon,t) > 0$ such that if $\|\varphi\|_{\infty} \leq 1$, then $\forall n \in \mathbb{N}, \ \forall t' \in [0,1], \ |t'-t| < \eta \implies |(T_n^N \varphi)(t') - (T_n^N \varphi)(t)| < \varepsilon$. Since [0,1] is compact the equicontinuity of W follows from the Arzela-Ascoli theorem. The pointwise convergence of T_n^N to T is proved in [1].

3. APPLICATIONS TO SINGULARITY SUBTRACTION

We write T in the form

$$(Tarphi)(t)=\int_{0}^{1}k(t,s)\,arphi\left(s
ight)ds=\int_{0}^{1}k(t,s)[arphi\left(s
ight)-arphi\left(t
ight)]\,ds+arphi(t)\int_{0}^{1}k(t,s)\,ds$$

and Kantorovitch's singularity subtraction approximation T_n^K is motivated:

$$(T_n^K\varphi)(t) \equiv \sum_{i=1}^n \omega_{i,n} \, g_{\mu_n}(|t-t_{i,n}|) \, h\left(t,t_{i,n}\right) \left[\varphi\left(t_{i,n}\right) - \varphi\left(t\right)\right] + \varphi\left(t\right) \int_0^1 k(t,s) \, ds.$$

Let π_n be a sequence of finite rank projections pointwise convergent to the identity. We consider three finite rank operators: $T_n^{KP} \equiv \pi_n T_n^K$, $T_n^{KS} \equiv T_n^K \pi_n$ and $T_n^{KG} \equiv \pi_n T_n^K \pi_n$, where P stands

for projection, S for Sloan and G for Galerkin. The quasi compact convergence, as defined in [2], follows:

THEOREM 3.1. If T_n is any of the approximations T_n^K , T_n^{KP} , T_n^{KS} or T_n^{KG} then T_n is pointwise convergent to T and $(T_n - T)T_n$ converges to zero in the induced operator norm.

PROOF. Since T_n^N is a collectively compact approximation to T, $(T_n^N-T)T_n^N$ converges in norm to zero (cf. [3]). But $T_n^K=T_n^N+\Delta_n$ where Δ_n converges in norm to zero. Hence $(T_n^K-T)T_n^K$ converges in norm to zero. Since π_n is pointwise convergent to the identity, $\pi_n T_n^N$, $T_n^N \pi_n$ and $\pi_n T_n^N \pi_n$ are collectively compact approximations to T (cf. [3]). The Banach-Steinhaus theorem implies that π_n is uniformly bounded. Hence $\pi_n \Delta_n$, $\Delta_n \pi_n$ and $\pi_n \Delta_n \pi_n$ converge in norm to zero. So that $(T_n-T)T_n$ converges in norm to zero for $T_n=T_n^{KP}$, T_n^{KS} , T_n^{KG} . The pointwise convergence of T_n^{KP} , T_n^{KS} and T_n^{KG} follows immediately. Hence T_n^{KG} , T_n^{KP} and T_n^{KS} are quasi compact approximations to T.

We remark that if (1.3d) changes into

$$\exists c > 0 \text{ such that } \forall n \in \mathbb{N}, \quad \forall j = 1, 2, \dots, n \quad \max\{\omega_{j-1,n}, \omega_{j,n}\} \le c(t_{j,n} - t_{j-1,n}) \tag{1.3d'}$$

then all the conclusions hold provided that (1.3f) changes into

$$\exists \rho > 0 \text{ such that } \mu_n \ge \rho \max_{i=1,2,\dots,n} \omega_{i,n}. \tag{1.3f'}$$

REFERENCES

- P. M. Anselone and W. Krabs, Approximate solution of weakly singular integral equations, J. Int. Equ. 1, 61-75 (1979).
- M. Ahues, A class of strongly stable operator approximations, J. Austral. Math. Soc. Ser. B 28, 435-442 (1987).
- 3. F. Chatelin, Spectral Approximation of Linear Operators, Academic Press, New York, (1983).
- 4. M. Ahues and A. Largillier, A variant of the fixed tangent method for spectral computations on integral operators, Numer. Funct. Anal. and Optimiz. (to appear).
- P. M. Anselone, Collectively Compact Operator Approximation Theory, Prentice-Hall Inc., Engelwood Cliffs, NJ, (1971).
- P.M. Anselone and J. W. Lee, Double approximation methods for the solution of Fredholm integral equations, In *Numerische Methoden der Approximationstheorie*, (Edited by L. Collatz, H. Werner and G. Meniardus), pp. 9-34, Birkhäuser-Verlag, Basel, (1976).
- 7. P.M. Anselone and G. Opfer, Numerical integration of weakly singular functions, In *Numerische Integration*, (Edited by G. Hämmerlin), Birkhäuser-Verlag, Basel, (1979).
- 8. P.M. Anselone, Singularity subtraction in the numerical solution of integral equations, J. Austral. Math. Soc. Ser. B 22, 408-418 (1981).