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a b s t r a c t

We construct local-to-global spectral sequences for the cohomology of a diagram, which
compute the cohomology of the full diagram in termsof smaller pieces. These aremotivated
by the obstruction theory of D. Blanc et al. [D. Blanc,M.W. Johnson, J.M. Turner, On realizing
diagrams ofΠ-algebras, Algebraic Geom. Topol. 6 (2006) 763–807] for realizing a diagram
ofΠ-algebras, but are valid in quite general algebraic settings.
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0. Introduction

The cohomology of diagrams arises as a natural object of study in several mathematical contexts: in deformation theory
(see [23,22,21]), and in classifying diagrams of groups, as in [13]. If I is the one-object category corresponding to a group G,
a diagram X ∈ C I is just an object in C equipped with a G-action, and its cohomology is the equivariant cohomology of [26]
(cf. [33, Section 2]). On the other hand, for any discrete or Lie group G, let I = OG denote the orbit category of G: if X is a
G-space, X : OG → Top is the corresponding fixed point diagram X(G/H) := XH , and M : OG → AbGp, is any system
of coefficients, then the corresponding cohomology H(X;M) is Bredon cohomology (cf. [28, I, Section 4]). Finally, when I
consists of a single arrow, and the coefficients are constant, we have the usual cohomology of a pair. See [5,17,20,31,32,6]
for further applications.

0.1. Diagrams in homotopy theory

The cohomology of diagrams also plays a major role in the Dwyer–Kan–Smith theory for the rectification of homotopy-
commutative diagrams (cf. [19,16,18]). In fact, our interest in the subject was motivated by the related realization problem
for diagrams of Π-algebras (graded groups with an action of the primary homotopy operations): as in the case of a single
Π-algebra (cf. [8]), the obstructions to realizing a diagram of Π-algebras Λ : I → Π-Alg lie in appropriate cohomology
groups ofΛ (see [9, Thm. 6.3]).
Furthermore, given a Π-algebra Γ , all distinct homotopy types realizing Γ may be distinguished by a set of higher

homotopy operations associated to a collection (Iα)α∈A of finite indexing categories Iα and homotopy-commutative
diagrams Xα : Iα → ho Top, where all the spaces Xαi are wedges of spheres (cf. [7]). Since these higher operations
are obstructions to the rectification of the diagrams (Xα)α∈A (and thus the associated diagrams Λα := π∗Xα : Iα →
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Π-Alg), they correspond to elements in the cohomology of Γ . Understanding the cohomology groups of such diagrams
may therefore be helpful in algebraicizing (and organizing) the ‘‘higher Π-algebra’’ of a space Y , consisting of all higher
homotopy operations in π∗Y .

0.2. Computing diagram cohomology

Even the cohomology of a single map may be hard to calculate (cf. [9, Section 5.16]), so some computational tools are
needed. For this purpose we construct ‘‘local-to-global’’ spectral sequences for the cohomology of a diagram, which can be
used to compute the cohomology of the full diagram in terms of smaller pieces.
Given a small category I , a model category C (in the sense of [35]), and an I-diagram X ∈ C I , one can define the

cohomology of X with coefficients in any abelian group object Y ∈ C I . For technical reasons, we shall concentrate on the
case where C = sA is the category of simplicial objects over some variety of universal algebras A: since the homotopy
category of simplicial groups is equivalent to that of (pointed connected) topological spaces, this actually covers all cases of
interest above. Some of our results are valid, however, for an arbitrary simplicial model category C.
Another reason for our interest in the ‘‘local-to-global’’ approach to diagram cohomology is that in order for the higher

homotopy operation corresponding to a homotopy-commutative diagram X : I → ho Top to be defined, all lower order
operations (corresponding to subdiagrams of I)must vanish coherently. Thus an essential step in a cohomological description
of higher order operations is the ability to piece together local data to obtain global information.

Remark 0.3. We should point out that our methods work (almost exclusively) for a directed indexing category I (i.e., with
only identities as endomorphisms), which is a significant restriction. However, such diagrams certainly suffice for the
description of higher homotopy operations, as above: even the linear case –when I consists of a single composable sequence
of arrows – is of interest, since the realizability of such a diagram is essentially equivalent to calculating higher Toda brackets.
Furthermore, diagrams arising in deformation theory (indexed by the nerve of a covering) are of this form. Our methods,
suitably modified (cf. Remark 1.7), also apply to diagrams indexed by the orbit category OG of a group G.

0.4. The spectral sequences

Let C be a simplicial model category and I a directed index category, and assume given diagrams Z : I → C, and
X, Y ∈ C I/Z , with Y an abelian group object in C I/Z . Our main results may be summarized as follows:

Theorem A. There is a first quadrant spectral sequence with:

E2s,t =
∏
j∈̃Js

H t+s(Xj/Zj, φ̂j) =⇒ Hs+t(X/Z; Y ).

This is constructed by taking increasing truncations of the coefficient diagram Y (cf. Theorem 3.5). Here
H∗(X/Z, φ) denotes relative cohomology for a map of the coefficients (see Definition 3.1).

Theorem B. There is a first quadrant spectral sequence with:

E2s,t = H
s+t(ηs; Y ) =⇒ Hs+t(X/Z; Y ).

This spectral sequence is constructed dually to the previous one, by taking increasing truncations of the source diagram
X (see Theorem 3.7). Here H∗(η, Y ) denotes the usual cohomology of a map (or pair).

Theorem C. If I is countable, then for any ordering (cs)∞s=1 of the objects of I , there is a first quadrant spectral sequence with
E2s,t = H

t+s
cs (X/Z; Y ) =⇒ H

s+t(X/Z; Y ).

This is constructed by successively omitting the objects cs from I (see Theorem 7.7). Here H∗c (X/Z, Y ) denote the local
cohomology groups at an object c ∈ I (see Definition 7.4).
There are versions of all three spectral sequences defined for any suitable cover J of I (Definition 1.1). In particular, the

spectral sequences always converge if J is finite, hence if I itself is finite.

0.5. Other variants

Other spectral sequences for the cohomology of a diagram have appeared in the literature. One should mention the
universal coefficient spectral sequence of Piacenza (see [34, Section 1]), the the p-chain spectral sequence of Davis and
Lück (see [15]), the equivariant Serre spectral sequence of Moerdijk and Svensson (see [30], and the local-to-global spectral
sequences of Jibladze and Pirashvili (see [27]) and Robinson (see [37]) — though the last three use a different definition of
cohomology, based on the Baues–Wirsching and Hochschild–Mitchell cohomologies of categories (cf. [3,29]). The spectral
sequences for the cohomology of a homotopy (co)limit of a diagram (cf. [40] and [2,11])may also be related to ours in special
cases.
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0.6. Organization

Section 1 provides background material on diagrams, their covers, and the model category of diagrams. In Section 2 we
determine when the ‘‘restriction tower’’ associated to a cover of the indexing category I is a tower of fibrations, and in
Section 3 we use this to set up the first two spectral sequences.
The second half of the paper is devoted to the (somewhat more technical) approach based on ‘‘localizing at an object’’:

Section 4 provides the setting, and explains the method. In Section 5 we describe an auxiliary construction associated to the
tower of certain covers of I , and in Section 6 show that this auxiliary tower is a tower of fibrations. Finally, in Section 7 we
identify the fibers of the new tower, and obtain the third spectral sequence.

1. The category of diagrams

Our object of study will be the category C I of diagrams — i.e., functors from a fixed small (often finite) indexing category
I into a model category C. The maps are natural transformations. In this section we define some concepts and introduce
notation related to I and C I :

Definition 1.1. Let I be any small category. By anN-indexed cover of Iwemean some collectionJ = {Jν}ν∈N of subcategories
of I , such that each arrow in I belongs to at least one Jν .
A cover J = {Jν}ν∈N for I will be called orderable if the relation:

ν1 ≺ ν2
Def
⇐⇒ ∃ i1 ∈ Jν1 , i2 ∈ Jν2∃ φ : i2 → i1 in I with i1 6∈ Jν2 or i2 6∈ Jν1

defines a partial order on N , and the partially ordered set (N,≺) can be embedded as a (possibly infinite) segment of
(Z,≤). Choosing such an embedding N ⊆ Z, we may think of J as being indexed by integers, and we can then filter I
by setting J[n] :=

⋃
i≤n Ji. If N is bounded below in Zwe say that J is right-orderable, and if it is bounded above we say it is

left-orderable.

Remark 1.2. Note that the linear ordering ofJ (indicated by the indices) is not generally uniquely determined by the partial
order≺: there may be elements of J which are not comparable under≺. This happens when all maps out of Jn actually land
in J[k] for k < n− 1. In this case the linear ordering of Jn and Jn−1, for example, may be switched with impunity.

1.3. Directed indexing categories

A directed indexing category is a small category I equipped with a map deg : Obj(I)→ Z, such that for every non-identity
map φ : j→ i in I , deg(j) > deg(i). Then I is filtered by the full subcategories In = J[n]whose objects have degree at most
n.
An orderable cover J = {Jn}n∈N for such an I will be called compatible (with the choice of deg) if there is a strictly

increasing sequence of integers (kn)n∈N such that Obj(Jn) = deg−1([kn−1, kn]).

Example 1.4. The fine cover for a directed indexing category I is defined by letting Jn be the subcategory obtained from the
‘‘difference categories’’ J̃n := In \ In−1 (discrete, by assumption) by adding all the maps from any of these objects into In−1.
For instance, if I = [n] is the linear category of n composable maps (with degrees as labels):

n
φn
−→ n− 1

φn−1
−−→ · · · 2

φ2
−→ · · · 1

φ1
−→ 0,

then Ik consists of the k arrows on the right, J̃k = {k}, and the fine cover thus is Jk := {φk}.

Example 1.5. If I is the commutative square diagram

4
d //

c

��

3

b
��

2 a
// 1

(1.6)

then J̃k contains only k, while J2 = {a : 2 → 1}, J3 = {b : 3 → 1}, and J4 contains both c : 4 → 2 and d : 4 → 3 (since
I3 contains both 2 and 3).

Remark 1.7. As noted in the introduction, a group (or monoid) Gmay be thought of as a category with a single object. If we
start with a directed indexing category I ′, and for i ∈ I ′, we add maps g : i→ i for each g ∈ G for some group G = Gi (with
suitable commutation relations with the maps of I ′), we obtain a small category I (no longer directed) whose diagrams
describe directed systems of group actions. Clearly, any orderable cover J′ of I ′ induces an orderable cover J of I .

Example 1.8. Let I ′ consist of two parallel arrows φ1, φ−1 : i→ j, Gi = Z/2, and Gj = 0. Then the indexing category I has
a single new non-identity map f : i→ i and φk ◦ f = φ−k (k = ±1). Compare [14].
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1.9. Model categories

Now let C be a simplicial model category (cf. [35, II, Section 1]), and let C I denote the functor category of I-diagrams in
C. There are (at least) two relevant simplicial model category structures on C I :
(a) For general I and cofibrantly generatedC, wehave the diagrammodel category structure, inwhich theweak equivalences
and fibrations are defined objectwise, and the cofibrations are generated (under retracts, pushouts, and transfinite
compositions) by the free maps (free on a generating cofibration at some i ∈ I) — cf. [25, Theorem 11.6.1].

(b) If I is a directed indexing category as above, it is in particular a (one-sided) Reedy category (cf. [25, Section 15.1.1]). Thus
C I has a Reedy model category structure, in which the weak equivalences are defined objectwise, the cofibrations are
defined by attaching a suitable latching object, and the fibrations are defined by requiring that the structure maps to the
matching objects are all fibrations (cf. [25, Section 15.3]).

Remark 1.10. In the cases where I is a Reedy category and C is cofibrantly generated, the identity Id : C → C is a strong
Quillen functor (actually a Quillen equivalence) between the two model category structures (see [25, Theorem 15.6.4]),
considered as a right adjoint from the Reedy model structure to the diagram model structure. As a consequence, every
Reedy fibration is an objectwise fibration (cf. [25, Proposition 15.3.11]), and conversely, every cofibration in the diagram
model category is a Reedy cofibration. In both cases we use the same simplicial mapping space mapCI (X, Y ), (sometimes
denoted simply by map (X, Y )), with

mapCI (X, Y )n := HomCI (X ×∆[n], Y ). (1.11)

1.12. Diagrams over Z

For a fixed ground diagram Z : I → C, the comma category C I/Z consists of diagrams X : I → C over Z — that is, for
each i ∈ I we have maps pi : Xi → Zi, natural in I . Once again C I/Z has the two model category structures described above.
The simplicial mapping space mapCI/Z (X, Y ), defined as in (1.11), will usually be denoted simply by mapZ (X, Y ). We may
assume that Z is Reedy fibrant, so in particular (objectwise) fibrant.

1.13. Sketchable categories

Most of our results are valid for quite general simplicial model categories C. However, as noted in the introduction, we
shall be mainly interested in the case where C = sA is the category of simplicial objects over some FP-sketchable category
A (essentially: a category of (possibly graded) universal algebras — cf. [1, Section 1]). Note that any such C is cofibrantly
generated — in fact, a resolution model category (see [9, Section 3]). Such anA will be called G-sketchable if it is equipped
with a faithful forgetful functor to a category of graded groups (compare [10, Section 4.1]). The important property for our
purposes is that a map f : X → Y in C is a fibration if and only if it is an epimorphism onto the basepoint component of Y
(cf. [35, II, Section 3, Prop. 1]).
If we let A = Gp, we obtain the homotopy category of pointed connected topological spaces (see [24, V, Section 6]), so

our assumptions cover all the topological applications mentioned in the introduction.
In this context we may need to consider diagrams over a fixed ground diagram Z: following [36, Section 2] and [4,

Section 3], for (diagrams of simplicial objects in) a G-sketchable category A, one may identify Z-modules with abelian
group objects over Z . Thus we may be forced to work in C I/Z if we want to study cohomology with twisted coefficients.

1.14. Diagram completion

Any inclusion of categories J ↪→ I induces a forgetful truncation functor τ = τ IJ : C
I
→ C J , and this has a right adjoint

ξ = ξ IJ : C J → C I , which assigns to a diagram Y : J → C the diagram ξY : I → C with ξY (i) := limi/J Y for each
i ∈ I (where i/J is the obvious subcategory of the under category i/I). Note that ξY (j) = Yj for j ∈ J . Also, if J ⊆ J ′ ⊆ I then
ξ
J ′
J = τ

I
J ′ ◦ ξ

I
J , ξ

I
J = ξ

I
J ′ ◦ ξ

J ′
J , and τ

I
J = τ

J ′
J ◦ τ

I
J ′ , so we shall often omit the superscripts from these functors, with the second

category understood from the context.
The resulting monad σJ := ξJ ◦ τJ : C I → C I is called the completion at J , and we denote the augmentation of the

adjunction by ωJ : Y → σJY .
Moreover, given a fixed Z ∈ C I , the truncation functor τ̂J : C I/Z → C J/τZ also has a right adjoint ξ̂J : C J/τZ →

C I/Z , with the limit ξ̂JY (i) := limi/J Y taken over τJZ (that is, the diagram whose limit we take consists of Y |i/J mapping to
τJZ , where the latter includes also Zi). Thus the completion at J in C I/Z is:

σ̂JY (j) = σJY (j)×σJ Z(j) Zj, (1.15)

where the structuremap σJq : σJY → σJZ is induced by the functoriality of limits. Once again, therewill be an augmentation
ω̂J : Y → σ̂JY .
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Example 1.16. If I = [n] is linear (Example 1.4) and J = [k] is an initial (right) segment, then for any tower Y : [n] → C we
have:

σJY (i) =
{
Yi if i ≤ k
Yk if i ≥ k.

Example 1.17. If I is the commutative square of Example 1.5, then σI3Y is the pullback diagram

Y2 ×Y1 Y3 //

��

Y3

Y (b)

��
Y2 Y (a)

// Y1,

(1.18)

while σ̂I3Y (3) is the further pullback

σ̂I3Y (3) //

��

Y2 ×Y1 Y3

��
Z4 // Z2 ×Z1 Z3.

(1.19)

Example 1.20. If I = ∆′ ⊆ ∆op is the indexing category for restricted simplicial objects Y (without degeneracies), and J is
its truncation to dimensions< n, then σJY (n) = MnY is the classical matching object of [12, X, Section 4.5].

1.21. Maps of diagrams

Given a fixed Reedy fibrant ground diagram Z : I → C, consider the simplicial mapping space mapZ (X, Y ) as in
Section 1.12 for X, Y ∈ C I/Z , where X is cofibrant and Y is fibrant.
In the cases of interest to us, Y will be an abelian group object in C I/Z , so the homotopy groups of mapZ (X, Y ) are the

cohomology groups of X with coefficients in Y (see [9, Section 5] for further details). In order to build our restriction tower,
we need an appropriate orderable cover J of I (Definition 1.1), yielding a filtration

I ⊇ · · · ⊇ In ⊇ In−1 ⊇ · · · .

Let Mn := mapCIn /τnZ (τnX, τnZ) for each n ∈ N , where τnX is the restriction of a diagram X ∈ C I to In. The inclusions
In−1 ↪→ In and In ↪→ I induce maps ρn : Mn → Mn−1 and ρ̂n : M → Mn which fit into a tower:

mapZ (X, Y )

ρ̂n+1
&&MMMMMMMMMM

ρ̂n

$$
ρ̂n−1

##
. . . // Mn+1

ρn+1 // Mn
ρn // Mn−1

ρn−1 // . . .M0

(1.22)

with

mapZ (X, Y ) ∼= limn
Mn. (1.23)

2. A tower of fibrations

To determine when (1.22) is a tower of fibrations (so that (1.23) is a homotopy limit), we need the following:

Definition 2.1. Let I be an indexing category, C a model category, and Z ∈ C I . Given an orderable cover J = {Jν}ν∈N of
I with associated filtration (In) = (J[n])n∈Z, let τk : C I → C Ik and τmk : C Im → C Ik denote the truncation functors, with
adjoints indexed accordingly. A diagram Y ∈ C I/Z is called J-fibrant if for each n ∈ Z, the augmentation ω̂n+1 : τn+1Y →
σ̂ n+1n Y = σ̂ In+1In Y is a fibration in C In+1/σ n+1n Z = C In+1/σ

In+1
In Z .

Remark 2.2. Because we assumed the degree is strictly decreasing, In+1 and I are the same so far as the augmentation
map ω̂n+1 is concerned. Thus if we assume for simplicity that I = In+1, then ω̂n+1 may be identified with its adjoint map
Y → σ̂nY in C In+1/σ n+1n Z = C I/σnZ .
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Proposition 2.3. Assume J = {Jν}ν∈N is an orderable cover of I, X ∈ C I/Z is cofibrant, and Y ∈ C I/Z is a J-fibrant abelian
group object. Then

Fn+1 → Mn+1
ρn+1
−−→ Mn

is a fibration sequence of simplicial abelian groups for each n ∈ Z, and the fiber Fn+1 ismapCJn+1 /Z |Jn+1
(X |Jn+1 , Fib(ωn+1)). Here

Fib(ωn+1) denotes the fiber (in C In+1/σ n+1n Z) of the augmentation ωn+1 : τn+1Y → σ n+1n Y = σ In+1In Y .

Proof. Assume for simplicity that I = In+1(= J[n + 1]), with τn = τIn : C I → C In and σn(= σJ[n]) the completion at
In(= J[n]) (as in Remark 2.2). Then there is a natural adjunction isomorphism:

mapCIn /τnZ (τnX, τnY ) = mapCI/σnZ (X, σ̂nY ),

underwhichρn is identifiedwith themap induced inmapσnZ (X,−) by ω̂n+1 : Y → σ̂nY . This ω̂n+1 is a fibration inC I/σnZ by
Definition 2.1, and thus induces a fibration of mapping spaces, with fiber mapσnZ (X, Fib(ω̂n+1)).
Thus, it suffices to identify the fiber instead as map

CJn+1 /Z |Jn+1
(X |Jn+1 , Fib(ωn+1)). However, since ω̂n+1(i) : Yi →

σ̂nY (i) is the identity for i ∈ In, the diagram Fib(ω̂n+1) : I → C is trivial (over Z) when restricted to In, and since J was
orderable, any map f : X = τn+1X → Fib(ω̂n+1) is determined uniquely by its restriction to Jn+1 — in fact, to the discrete
subcategory J̃n+1 := Jn+1 \ In.
The fact that Y is an abelian group object in C I/Z implies, by definition, that for each i ∈ I there is a commuting triangle:

Zi

=

��

si // Yi

qi���������

Zi ,

(2.4)

natural in I . Thus Fib(ω̂n+1)(j) for j ∈ Jn+1 is by definition the pullback of:

Zj

��
σnsj◦ωZ ''PPPPPPPPPPPPPP

Id

++VVVVVVVVVVVVVVVVVVVVVVVVVVVV

Yj
ω̂

(ω,qj)
// σ̂nYj = σnY (j) ×σnZ(j) Zj,

(2.5)

and we readily check that this is the same as Fib(ωn+1)(j), which is the pullback of:

σnZ(j)

σns(j)

��
Yj

ωY // σnY (j).

� (2.6)

2.7. Directed indexing diagrams

We shall now see how Proposition 2.3 applies when J is an orderable cover of a directed indexing category I (see
Section 1.3).
Recall that in the Reedy model category structure (cf. Section 1.9) on C I , a map f : X → Y is a fibration if and only if

Xj
(f ,p)
−−→ Yj×σnY (j) σnX(j) (2.8)

is a fibration in C for every j ∈ Obj I with deg(j) = n + 1, where σn = σIn is the completion at In. In C I/Z we must replace
σn by σ̂n (Section 1.14), of course.

Lemma 2.9. If I is a directed indexing category, any Reedy fibrant Y ∈ C I/Z is J-fibrant for the fine cover of I (Example 1.4).

Proof. Once again we assume I = In+1 (Remark 2.2), so we must show that ω̂n+1 : Y → σ̂nY is a fibration in C I/σnZ . Since
ω̂n+1 is the identity for j ∈ In, consider j ∈ J̃n+1 := In+1 \ In. Since Y is Reedy fibrant in C I/Z , q : Y → Z is a Reedy fibration
in C I , and since J is fine, this means that

Yj
(ωn+1,qj)
−−−−−→ σnY (j)×σnZ(j) Zj = σ̂nY (j) = σ̂nY (j)×σ̂nY (j) σ̂nY (j)

is a fibration in C —which shows that (2.8) indeed holds for each j ∈ I . �
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Proposition 2.10. Let C = sA for some G-sketchable categoryA (Section 1.13), and let J = {Jν}ν∈N be an orderable cover of
a directed indexing category I, with Z ∈ C I Reedy fibrant. Then any abelian group object Y ∈ C I/Z is weakly equivalent to a
fibrant (objectwise) abelian group object which is J-fibrant.

Proof. Because I is directed, we may construct the desired J-fibrant replacement Ȳ – an abelian group object in C I/Z – by
induction on the degree of j ∈ I . Moreover, we assumed that Z is Reedy fibrant, so in particular objectwise fibrant (see
Remark 1.10). Note that any abelian group object p : V → Z inC I/Z is (objectwise) fibrant, since p has a section by (2.4) and
Section 1.13; hence p has the right lifting property with respect to any acyclic cofibration.
We assume by induction on deg(j) = n + 1 that both ω̄n+1(j) : Ȳj → σ̂nȲ (j) and q̄j : Ȳj → Zj are fibrations in C. Since

for each j, σnY (j) is defined as a limit, and an abelian group object structure on any V is a map V ×Z V → V (over Z), by
functoriality (and commutativity) of limits we see that σnq : σnȲ → σnZ is an abelian group object, too — so σnq is an
objectwise fibration in C I . But

σ̂nȲj
πZ //

��

Zj

��
σnȲ (j)

σnq // σnZ(j)

is a pullback square, by definition, so πZ is a fibration in C by base change.
In the induction step, for each j of degree n+ 1, we factor:

¯̂ωj : Ȳj → σ̂nȲ (j) = σnȲ (j)×σnZ(j) Zj

as

Ȳj ↪→ Ȳ ′j
ω̄′j
−→ σ̂ Ȳ (j)

(an acyclic cofibration followed by a fibration), and replace Ȳj by Ȳ ′j . Both ω̄
′

j and q̄j := πZ ◦ ω̄
′

j : Ȳj → Zj are then fibrations
in C, as required. �

Remark 2.11. This actually works for some orderable covers of indexing categories which are not directed. For example, if
we use the fine cover J for an indexing category I constructed as in Remark 1.7, we can still change any Y into a J-fibrant
one by induction on the degree in I ′, since we have not introduced any new objects

Example 2.12. In Example 1.8, for any Y ∈ C I , σY is given by:

σY (j) = Yi × Yi −→−→ Yi = σY (i),

with horizontal maps Y (φ±1) the two projections, and f : σY (j) → σY (j) the switch map. To make this J-fibrant for the
obvious (fine) cover, we just have to choose Ȳ so that ω̂ : Ȳj → σ Ȳ (j) is a Z/2-equivariant fibration.

2.13. The dual construction

The approach described above is clearly best suited to directed indexing categories I where the degree function is non-
negative. In the inverse case, the dual approach may be preferable:
Given a small indexing category I and a subcategory J , the truncation functor τ = τ IJ : C

I
→ C J also has a left adjoint

ζ = ζ IJ : C J → C I , which assigns to a diagram X : J → C the diagram ζX : I → C with ζX(i) := colimJ/iX for each
i ∈ I . We denote the resulting comonad on C I by θJ = ζJ ◦ τJ . Note that if X ∈ C I/Z , then θJX comes equipped with a map
to θJZ ∈ C I/Z , so we do not need the analogue of (1.15).
We then say that a diagram X ∈ C I/Z is J-cofibrant for an orderable cover J if for each n ∈ Z, the coaugmentation

ηn+1 : θ
n+1
n X = θ In+1In X → τn+1X is a cofibration in C In+1/τn+1Z . We then have:

Proposition 2.14. Assume J = {Jν}ν∈N is an orderable cover of I, X ∈ C I/Z is J-cofibrant, and Y ∈ C I/Z is a fibrant abelian
group object. Then

Fn+1 → map
CIn+1 /τn+1Z

(τn+1X, τn+1Y )
ρn+1
−−→ mapCIn /τnZ (τnX, τnY )

is a fibration sequence of simplicial abelian groups for each n ∈ Z, and the fiber Fn+1 ismapCJn+1 /Z |Jn+1
(Cof(ηn+1), Y |Jn+1).

Here Cof(ηn+1) denotes the cofiber (over τn+1Z) of the coaugmentation ηn+1 : θn+1n X → τn+1X.

Proof. Dual to that of Proposition 2.3. �
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Note that if I is a directed indexing category, we need no special assumptions on X, Y ∈ C I/Z (or C) in order for the dual
of Proposition 2.10 to hold, since all colimits are over Z to begin with. Thus, we can again build J-cofibrant replacements by
induction on degree to yield the following:

Proposition 2.15. Let C = sA for some G-sketchable category A, and let J = {Jν}ν∈N be an orderable cover of a directed
indexing category I. Then any X ∈ C I/Z is weakly equivalent to a cofibrant object (with respect to the model structure of
Section 1.9(a)), which is J-cofibrant.

3. The two truncation spectral sequences

As noted above, for a suitable model category C and any indexing category I , given Z ∈ C I and X, Y ∈ C I/Z with
X cofibrant and Y a fibrant abelian group object, the homotopy groups of mapZ (X, Y ) are the cohomology groups
H∗(X/Z, Y ) (suitably indexed). Thus if J is some orderable cover of I such that Y is J-fibrant, the homotopy spectral
sequence for the tower of fibrations (cf. [24, VII, Section 6]) of (fibrant) simplicial sets (1.22) yields a spectral sequence
with E2k,n = πk+n Fib(ρn) =⇒ πk+nmapZ (X, Y ). To identify the E2-term, we need the following:

Definition 3.1. Consider an orderable cover J = {I ′, J} of a diagram I (where we have in mind I = In+1, I ′ = In, and
J = Jn+1). If Y is an abelian group object in C I/Z which is J-fibrant, then we have a fibration sequence

Fib(ω̂)→ Y
ω̂
−→ σ̂Y ,

of abelian group objects over Z , where σ̂ is the completion at I ′.
We define the relative cohomology of the pair (I, J) to be the total left derived functor of HomCJ /Z |J (−, Fib(ω̂)), (into

simplicial abelian groups), denoted by H(X/Z; ω̂). In particular, the ith relative cohomology group for (I, J) is H i(X/Z; ω̂) :=
πiH(X/Z; ω̂).

Remark 3.2. Note that in most applications the abelian group object Y ∈ C I/Z will be an nth dimensional Eilenberg–Mac
Lane object (over Z), in which case it is customary to re-index the relative cohomology groups so that Hn(X/Z; ω̂) :=
π0H(X/Z; ω̂).
Observe, however, that our setup allows Y to consist of Eilenberg–Mac Lane objects of varying dimensions, with themaps

Y (f ) representing cohomology operations. In this general setting, no canonical re-indexing exists.

Fact 3.3. Given I, J, I ′ and Y , Z as above, for any (cofibrant) X ∈ C I/Z there is a long exact sequence in cohomology

→H i((X/Z)|J; ω̂)→ H i(X/Z; Y )→ H i((X/Z)|I ′; Y |I ′)→ H i+1((X/Z)|J; ω̂)→ (3.4)

Theorem 3.5. For any simplicial model category C, directed indexing category I, and diagrams Z : I → C, X ∈ C I/Z, abelian
group object Y ∈ C I/Z, and left-orderable cover J of I there is a first quadrant spectral sequence with:

E2s,t = H
t+s((X/Z)|Jt ; ω̂) =⇒ H

s+t(X/Z; Y )

and d2 : E2s,t → E2s−2,t+1.

Proof. Replace Z by a weakly equivalent Reedy fibrant diagram in C I , then X by a weakly equivalent cofibrant
object in C I/Z , and then use Proposition 2.10 to replace Y by a weakly equivalent J-fibrant abelian group object in
C I/Z . Proposition 2.3 then implies that (1.22) is a tower of fibrations, and the associated homotopy spectral sequence has the
specified relative cohomology groups as the homotopy groups of the fibers (which are the E2-term of the spectral sequence,
in our indexing). �

The spectral sequence need not converge, in general, without some cohomological connectivity assumptions on the
subdiagrams (unless the cover J is finite, of course).

Remark 3.6. If J is the fine cover, the E2-term simplifies to:

E2s,t =
∏
j∈̃Jt

H t+s(Xj/Zj, φ̂j),

where φ̂j : Yj → limφ:j→i Yi is the structure map.

Using the approach of Section 2.13, we also obtain a dual spectral sequence:
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Theorem 3.7. For C, I , Z , X , and Y as in Theorem 3.5, and J right-orderable, there is a first quadrant spectral sequence with:

E2s,t = H
s+t(ηt; Y ) =⇒ Hs+t(X/Z; Y ).

Remark 3.8. Note that H∗(ηt; Y ) := H∗(Cof(ηt)/Z |Jt ; Y ) is just the usual cohomology of the map of diagrams ηt : θ tt−1X →
τsX (see Section 2.13). This fits into the usual long exact sequence of a pair, dual to that of (3.4).
When X is cofibrant, Z and Y are constant, and colimIX = hocolimIX – for example, when I is a partially ordered

set, so colimIX =
⋃
i∈I Xi – then H

∗(X/Z; Y ) = H∗(colimIX/Z; Y ), and the dual spectral sequence is simply the usual
Mayer–Vietoris spectral sequence for the cover X of colimIX (cf. [38, Section 5], and compare [12, XII, 4.5], [40, Section 10],
and [39]).

Example 3.9. Let I be the commuting square as in Example 1.5:
Given a diagram of abelian group objects Y : I → C, the successive fibers Fib(ωn+1) (see Proposition 2.3) are:

Ker(Y (c)) ∩ Ker(Y (d)) //

��

0

��
0 // 0

for ω4 : Y = τ4Y → σ3Y ;

Ker(Y (b))

��
0 // 0

for ω3 : τ3Y → σ2Y ;

Ker(Y (a)) // 0

for ω2 : τ2Y → σ1Y ; and the single object Y1 for ω1 : τ1Y → σ0Y .
Thus the E2-term for the spectral sequence consists of only four non-trivial lines:

E2s,t ∼=


Hs+4(X4;Ker(Y (c)) ∩ Ker(Y (d))) if t = 4;
Hs+3(X3;Ker(Y (b))) if t = 3;
Hs+2(X2;Ker(Y (a))) if t = 2;
Hs+1(X1; Y1) if t = 1;
0 otherwise.

(3.10)

If we had used the fine cover, by Remark 3.6 we would instead have:

E2s,t ∼=


Hs+3(X4;Ker(Y (c)) ∩ Ker(Y (d))) if t = 3;
Hs+2(X3;Ker(Y (a)))⊕ Hs+2(X2;Ker(Y (b))) if t = 2;
Hs+1(X1; Y1) if t = 1;
0 otherwise.

Remark 3.11. The square can be thought of as a single morphism in the category of arrows, so that we could analyze it
as in [9, Section 4], where H∗(X; Y ) is shown to fit into a long exact sequence with ordinary cohomology groups in the
remaining two slots. See Section 7.11.

4. An approach through local cohomology

The towers of Section 2 were constructed by covering a given indexing category I by truncated subcategories, obtained
by omitting successive initial (or terminal) objects. We now present an alternative approach, using subcategories obtained
by omitting internal objects of I . As we shall see, the resulting towers differ in nature from those considered above.

Definition 4.1. An indexing category I will be called strongly directed if:

i. It is directed in the sense of having no maps f : i→ i but the identity.
ii. It has a non-empty weakly initial subcategory (necessarily discrete) consisting of all objects with no incoming maps, as
well as a non-empty weakly final subcategory consisting of all objects with no outgoing maps.
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iii. It is locally finite (that is, all Hom-sets are finite).
iv. I (that is, its underlying undirected graph) is connected.

Definition 4.2. We refer to (C, I, Z, X, Y ) as admissible if:
(a) C is a simplicial model category;
(b) I is strongly directed;
(c) Z ∈ C I is Reedy fibrant (hence objectwise fibrant);
(d) X, Y ∈ C I/Z with X cofibrant and Y a fibrant abelian group object.

Definition 4.3. For any categories C and I and diagrams Z ∈ C I and X, Y ∈ C I/Z , the product of simplicial sets

DCI/Z (X, Y ) :=
∏
i∈I

mapC/Zi(Xi, Yi)

will be called the space of discrete transformations from X to Y over Z .
We shall generally abbreviate this to DZ (X, Y ). Note that these are maps of functors only for the discrete indexing

category Iδ , with no non-identity maps.

4.4. The primary tower

In the spirit of Section 1, for any finite indexing category I we construct a finite sequence of full subcategories

I1 ⊂ I2 ⊂ · · · In = I (4.5)

of I , starting with I1, whose objects are the weakly initial and final sets.
As before, this can be done in several ways (ultimately yielding variant spectral sequences). In any case, we can refine

(4.5) so that for each k, Ik−1 is obtained from Ik by omitting a single internal object ik (where internalmeans that it is neither
weakly initial nor weakly final).
If (C, I, Z, X, Y ) is admissible, the inclusions of categories ιk−1 : Ik−1 ↪→ Ik induce a finite tower of simplicial abelian

groups:

mapCIn /Z (X, Y )→ · · · → mapCIk /Z (X, Y )
ι∗k−1
−−→ map

CIk−1 /Z (X, Y )→ · · · , (4.6)

analogous to (1.22).

4.7. The auxiliary fibration

Unfortunately, (4.6) is not, in general, a tower of fibrations, so we cannot use it directly to obtain a useable spectral
sequence for the cohomology of a diagram. To do so, we must replace it (up to homotopy) by a tower of fibrations,
with mapZ (X, Y ) as its homotopy inverse limit. The resulting spectral sequence (abutting to the homotopy groups of
mapZ (X, Y )), will have the homotopy groups of the homotopy fibers of the maps ι∗k as its E

2-term. In fact, instead of
constructing the replacement directly, we make use of the following observation:
For any indexing category I and diagrams X, Y : I → C, the set NatCI (X, Y ) of diagram maps (natural transformations)

from X to Y fits into an equalizer diagram:

NatCI (X, Y ) ↪→
∏
i∈I

HomC(Xi, Yi)−→−→
∏
i,j∈I

∏
η∈HomI (i,j)

HomC(Xi, Yj). (4.8)

Here the two parallel arrows map to each factor indexed by η : i→ j in I by the appropriate projection, followed by either
Y (η)∗ : HomC(Xi, Yi)→ HomC(Xi, Yj), or X(η)∗ : HomC(Xj, Yj)→ HomC(Xi, Yj), respectively.
In the casewhere Y is an abelian group object inC I (orC I/Z), this describes NatCI (X, Y ) as the kernel of the difference ξ of

the two parallel arrows. By considering mapping spaces rather than Hom-sets, we obtain a left-exact sequence of simplicial
abelian groups:

0→ map (X, Y )→ D(X, Y )
ξ
−→

∏
i,j∈I

∏
η:i→j

map (Xi, Yj), (4.9)

and similarly for mapZ (X, Y ).
However, (4.9) is not generally a fibration sequence, except when the underlying graph of I is a tree (the proof of [9,

Prop. 4.23], where I consists of a singlemap, generalizes to this case). Nevertheless, for strongly directed indexing categories
I (Definition 4.1), we can define a subspace LI (X, Y ) (see Definition 5.5) inside the right-hand space of (4.9), such that ξ
factors through a fibration Ψ (see Lemma 5.9), and:

0→ mapZ (X, Y )→ DZ (X, Y )
Ψ
−→ LI (X, Y ) (4.10)

is thus a fibration sequence.
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For such an I we obtain an auxiliary tower:

LIn (X, Y )
pn−1
−−→ LIn−1 (X, Y )→ · · · → LI2 (X, Y )

p1
−→ LI1 (X, Y ) (4.11)

(see Notation 5.10). We shall show that the maps pk are fibrations (see Proposition 6.2), with a fiber which we identify as
Fk := H

Ik
c (X/Z, Y ) (cf. Definition 7.4).

4.12. The auxiliary fibers

Since all of these constructions will be natural, for each k the inclusion of categories ik−1 : Ik−1 ↪→ Ik will induce a
commuting square of fibrations:

DCIk /Z (X, Y )
Ψk //

πk−1

��

LIk (X, Y )

pk−1

��
D

CIk−1 /Z (X, Y )
Ψk−1 // LIk−1 (X, Y ) ,

where the left vertical map πk−1 is the projection onto the appropriate factors. Thus wewill have a homotopy-commutative
diagram:

Fib(i∗k−1) //

��

∏
i∈Ik\Ik−1

mapC/Zi(Xi, Yi) //

��

H
Ik
c (X/Z, Y )

��
mapCIk /Z (X, Y ) //

i∗k−1
��

DCIk /Z (X, Y )
Ψk //

πk−1

��

LIk (X, Y )

pk−1

��
map

CIk−1 /Z (X, Y ) // D
CIk−1 /Z (X, Y )

Ψk−1 // LIk−1 (X, Y )

(4.13)

in which all rows and columns are fibration sequences up to homotopy.
Since the homotopy groups of ΠimapC/Zi(Xi, Yi) are a direct product of cohomology groups of the individual spaces in

the diagram X , the top row of (4.13) allows us to identify the successive homotopy fibers of maps of the primary tower
(4.6) in terms of those of the auxiliary tower (4.11). Taking k = n, we see also that mapZ (X, Y ) is in fact the homotopy limit
of the primary tower.

4.14. A modified primary tower

Using standard methods, we can change (4.6) into a tower with the same homotopy limit, but simpler successive fibers:
For 1 ≤ k ≤ nwe define qk : DZ (X, Y )→ LIk (X, Y ) to be the composite fibration:

DZ (X, Y )
ΨI
−→ LI (X, Y )

pk◦···◦pn−1
−−−−−−→ LIk (X, Y ) ,

and denote the fiber of qk by E I
CIk /Z

(X, Y ).

The induced maps rk : E
Ik
Z (X, Y )→ E

Ik−1
Z (X, Y ) then fit into a tower:

E
In
Z (X, Y )

rn−1
−−→ · · ·

r2
−→ E

I2
Z (X, Y )

r1
−→ E

I1
Z (X, Y ). (4.15)

As in Section 4.12, we see that the homotopy fiber of rk is the loop space of the fiber Fk := H
Ik
c (X/Z, Y ) of pk, while the

homotopy limit of (4.15) is E IZ (X, Y ) = mapZ (X, Y ). Therefore, if we take the homotopy spectral sequence for the tower
(4.15), rather than that for (4.6), we get the same abutment, and a closely related E2-term.

Definition 4.16. For (C, I, Z, X, Y ) as above and J a subcategory of I , we denote byE
J
CI/Z (X, Y ) = E

J
Z (X, Y ) the sub-simplicial

set of DZ (X, Y ) consisting of transformations which are natural when restricted to J-diagrams. In other words, these are
elements σ ofDZ (X, Y )which make

Xi

σi

��

X(f ) // Xj

σj

��
Yi Y (f )

// Yj

(4.17)

commute, for any morphism f : i→ j in J .
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For example, E I1Z (X, Y ), consists of those transformations which are natural only with respect to morphisms of maximal
length. On the other hand, E IZ (X, Y ) is simply mapZ (X, Y ).
Note that any inclusion of subcategories J ′ → J of I induces an injection of simplicial sets r JJ ′ : E

J
Z (X, Y )→ E

J ′
Z (X, Y ), since

any transformation natural over J must be natural over the subcategory J ′.

Lemma 4.18. For (Ik)nk=1 as in (4.5), we can identify E
Ik
Z (X, Y ) of Section 4.14 with E

Ik
CI/Z (X, Y ), and rk : E

Ik
Z (X, Y ) →

E
Ik−1
Z (X, Y ) with r IkIk−1 .

Proof. Follows from Definition 4.16. �

5. The auxiliary tower

Suppose (C, I, Z, X, Y ) is admissible. In order to construct the auxiliary tower (4.11), we need a number of definitions:

Definition 5.1. Assuming (C, I, Z, X, Y ) is admissible:
(a) For any composable sequence f• of k non-identitymorphisms in I (i.e., a k-simplex of the reduced nerve of I ,N (I), where
identities are excluded) its diagonalmapping space is

M(f•) := mapZt(fk)(Xs(f1), Yt(fk)).

In particular, for f : a→ b in I we haveM(f ) := mapZb(Xa, Yb).
(b) For each k ≥ 1, let DiagkZ (X, Y ) :=

∏
f•∈N (I)k

M(f•). In particular, we denote Diag1Z (X, Y ) =
∏
f∈I M(f ) byDiagZ (X, Y ).

(c) Any map into the product DiagkZ (X, Y ) is defined by specifying its projection onto each factor M(f•), indexed by
f• ∈ N (I)k.
In particular, we have two maps of interest Diagk−1Z (X, Y )→ DiagkZ (X, Y ):

(i) X∗, for which the f•-component is the composite

Diagk−1Z (X, Y )
proj
−−→ M(f2, . . . , fk)

X(f1)∗
−−−→ M(f•).

(ii) Y∗, for which the f•-component is the composite

Diagk−1Z (X, Y )
proj
−−→ M(f1, . . . , fk−1)

Y (fk)∗
−−−→ M(f•).

(d) By iterating the mapsΦ1 := Y∗ + X∗ : Diagk−1Z (X, Y )→ DiagkZ (X, Y ) for various k > 1 we obtain maps:

Φ j : DiagkZ (X, Y )→ Diagk+jZ (X, Y )

for each j ≥ 1. SettingΦ0 := Id : Diag1Z (X, Y )→ Diag1Z (X, Y ), we may combine these to define:

Φ : DiagZ (X, Y )→
n∏
k=1

DiagkZ (X, Y ) .

For any f• ∈ N (I)k, we writeΦf• forΦ composed with the projection ontoM(f•).
(e) For any f• = (f1, . . . , , fk) ∈ N (I)k, let c(f•) := fk ◦ fk−1 ◦ · · · ◦ f1 denote the composition in I . We then have a map

κf• :
∏n
k=1 Diag

k
Z (X, Y )→ M(c(f•)), which is just the projection ontoM(f•)

=
−→ M(c(f•)).

Remark 5.2. If (g, f ) ∈ N (I)2, is a composable pair in I , then by the definition ofΦ we have

Φ(g,f ) = Y (f ) ◦ Φg + Φf ◦ X(g).

More generally, if h• = (g•, f•) ∈ N (I)k+j is the concatenation of g• ∈ N (I)k and f• ∈ N (I)j, then:

Φ(g•,f•) = Y (c(f•))∗Φg• + X(c(g•))
∗Φf• . (5.3)

Note also that

(Y∗ + X∗) ◦ (Y∗ + X∗) = Y∗Y∗ + Y∗X∗ + X∗X∗ : DiagkZ (X, Y )→ Diagk+2Z (X, Y )

and so inductively:

Φ j = (Y∗ + X∗)j =
j∑
i=0

(Y∗)j−i(X∗)i : DiagkZ (X, Y )→ Diagk+jZ (X, Y ) . (5.4)

Definition 5.5. Let KI denote the indexing category with
• objects: 0, 1, and Arr(I) := N (I)1,
• morphisms: one arrow φ : 0→ 1, and an arrow kf• : 1→ c(f•) ∈ Arr(I) for each f• ∈ N (I).
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If (C, I, Z, X, Y ) is admissible, define a diagram of simplicial abelian groups VI : KI → sA by setting VI(0) =
DiagZ (X, Y ), VI(1) =

∏n
k=1 Diag

k
Z (X, Y ), and VI(f ) = M(f ), with VI(φ) = Φ and VI(kf•) = κf• . Then set LI (X, Y ) :=

limKI VI .
This limit can be described more concretely as follows: write Indec(I) for the collection of indecomposable maps in I ,

and letLI (X, Y ) denote the subspace of
∏
f∈Indec(I) M(f ) consisting of tuples ϕ• satisfying

k∑
i=0

Y (fk ◦ · · · ◦ fi+1)ϕfiX(fi−1 ◦ · · · ◦ f1) =
l∑
i=0

Y (gl ◦ · · · ◦ gi+1)ϕgiX(gi−1 ◦ · · · ◦ g1) (5.6)

whenever c(f•) = c(g•).

Lemma 5.7. The simplicial abelian group LI (X, Y ) is isomorphic toLI (X, Y ).

Proof. The limit condition for ϕ ∈ LI (X, Y ) implies that the value of ϕf for any decomposable f is uniquely determined by
the values of ϕfi for fi indecomposable, by the recursive formula (5.3). �

Remark 5.8. As a consequence of the previous lemma, for (full) subcategories J ⊂ I we have natural inclusion maps
iJ : LJ (X, Y )→

∏
f∈Indec(J)M(f ).

We now investigate the properties of LI (X, Y ) and its associated fibrations. First, note that there are two maps X∗, Y∗ :
DZ (X, Y ) → DiagZ (X, Y ), which project to precomposition and postcomposition respectively on appropriate factors and
we show:

Lemma 5.9. The difference map ξ := Y∗ − X∗ : DZ (X, Y )→ DiagZ (X, Y ) factors through a map Ψ : DZ (X, Y )→ LI (X, Y )
with kernelmapZ (X, Y ).

Proof. Note that the sum (5.4), applied to an element in the image of the difference map

Y∗ − X∗ : DZ (X, Y )→ DiagZ (X, Y ) ,

is telescopic, so we are left with: (Y∗)k − (X∗)k. Since X and Y are in C I , for any f• ∈ N (I)k the composite:

DZ (X, Y )→ DiagZ (X, Y )→
n∏
k=1

DiagkZ (X, Y )
κf•
−→ M(c(f•))

sends any σ to Y (f )σs(f )−σt(f )X(f ). As a consequence, we get an identical value for any g• ∈ N (I)j with c(f•) = c(g•). Thus,
the universal property of the limit implies the difference map factors through the limit LI (X, Y ).
To identify the kernel of Ψ , we instead consider the difference map:

Y∗ − X∗ : DZ (X, Y )→ DiagZ (X, Y ) .

Clearly Ψ (σ ) = 0 if and only if Y (f )σs(f ) − σt(f )X(f ) = 0, for every morphism f in I — that is, precisely when σ is a natural
transformation ofC I . Since both X and Y are diagrams over Z , and each σf is amap over Zf , σ is in that case actually a natural
transformation over Z . �

Notation 5.10. In order to describe the behavior of the L-construction with respect to the inclusion of a subcategory
ι : J → I , note that we can define two different diagrams of simplicial abelian groups indexed by KJ (Definition 5.5):
One is VJ , whose limit is LJ (X, Y ). The second, which we denote by VI,J , has VI,J(0) = DiagZ (X, Y ), VI,J(1) =∏n
k=1 Diag

k
Z (X, Y ), as for VI , (and VI,J(f ) = M(f ) for f ∈ Arr(J)). If we set LI,J (X, Y ) := limKJ VI,J , we see that there is

a canonical map τ : LI (X, Y )→ LI,J (X, Y ) (since fewer constraints are imposed in defining the second limit as a subset of∏
f∈Indec(I) M(f )).
On the other hand, we have a morphism of KJ -diagrams from ξ : VI,J → VJ , obtained by projecting the larger products

DiagkZ (X, Y ) onto Diag
k
Z |J

(
X |J , Y |J

)
for each k ≥ 1. This induces a map on the limits ξ∗ : LI,J (X, Y ) → LJ (X, Y ), and we

define the restriction map (p =)pIJ : LI (X, Y )→ LJ (X, Y ) to be pIJ := ξ∗ ◦ τ .
Finally, note that there is an obvious restrictionmap r : DCI/Z (X, Y )→ DCJ /Z (X, Y ), which is simply the projection onto

the factors indexed by Arr(J).

From the definitions it is clear that the diagram:

DCI/Z (X, Y )
ΨI //

r

��

LI (X, Y )

pIJ
��

DCJ /Z (X, Y )
ΨJ

// LJ (X, Y )

(5.11)

commutes.
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The kernel of pIJ ◦ΨI will be the same as the kernel ofΨJ ◦ r
I
J , by the commutativity of (5.11). However, by Lemma 5.9, the

kernel ofΨJ is the space of J-natural transformations. Thus the kernel of the composite pIJ ◦ΨI will be the spaceDCJ /Z (X, Y ).

Lemma 5.12. Given J ⊆ I and f ∈ Indec(J) with f = c(f•) for f• = (fk, fk−1, . . . , f1) ∈ N (I)k with fi ∈ Indec(I) (i =
1, . . . k), the following diagram commutes:

LI (X, Y )
pIJ //

iI
��

LJ (X, Y )

iJ
��∏

f∈Indec(I)

M(f )

proj

��

∏
f∈Indec(J)

M(f )

proj

��
M(f1)× · · · ×M(fk)

Φkf• // M(f )

(5.13)

where the maps iI and iJ are the inclusions of Remark 5.8.

Proof. Suppose ϕ• is an element of LI (X, Y ), while f = c(f•) is a maximal decomposition (so each fi is indecomposable).
Then ϕf lies in Diag1Z (X, Y ), so Φϕf = ϕf lands in M(f ). However, (ϕfk , . . . , ϕf1) ∈ M(fk) × · · · × M(f1) maps to∑k
i=0 Y (fk ◦ · · · ◦ fi+1)ϕfiX(fi−1 ◦ · · · ◦ f1) also in M(c(f•)) = M(f ). Thus, ϕ• ∈ LI (X, Y ) = LI (X, Y ) (see Lemma 5.7)

implies the value of ϕf for any decomposable f is uniquely determined by the values of ϕfi for fi indecomposable, using
formula (5.6). �

Note that if f is also indecomposable in I , the bottommap of (5.13) is Id : M(f )→ M(f ). The choice of decomposition of
f in I is also irrelevant, by Definition 5.5.

6. Fibrations in the auxiliary tower

As noted in Section 4.7, the auxiliary tower (4.11) was constructed with two goals in mind: to replace (4.6) by a tower
of fibrations (with the same homotopy limit), and to identify the homotopy fibers of the successive maps in (4.6). In this
section we show that the map Ψ of Lemma 5.9 is indeed a fibration, and that the auxiliary tower is a tower of fibrations.
First, we need the following:

Definition 6.1. Any strongly directed indexing category I has two filtrations, defined inductively:

(a) The filtration {Fi}ni=0 on I is defined by decomposition length from the left, so F0 consists of weakly initial objects in I
and Fn+1 consists of indecomposable maps with sources in Fn, (including their targets).

(b) The filtration {Gi}ni=0 is similarly defined by decomposition length from the right, so G0 consists of the weakly terminal
objects in I and Gn+1 consists of indecomposable maps with targets in Gn, (including their sources).

Proposition 6.2. If (C, I, Z, X, Y ) is admissible, the induced difference map:

Ψ : DZ (X, Y )→ LI (X, Y )

of Lemma 5.9 is a fibration of simplicial abelian groups.

Proof. By [35, II, Section 3, Prop. 1], it suffices to show that Ψ surjects onto the zero component of LI (X, Y ). Thus, given
0 ∼ ϕ• ∈ LI (X, Y ), we must produce an element σ• ∈ DZ (X, Y )with Ψ (σ•) = ϕ•; i.e., for every f : a→ b in I we want:

σb ◦ X(f ) = Y (f ) ◦ σa − ϕf . (6.3)

Note that since Y is an abelian group object in C I/Z , the zero map X → Y is the unique map in C I/Z that factors through
the section s : Z → Y (which exists by (2.4) and Section 1.13).
We proceed by induction on the filtration {Fi}ni=0 of I of Definition 6.1. To begin, for each c ∈ F0, we may choose

σc : Xc → Yc to be 0.
Assume by induction that we have constructed maps σc : Xc → Yc for each c ∈ Fi, satisfying (6.3) for every f in Fi, and

with each σc ∼ 0. Note that for any f : b→ c , in Fi+1 the map:

ν (f ) := Y (f ) ◦ σb − ϕf : Xb → Yc (6.4)

is well-defined (since necessarily b ∈ Fi). This is our candidate for σc ◦ X(f ), and ν (f ) ∼ −Y (f ) ◦σb ∼ 0 by the assumption
on ϕ together with the induction hypothesis (considering naturality of the section Z → Y ).
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Moreover, given any g : a→ b (necessarily in Fi), we have ϕg = Y (g) ◦ σa+ σb ◦ X(f ) by (6.3), so from ϕ• ∈ LJ (X, Y ) it
follows that:

ν (f ◦ g) = Y (f ◦ g) ◦ σa − ϕf ◦g
= Y (f ◦ g) ◦ σa − [Y (f ) ◦ ϕg + ϕf ◦ X(g)]
= Y (f ◦ g) ◦ σa − [Y (f ) ◦ (Y (g) ◦ σa − σb ◦ X(g))+ ϕf ◦ X(g)]

= ν (f ) ◦ X(g). (6.5)

Now given c ∈ Fi+1 \ Fi, set:

X̂c := colim
b∈I/c

Xb.

Since X ∈ C I is cofibrant, it is Reedy cofibrant (Remark 1.10), which implies that the canonical map εc : X̂c → Xc is a
cofibration. Moreover, (6.5) implies that the maps ν (f ) defined above induce a map ν̂c : X̂c → Yc . Since all the maps in
question are nullhomotopic by construction, the diagram:

X̂c

ν̂c ��>>>>>>>
εc // Xc

0

��
Yc

commutes up to homotopy. Hence by [9, Cor. 4.20] there is a map σ : Xc → Yc in C/Zc making the diagram

X̂c

ν̂c ��>>>>>>>
εc // Xc

σ

��
Yc

(6.6)

commute, and we choose this to be σc . By construction σc ◦ X(f ) = ν (f ) for every f : b → c , so (6.3) is satisfied. This
completes the induction. �

Proposition 6.7. If (C, I, Z, X, Y ) is admissible, let J be a subcategory of I obtained by omitting a terminal object c. Then the
restriction map pIJ : LI (X, Y )→ LJ (X, Y ) is a fibration.

Proof. As in the previous proof, we must inductively define a lift σ• ∈ LI (X, Y ) for a nullhomotopic ϕ• ∈ LJ (X, Y ). Under
these conditions, pIJ is simply a forgetful functor, so this means σg = ϕg for g a morphism of J and we must define
σ` : Xd → Yc whenever ` : d → c is a morphism in I , in a manner compatible with the definition of ϕ•. Note that
ϕ• determines the composite Y (f ) ◦ Φ Ig• =: ψ (g•, f ).

Following the approach of the previous proof, wewill define ν (g•, f ) for any e
g•
−→ d

f
−→ c in I , where f is indecomposable,

so as to satisfy three properties:
First, we require that our choices be coherent:

ν (g• ◦ h•, f ) = ν (g•, f ) ◦ X(c(h•)), (6.8)

which will allow us to build a homotopy-commutative triangle using a colimit construction.
Second, we need our choices to be consistent:

ν (g•, f ) = ν
(
g ′
•
, f ′
)
+ ψ (g•, f )− ψ

(
g ′
•
, f ′
)
whenever f ◦ g• = f ′ ◦ g ′• in I, (6.9)

which is needed so that we eventually obtain an element σ• ∈ LI (X, Y ). In fact, our construction will also work when
g• = ∅, which will yield σ (f ) = ν (∅, f ).
Finally, we require that each ν (g•, f ) ∼ 0.

We now proceed to choose ν (g•, f ) for e
g•
−→ d

f
−→ c with e ∈ Fi (Definition 6.1) by induction on i ≥ 0:

For each ` : e→ c in I with e ∈ F0, choose some decomposition e
g•
−→ d

f
−→ c (with ` = c(g•, f ) and f indecomposable),

and an arbitrary nullhomotopic 0 = ν (g•, f ) : Xe → Yc . For any other decomposition ` = c(g ′•, f
′), the map ν

(
g ′
•
, f ′
)
is

then determined by (6.9).
Assume that ν has been defined for every e ∈ Fi so that (6.8) and (6.9) hold (wherever applicable). For each e ∈

Fi+1 \ Fi and map ` : e → c , consider the over-category Fi/e (which is non-empty by definition of Fi+1) and set
X̂e := colima∈Fi/e Xa. Because the diagram X is cofibrant, hence Reedy cofibrant (Remark 1.10) in C I , the canonical map
εe : X̂e ↪→ Xe is a cofibration.



D. Blanc et al. / Journal of Pure and Applied Algebra 213 (2009) 34–53 49

Again choose some decomposition e
g•
−→ d

f
−→ c of `. The maps ν (g• ◦ h•, f ) : Xa → Yc , for each composable sequence

h• : a→ e in Fi/e induce a (necessarily nullhomotopic) map µ̂e : X̂e → Yc by (6.8). Since:

X̂e
εe //

ν̂(g•,f ) ��>>>>>>> Xe

0

��
Yc

then commutes up to homotopy, we apply [9, Cor. 4.20] to find

X̂e
εe //

ν̂(g•,f ) ��>>>>>>> Xe

ν(g•,f )

��
Yc

making the diagram commute.

For any other decomposition e
g ′•
−→ d′

f ′
−→ c of `, use (6.9) to define ν

(
g ′
•
, f ′
)
. This completes the induction step.

We have thus defined ν (g•, f ) : Xe → Yc satisfying (6.8) and (6.9) for every e
g•
−→ d

f
−→ c in I/c . In particular, we can

choose σ (f ) = ν (∅, f ) : Xd → Yc for each indecomposable f : d → c in I and see that σ• ∈ LI (X, Y ) (by Lemma 5.7) is
the desired lift. �

Corollary 6.10. If (C, I, Z, X, Y ) is admissible, let J be a full subcategory of I obtained by omitting an object c such that all maps
out of c are indecomposable. Then pIJ : LI (X, Y )→ LJ (X, Y ) is a fibration.

Proof. As in the proof of Proposition 6.7we can construct σ (f ) for each f : d→ c in I , such thatwehave ν̂ : colimd∈I/c Xd →
Yc , as well as ε̂c : colimd∈I/c Xd → Xc . For any g : c → b, in I (indecomposable by assumption), we also have a map
ϕ̂ : colimd∈I/c Xd → Xb induced by ϕ•. Note that by (5.3) we must have:

σ (g) ◦ X(ε̂c) = Φ I(g,f ) − Y (g) ◦ σ (f ) = ϕ̂ − Y (g) ◦ ν̂,

and since X(f ) is a cofibration, we may choose the extension σ (g) as in (6.6). �

Definition 6.11. If I is a strongly directed indexing category, let J = {Jk}k∈N be a fine orderable cover (Example 1.4) of I
subordinate to the filtration G (Definition 6.1), such that Jk \ Jk−1 consists of a single object of I for each k ∈ N . LetC = sA for
someG-sketchable categoryA (Section 1.13), with Z ∈ C I fibrant. A fibrant abelian group object Y ∈ C I/Z is called strongly
fibrant if it is J-fibrant with respect to the model category structure of Section 1.9(a).

Remark 6.12. Note that this definition is independent of the choice of the refinement J of G. Furthermore, by
Proposition 2.10, any abelian group object Y ∈ C I/Z is weakly equivalent to one which is strongly fibrant.

Proposition 6.13. Suppose (C, I, Z, X, Y ) is admissible, and that Y is strongly fibrant. Assume that J is obtained from I by
omitting an object c such that all maps into c are indecomposable. Then the restriction map pIJ : LI (X, Y ) → LJ (X, Y ) is a
fibration.

Proof. Dual to the proofs of Proposition 6.7 and Corollary 6.10. The strong fibrancy is needed since in the model category
we use for diagrams ordinary fibrancy is merely objectwise, while strong fibrancy is dual to Reedy cofibrancy for our
purposes. �

Proposition 6.14. If (C, I, Z, X, Y ) is admissible, Y is strongly fibrant, and J is obtained from I by omitting any object c, then
the restriction map pIJ : LI (X, Y )→ LJ (X, Y ) is a fibration.

Proof. Consider any composable sequence:

d
h•
−→ c

g
−→ b

f•
−→ a (6.15)

in I . As above, 0 ∼ ϕ• ∈ LJ (X, Y )will determine the map

ψ (h•, g, f•) := Y (c((g, f•))) ◦ Φ Ih• + Φ
I
f• ◦ X(c((h•, g))) (6.16)

and we use ν (h•, g, f•) : Xd → Ya, to denote the candidate for Y (c(f•)) ◦ σ (g) ◦ X(c(h•))which we will construct.
As before we require coherence:

ν (h• ◦ `•, g, k• ◦ f•) = Y (c(k•)) ◦ ν (h•, g, f•) ◦ X(c(`•)) (6.17)
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for any

e
`•
−→ d

h•
−→ c

g
−→ b

f•
−→ a

k•
−→ z

in I; and consistency:

ν
(
h′
•
, g ′, f ′

•

)
= ψ (h•, g, f•)+ ν (h•, g, f•)− ψ

(
h′
•
, g ′, f ′

•

)
(6.18)

whenever c(h′
•
, g ′, f ′

•
) = c(h•, g, f•).

We choose the maps ν satisfying (6.17) and (6.18) by two successive inductions:

• The first is by induction on i, the filtration degree of d in {Fi}mi=0 (by composition length from the left): this is done as in

the proof of Proposition 6.7, until finally we have ν (h, g, f•) for every d
h
−→ c

g
−→ b

f•
−→ a, where h is indecomposable

and a is terminal in I (by coherence this extends back to any d
h•
−→ c).

• The second is by induction on j, the filtration degree of a in {Gj}nj=0 (by composition length from the right), as in the proof
of Proposition 6.13 (which is why we need Y to be strongly fibrant).

At the end of the two induction processes we have chosen ν (h, g) : Xd → Yb for h and g indecomposable. We
can then choose σ (h) = ν (h) : Xd → Yc as in the last step of the proof of Proposition 6.7, and finally choose
σ (g) = ν (g) : Xc → Yb as in the proof of Corollary 6.10. This completes the construction of a lift σ• ∈ LI (X, Y ) for
ϕ• as required. �

Corollary 6.19. Suppose (C, I, Z, X, Y ) is admissible, Y is strongly fibrant, and J is any full subcategory of I with the sameweakly
initial and final objects. Then the restriction map p : LI (X, Y )→ LJ (X, Y ) is a fibration.

Proof. By induction on the number of objects in I \ J , using Proposition 6.14. �

7. Identifying the fibers

As we have just seen, if I is a good indexing category, under our standard assumptions on Z , X , and Y the auxiliary
tower (4.11) is a tower of fibrations of simplicial abelian groups. It remains to identify the fibers of the restriction maps
p : LI (X, Y )→ LJ (X, Y ), for a subcategory J of I; this will allow us to determine those of the primary tower (4.6) (or, more
directly, those of the modified tower (4.15)). We consider only the case when I \ J consists of a single internal object c.

Lemma 7.1. If (C, I, Z, X, Y ) is admissible and Y is strongly fibrant, then ϕ• ∈ Ker(p) ⊆ LI (X, Y ) if and only if

(a) φf = 0 for each morphism f of I which does not begin or end in c.

(b) for any d
g
−→ c

f
−→ b in I with f and g indecomposable:

Y (f ) ◦ ϕg + ϕf ◦ X(g) = 0. (7.2)

Proof. This follows from Lemma 5.12. �

Remark 7.3. The lemma implies that (ϕf ,−ϕg) defines amap fromX(g) to Y (f ). Note also that ifϕf is an arrowover Zt(f ), the
same is true of its negative; the remainder of the diagram for a map over Z(f ) already commutes because X and Y are
diagrams over Z . Thus (ϕf ,−ϕg) is a map of arrows over Z(f ).

Definition 7.4. If (C, I, Z, X, Y ) is admissible, we define the local cohomology of X ∈ C I/Z at an object c ∈ I , denoted
by Hc(X/Z, Y ), to be the total derived functors into simplicial abelian groups of mapφc (ψc, ρc) applied to X , where
ψc : hocolimd∈I/c Xd → Xc , ρc : Yc → holimb∈c/I Yb, and φc : Zc → holimb∈c/I Zb, are the structure maps. The ith
local cohomology group of X ∈ C I/Z at c is defined to beH i

c(X/Z, Y ) := πiHc(X/Z, Y ).

Remark 7.5. In many cases, the local cohomology at c can be identified explicitly as the André–Quillen cohomology of an
appropriate (small) diagram.

Proposition 7.6. If (C, I, Z, X, Y ) is admissible, Y is strongly fibrant, and J = I \ {c}, then Ker(p) is weakly equivalent (as a
simplicial abelian group) toHc(X/Z, Y ).

Proof. To obtain the total derived functors, in this case, we must replace X by a weakly equivalent cofibrant, hence Reedy
cofibrant object, which implies that hocolimd∈I/c Xd is simply the colimit, and ψc is a cofibration. By Remark 6.12, we can
replace Y by a weakly equivalent strongly fibrant abelian group object in C I/Z , which implies that holimb∈c/I Yb is the limit,
and ρc is a fibration. With these choices, H I

c(X/Z, Y ) is simply the mapping space mapφc (ψc, ρc), which is isomorphic to
Ker(p) in Lemma 7.1 (using the sign of Remark 7.3). �
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Theorem 7.7. If (C, I, Z, X, Y ) is admissible, for any ordering (ci)∞i=1 of the objects of I, there is a natural first quadrant spectral
sequence with:

E2s,t = H s+1
ct (X/Z; Y ) =⇒ Hs+t+1(X/Z; Y ),

with d2 : E2s,t → E2s−2,t+1.

Proof. We may replace Y by a weakly equivalent strongly fibrant abelian group object, by Remark 6.12. By Corollary 6.19,
(4.15) is then a tower of fibrations, so it has an associated homotopy spectral sequence. To identify the E2-term, note that the
homotopy groups of the homotopy fibers of the tower are the local cohomology groups in Proposition 7.6, suitably indexed
(see Remark 3.2). �

Remark 7.8. Note that pIJ : LI (X, Y ) → LJ (X, Y ) is a fibration for any full subcategory J ⊆ I with the same weakly initial
and final objects (Corollary 6.19), and we can similarly describe the fiber of pIJ as a sort of local cohomologyH I

J (X/Z, Y ), and
thus identify the E2-term of the spectral sequence obtained from a fairly arbitrary cover of I .
We shall not attempt to defineH I

J (X/Z, Y ) in general. Observe, however, that if J is discrete (i.e., there are no non-identity
maps between its objects c1, . . . , cn), then

H I
J (X/Z, Y ) ∼=

n∏
i=1

Hci(X/Z, Y ). (7.9)

Example 7.10. For the commuting square of Example 3.9, we now get a cover for I consisting of I3 = I , I2 = I \ {3}— i.e., a
commuting triangle:

4

c

��

b◦d

��>>>>>>>>

2 a
// d

I1 = {4
a◦c
−→ 1}, and I0 = {4}.

Given a diagram of abelian group objects Y : I → C, the local cohomology groupswhich form the E2-term of the spectral
sequence of Theorem 7.7 are:

E2s,t ∼=


Hs+3(X(d); Y (b)) if t = 2;
Hs+2(X(c); Y (a)) if t = 1;
Hs+1(X4; Y1) if t = 0;
0 otherwise.

Once more we could unite the first and second rows by omitting I2 from our cover, as in Example 3.9, by (7.9).

7.11. A comparison

In the simplest case, when I = [1] (a single map):

X2

f2
��

p2

�����������������

Xφ // X1

f1
��

p1

��000000000000000

Y2

q2

���������� Yφ
// Y1

q1

  @@@@@@@@

Z2
Zφ // Z1,

we have the ‘‘defining fibration sequence’’:

map (X, Y )→ map (X2, Y2)×map (X1, Y1)
ξ
−→ map (X2, Y1) (7.12)

of [9, Prop. 4.20] (where all mapping spaces are taken in the appropriate comma categories).
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Projecting the total space of (7.12) onto the second factor yields the following interlocking diagram of horizontal and
vertical fibration sequences:

map (X2, Fib(Yφ))

i∗
��

// map (X, Y ) //

��

map (X1, Y1)

Id
��

map (X2, Y2)

φ∗

��

// map (X2, Y2)×map (X1, Y1)
π //

ξ

��

map (X1, Y1)

��
map (X2, Y1)

Id // map (X2, Y1) // ∗

(7.13)

We see that the spectral sequence of Theorem 3.5 reduces to the long exact sequence in homotopy for the top horizontal
fibration sequence in (7.13) , while the long exact sequence of Fact 3.3 is obtained from the left vertical fibration sequence
in (7.13).

Remark 7.14. This actually works for any linear order I = [n] (Example 1.4):
Given X, Y ∈ C I/Z , if we set I ′ := [n − 1] (so J := {n

φn
−→ n− 1}) and let τ = τ II ′ : C

I/Z → C I
′

/Z |I ′ , then (7.12) yields a
fibration sequence:

map (X, Y )→ map (Xn, Yn)×map (τX, τY )
ξ
−→ map (Xn, Yn−1)

which again induces a interlocking diagram of fibrations:

map (Xn, Fib(Yφn))

i∗
��

// map (X, Y ) //

��

map (τX, τY )

Id

��
map (Xn, Yn)

(φn)∗

��

// map (Xn, Yn)×map (τX, τY )
π //

ξ

��

map (τX, τY )

��
map (Xn, Yn−1)

Id // map (Xn, Yn−1) // ∗

as in (7.13). Note that the long exact sequences in homotopy (i.e., cohomology) of the central vertical fibrations (for various
values of n) provide an alternative inductive approach for calculating the cohomology of X , which can again be formalized
in a spectral sequence (though in this case the fibers are the unknown quantity).
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