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Abstract—We prove the collectively compact convergence of the Nystrom method when applied
on a truncated version of a weakly singular integral operator. As a consequence, we get the quasi
compact convergence of finite rank projection operators derived from the Kantorovitch singularity
subtraction approximation.

1. INTRODUCTION

Let C°[0,1] denote the space of continuous functions ¢ : [0,1] — € and | - [l the L norm.
T:C°[0,1] — C°[0,1] is an integral operator

1
(To)(t) = /0 K(t,s) @ (5) ds, (1)

with weakly singular kernel k(t,s) = g(|t — s|) A (t,s), where h : [0,1]> - C is continuous and
9:]0,1) — R satisfies (cf. [1}):

g €C°(J0,1)) n L}(0, 1), (1.2a)
36 €]0, 1] such that g > 0 and g is a nonincreasing function on ]0, 6]. (1.2b)
T is then a compact operator and examples of g are g(u) = u™%, (a €]0,1[), g(u) = — Inu.

We consider the following approximation T to T’ (N for Nystrém): For p €]0, 6] we define g,
by gu(u) = g(u) if u € [0, ] and g, (u) = g(u) if u € [y, 1] and we set

n
(TN )(t) =Y wim gu, (1t = tinl) b (b, ti.0)@(Ein)s
1=1

where the real sequences ¢, ,,, win and u, satisfy:

VYn € N, 0<tin<trn< - <thn<l, (1.3a)
Vn € N, Vi=1,2,...,n, w;y=>0, (1.3b)

n 1
For any continuous function f, Zwm ftin) — / f(&)dt, as n — o0,
i=1 0 (1.3¢)
Je > 0 such that Vn € N and any interval G of type [a, b{ or ]a, b,

1 c
such that b —a < o Z Win < - (1.3d)
t,.n€G
YneN, p, €0,6] and p, | 0asn — oo, (1.3e)
Jp>0suchthat Vn e N,  pp > 5. (1.3f)
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2. THE MAIN RESULT

It has been said but never used nor proved, that 7. is a collectively compact approximation
to T. We give here a proof and we show some of its consequences. We begin by a lemma proved
in [1]:

LeMMA 2.1. Under conditions (1.3) any continuous nonincreasing function f satisfies

n 1
> wun i) < 550 e [0 '

THEOREM 2.2. Under conditions (1.3) TN is a collectively compact approximation to T.

relatively compact. By (1.3e) V€ €]0,8], 3ng € N such that n > ng == max{1/n, p/n, u,} < €.
Take £ €]0,6], n > ng, p € C°[0,1] with ||p|lc <1 and t € [0,1]. Then

PrOOF. We prove that Ing € N such that W = {TV ¢ : » € C°[0,1) : fi¢lloo < 1, m > ng} is

< [hlloo sznigu (It = tinl)l

(T DO = | D win Gy (18 = tinl) R (b t20) @ (tim)
i=1
< A oo Z Win Gp,, (It = tinl) + Z WinlGp, ([t = tin)).

[t—t. n]<€ jt—t. n|>€

But, from Lemma 2.1,

2 ¢ I
> win g, ([t = tin]) < Tlcg(“n) + 20/ gludu < 21+~ / g(u) du.
0 ¢}

t—t, ]<€
Besides
> winlgu, (E—tinl = D winlg(lt —tia) <c sup [g(u)}.
|t—t:,r,|2€ |t_tr.n|25 UG[f,l]

Then (TN ¢)(t)] < C = c||h]|eo max{ sup |g(u)|,2(1 + 1/p) j(f g(u) du} and W is bounded. We
u€(€.1]
now show that W is equicontinuous. Take t € [0,1] and ¢ > 0. By (1.2) 3¢ €]0, 8] such that.

fo u)du < W’m The uniform continuity of & in [0,1]? and of ¢ in [€,1] imply that

30(5 t) > 0 such that V¢’ € [0,1], Vs € [0,1], [t' —t| < = |h(t',s) — h(t,s)] < f% and
Vu'su e [6,1], |u' —ul <n = |g(u)—g(u)} < W So that V&’ € [0, 1] satisfying |t/ —t| < 7,
we hav,

I(Trllv(ro)(tl) - (TTIJ,V@>(t)( = Zwiﬂ [gu,. (it/ —tinl)h (t/vti‘n) ~ Y, (It = tinl) h (2, t'i.rl)]‘»o(tnn)

szn(/u it 'tL7L|)[h t, lin _h( tn ]‘P tln)

t —tinl) = Gu, (It = tin DR (t tin) @ (tin)

h[lso
6” ” Z Win |G ( t' —tinD)| + [Alloo(S1 + S2 + S3 + Sy)

< 5 +1Alloo (St + S2 + S3 + S4),
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whére

51 = Z wi,nlgun(“/ - ti,nl) - gun(lt —tinl)]

[t'—t; nl<€

Jt—t; n|<€

< Y wingu ( —tia)+ Y. wingu, (t~tial)
|t/ ~t; n|<€ lt—ti n|<€

1 ¢
<4cl+ = / g(u) du,
P Jo

Sy = Z wi,nlgun(lt’ - ti,nl) - gun(lt - ti,nl)l
|t'—t,'"|2§
It—ti,nlzg
[

= Y winlg(lt = tinl) = 9(1t ~ tinl)] <

, 12|Afl oo
|t —tv.nIZE
lt—t:,n|25

S3 = Z wi,nlgun (‘t/ - ti,nl) - gun(
' —ti 0| <€
lt—t, n12€

< Z Win Gu, (ltl - ti,n|) + g(§) Z Wi,n

,tl_tv,n’<§ ,t,_tt.n,<§

Y winlgl®) - (it — tinl)

Jt' =t n]<€
|t“ti.n|25

t_ti,n|)l

<202+1/£g(u)du+ £
P Jo 12[[Aflo’

Sy = Z wi,n|Gu, (

W-h,:-lZE
lt—t, n|<€

t— tz’,n') - g(|t - tz‘,nm

<22+ ! /E (u) du + £
C e [’ TanLn
P Jo 12[|Alloo

&
S —_
S1+ Sy + 83+ 84 < 2“h“00

Thus, V¢t € [0,1], Ve > 0, 3n(e,t) > 0 such that if ||¢|lec < 1, then Vn € N, W' ¢ [0,1],

It —tl <n = (TNe)t') = (TN p)(t)] < e. Since [0,1] is compact the equicontinuity of
W follows from the Arzela-Ascoli theorem. The pointwise convergence of TN to T is proved

in [1]. |
3. APPLICATIONS TO SINGULARITY SUBTRACTION
We write T in the form

1 1 1
Te©) = [ o) p()ds = [ Heslo () - @) ds + o0 | ke as

and Kantorovitch’s singularity subtraction approximation T)X is motivated:
K < '
(T @) () = 3 win Gun (It — tinl) B (£:2:0) [0 (tin) — 0 (8)] + 0 (2) / k(t, s) ds.
i=1 0

Let m, be a sequence of finite rank projections pointwise convergent to the identity. We consider
three finite rank operators: TX? = n,TX, TX5 = TXr,, and TXC = n,TXr,,, where P stands
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for projection, S for Sloan and G for Galerkin. The quasi compact convergence, as defined in {2],
follows:

THEOREM 3.1. If T, is any of the approximations TX, TXP TXS or TKC then T, is pointwise

convergent to T and (T, — T)T, converges to zero in the induced operator norm.

PROOF. Since T, ,{V is a collectively compact approximation to T, (T,{V ~T)TXN converges in norm
to zero (cf. [3]). But TX = TN + A,, where A, converges in norm to zero. Hence (TX — T\TX
converges in norm to zero. Since 7, is pointwise convergent to the identity, m, T, T,’LV T, and
7, TN m,, are collectively compact approximations to T (cf [3]). The Banach-Steinhaus theorem
implies that m, is uniformly bounded. Hence mpA,, A,m, and 7,A,m, converge in norm to
zero. So that (T, — T)T,, converges in norm to zero for T, = TXP TS TKC The pointwise
convergence of TXP TKS and TKC follows immediately. Hence TX¢, TXP and TXS are quasi
compact approximations to 7. |

We remark that if (1.3d) changes into
de > 0suchthat Vn e N, Vj=1,2,...,n max{wj_in, wjn} < c(tjn —tj-1,n) (1.3d")
then all the conclusions hold provided that (1.3f) changes into

dp > 0 such that pu, > p max w;y. (1.3f")

1=1,2,...,
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