JOURNAL OF ALGEBRA, 4, 46-51 (1966)

Endomorphisms of Modules Over Semi-Prime Rings

R. Hart

The University of Leeds, Leeds, England Communicated by A. W. Goldie Received May 1965

1. It has been shown by Feller and Swokowski [1] that if R is an integral domain which has a right and left quotient ring, then the endomorphism ring E(M) of a finitely generated torsion-free R-module M is a prime ring which in turn has a right and left quotient ring. The purpose of this note is to generalize the above result to the situation in which R is a semi-prime ring. We also prove some simple results for the more general case of a semi-prime ring which has only a right quotient ring.

2. DEFINITION. Let R be a ring. An element $c \in R$ is regular if c is neither a left nor a right zero-divisor. We shall say that an R-module M is torsion-free if no nonzero element of M is annihilated by a regular element of R.

Now let R be a ring with regular elements. An extension ring Q of R is said to be a *right quotient ring* of R if (a) every regular element of R has an inverse in Q and (b) every element of Q has the form ac^{-1} with $a, c \in R$ and c regular. It is well known that R has a right quotient ring if and only if given $a, c \in R$ with c regular, there exist $a_1, c_1 \in R$ with c_1 regular such that $ac_1 = ca_1$. Left quotient rings are defined similarly.

Suppose R is a ring which has a right quotient ring Q, and let M be a torsion-free right R-module. Then M has a quotient Q-module MQ. The construction of MQ from M is precisely analogous to the construction of Q from R, and the elements of MQ have the form mc^{-1} with $m \in M$ and c a regular element of R. The following theorem is due to Feller and Swokowski [1] if R is an integral domain. However, only trivial modifications to their proof are needed to establish the more general result.

THEOREM 1. Let R be a ring with a right and left quotient ring Q. Let M be a finitely generated torsion-free right R-module such that MQ is Q-free and every regular element of E(MQ) is invertible. Then E(M) has a right and left quotient ring isomorphic to E(MQ).

We refer to Goldie [3] for the definition of the dimension of a module and a uniform module. A ring R is *semi-prime* if R has no nonzero nilpotent right or left ideals, and R is *prime* if the zero ideal is a prime ideal of R. It has been shown by Goldie [3] that a ring R has a right quotient ring Q which is semi-simple artinian if and only if R is a finite-dimensional semiprime ring with maximum condition on annihilator right ideals. We then say that R is a semi-prime ring with right quotient conditions. Further, Q is simple if and only if R is prime; we then say that R is a prime ring with right quotient conditions. An integral domain which has a right quotient division ring is called a *right Öre domain*. We need the following lemma

LEMMA 1. Let R be a semi-prime ring with identity and right quotient conditions, and let $e \neq 0$ be an idempotent in R. Then e R e is a semi-prime ring with right quotient conditions.

Proof. Let N be a right ideal of e R e, and denote by NR the right ideal generated by N in R. Then

$$NR = NRe + NR(1 - e) = N + NR(1 - e).$$

Thus for any positive integer α ,

$$(NR)^{\alpha} = N^{\alpha} + N^{\alpha}R(1-e).$$

Hence, if N is nilpotent so is NR, and then NR = 0, N = 0, and eRe is semi-prime. Let S be a subset of eRe, and denote by $\rho(S)$, r(S) the right annihilators of S in eRe, R, respectively. If T is a subset of eRe with $T \supseteq S$ and r(T) = r(S), then

$$\rho(T) = eRe \cap r(T) = eRe \cap r(S) = \rho(S).$$

Since the maximum condition holds for annihilator right ideals of R, we see that the maximum condition holds for annihilator right ideals of *eRe*. Now suppose that $I_1 \oplus \cdots \oplus I_n$ is a direct sum of right ideals of *eRe*, and put

$$K = (I_1R + \cdots + I_{m-1}R) \cap I_mR \text{ for } m \leq n.$$

Then Ke = 0, so that $K^2 = (eK)^2 = 0$. Thus K = 0 and the sum $I_1R + \cdots + I_nR$ is direct. Since R is finite-dimensional, it follows that eRe is finite-dimensional, and we have shown that eRe is a semi-prime ring with right quotient conditions.

THEOREM 2. Let R be a semi-prime ring with right and left quotient conditions, and suppose M is a finitely generated torsion-free R-module. Then the endomorphism ring E(M) is also a semi-prime ring with right and left quotient conditions. If R is a prime ring, so is E(M).

Proof. Let Q be the quotient ring of R. Then Q is semi-simple artinian, and hence there is a finitely generated Q-module N^* such that $MQ \oplus N^*$

is a free Q-module. Choose a finitely generated torsion-free R-module N such that $N^* = NQ$. Then by Theorem 1, $E(M \oplus N)$ has a right and left quotient ring isomorphic to $E(MQ \oplus NQ)$. Now $E(MQ \oplus NQ)$ is semi-simple artinian, so $E(M \oplus N)$ is a semi-prime ring with right and left quotient conditions. Let e be the projection $M \oplus N \to M$ in $E(M \oplus N)$. Then

$$eE(M \oplus N)e \cong E(M),$$

and hence by Lemma 1 and its left-right dual, E(M) is a semi-prime ring with right and left quotient conditions. If R is prime, then Q is simple, so $E(MQ \oplus NQ)$ is simple. Hence $E(M \oplus N)$ is a prime ring, and we can show as in Lemma 1 that

$$E(M) \simeq eE(M \oplus N)e$$

is a prime ring.

3. The hypothesis that R has a left quotient ring is now abandoned, and we make the following definition.

DEFINITION. Let R be a ring and M, N be R-modules. M and N are said to be subisomorphic if there exist R-isomorphisms $M \rightarrow N$ and $N \rightarrow M$. Two rings, S, T are said to be subisomorphic if there exist ring isomorphisms $S \rightarrow T$ and $T \rightarrow S$.

THEOREM 3. Let R be a ring with a right quotient ring Q having minimum condition on right ideals. Let M, N be subisomorphic torsion-free right Rmodules, suppose MQ, NQ are finitely generated Q-modules, and suppose E(N)has a right (left) quotient ring S. Then E(M) has a right (left) quotient ring T, and S, T are subisomorphic as rings.

Proof. Let $f: M \to N$ and $g: N \to M$ be *R*-isomorphisms. The descending chain condition for submodules holds in MQ and NQ, so f has an inverse in Hom(NQ, MQ) and g an inverse in Hom(MQ, NQ). Now let $a, c \in E(M)$ with c regular. Then fag and fcg belong to E(N). Moreover, fcg is regular, because xfcg = 0 with $x \in E(N)$ gives $xfc = xfcgg^{-1} = 0$, and then we have xf = 0, so that $x = xff^{-1} = 0$. Similarly fcgx = 0 gives x = 0. Now E(N) has a right quotient ring, so there exist elements a_1, c_1 in E(N) with c_1 regular, such that $fagc_1 = fcga_1$. We then have $agc_1 = cga_1$, and hence $agc_1f = cga_1f$. As before, we find that gc_1f is regular in E(M) so E(M) has a right quotient ring T. The function $T \to S$ given by $ac^{-1} \to fag(fcg)^{-1}$ is an isomorphism because $fag(fcg)^{-1} = fac^{-1}f^{-1}$. Similarly, we can write down an isomorphism $S \to T$, so S and T are subisomorphic.

LEMMA 2. Let S, T be subisomorphic rings and suppose that S is semi-simple artinian and that every regular element of T is invertible. Then T is semi-simple artinian.

Proof. We may suppose that $S \supseteq T \supseteq S'$, where $S \cong S'$. Suppose S' is a direct sum $e_1S' \oplus \cdots \oplus e_nS'$ of minimal right ideals, where $e_1, \cdots e_n$ are orthogonal idempotents whose sum is 1. Then also

$$T = e_1 T \oplus \cdots \oplus e_n T$$

and

$$S = e_1 S \oplus \cdots \oplus e_n S$$

Since $S \simeq S'$, it follows that the ideals $e_{\alpha}S$ are minimal also. Hence either $e_i S \simeq e_j S$ or $e_i S e_j = e_j S e_i = 0$. Therefore either $e_i T \simeq e_j T$ or $e_i T e_j = e_j T e_i = 0$. In this latter case we have

$$\operatorname{Hom}(e_iT, e_jT) = \operatorname{Hom}(e_jT, e_iT) = 0.$$

It is therefore sufficient to show that each $e_i T e_i$ is a division ring, for then T is a direct sum of complete matrix rings over division rings. Let $t \in T$ with $e_1 t e_1 \neq 0$. Now $e_1 S e_1$ has no zero divisors, so $e_1 t e_1 + e_2 \cdots + e_n$ is a regular element of T. Hence there exists an element $t' \in T$ such that $e_1 t e_1 t' = e_1$, and then $(e_1 t e_1)(e_1 t' e_1) = e_1$. Similarly $e_i T e_i$ is a division ring for each i, and this completes the proof.

LEMMA 3. Let R be a semi-prime ring with right quotient conditions, and suppose U, V are uniform right ideals of R. Then either U contains a copy of V and vice versa, or else Hom(U, V) = Hom(V, U) = 0.

Proof. If uv = 0 with $u \in U$ and v a nonzero element of V, then uV = 0(see Lemma 3.3 of [3]). Hence either UV = 0 or else there exists $u \in U$ with $uV \simeq V$. However, if UV = 0, then $(VU)^2 = V(UV)U = 0$, so that VU = 0. Thus either U contains a copy of V and vice versa, or UV = VU = 0. Suppose UV = 0 and let $f: U \to V$ be an R-homomorphism. Then f(U)V = f(UV) = 0, so $[f(U)]^2 = 0$, and f(U) = 0. Hence Hom(U, V) = 0, and similarly Hom(V, U) = 0.

We denote by r(x) the right annihilator of the element x. Then we have

LEMMA 4. Let R be a semi-prime ring with right quotient conditions, and let I be a nonzero right ideal of R. Then there is a right ideal J in I and an element x in J such that E(J) is a direct sum of complete matrix rings over various right Ore domains, and $I \cap r(x) = 0$.

Proof. Let U_1 be a uniform right ideal in I. By Lemma 3, there is an element u_1 in U_1 such that $U_1 \cap r(u_1) = 0$. If $I \cap r(u_1) = 0$, take $J = U_1$, $x = u_1$. If $I \cap r(u_1) \neq 0$, let U_2 be a uniform right ideal in $I \cap r(u_1)$, and if possible, choose U_2 to be isomorphic to U_1 . If this is not possible, then however U_2 is chosen, $\operatorname{Hom}(U_1, U_2) = \operatorname{Hom}(U_2, U_1) = 0$, by Lemma 3. We have $U_1 \cap U_2 = 0$; let u_2 be an element of U_2 with $U_2 \cap r(u_2) = 0$.

Now $u_1U_2 = 0$, and we therefore obtain

 $(U_1 \oplus U_2) \cap r(u_1 + u_2) = 0.$

If $I \cap r(u_1 + u_2) = 0$, take $J = U_1 \oplus U_2$, $x = u_1 + u_2$. Otherwise, let U_3 be a uniform right ideal in $I \cap r(u_1 + u_2)$ with $U_3 \cong U_2$ if possible, and so on. Now R is a finite-dimensional ring, so the length of the direct sum $U_1 \oplus U_2 \oplus \cdots$ is finite. Hence for some integer k, we have $I \cap r(u_1 + \cdots + u_k) = 0$, $I \supset U_1 \oplus \cdots \oplus U_k$. Take $J = U_1 \oplus \cdots \oplus U_k$ and $x = u_1 + \cdots + u_k$. Now by construction $J = L_1 \oplus \cdots \oplus L_n$, where each L_i is a direct sum of isomorphic uniform right ideals and Hom $(L_i, L_j) = 0$ for all $j \neq i$. Hence E(J) is a direct sum $E(L_1) \oplus \cdots \oplus E(L_n)$ of two-sided ideals. Also $E(L_i)$ is isomorphic to a complete matrix ring over $E(U_\alpha)$ for some α . However, $E(U_\alpha)$ is a right Öre domain (see [2]), so E(J) is a direct sum of complete matrix rings over right Öre domains.

THEOREM 4. Let R be a semi-prime ring with right quotient conditions, and let I be a nonzero right ideal in R. Then E(I) is a semi-prime ring with right quotient conditions.

Proof. Choose the right ideal J and the element x as in Lemma 4. Since $I \cap r(x) = 0$, it follows that $xI \simeq I$. Now x belongs to J, so xI is contained in J and hence I and J are subisomorphic. E(J) is a direct sum of complete matrix rings over right Öre domains, so in particular E(J) is a semi-prime ring with right quotient conditions. Thus by Theorem 3 and Lemma 2, E(I) has a right quotient ring which is semi-simple artinian. Therefore E(I) is a semi-prime sing with right quotient conditions.

4. THEOREM 5. Let U be a uniform right ideal in the semi-prime ring R, where R has right and left quotient conditions. Then E(U) is a right and left Ore domain.

Proof. If U is finitely generated, the result follows by Theorem 2. If U is not finitely generated, U contains a finitely generated ideal V (indeed a principal ideal), and by Lemma 3, U and V are subisomorphic. Then by Theorem 3, E(U) has a right and left quotient ring.

This result is known if R is a prime ring. See Goldie [3].

THEOREM 6. Let R be a semi-prime ring with right and left quotient conditions, and suppose I is a nonzero right ideal in R. Then E(I) is a semi-prime ring with right and left quotient conditions.

Proof. As in Theorem 4, but making use of Theorem 5.

5. We now show by means of an example that the hypothesis of left

quotient conditions in Theorem 2 cannot be removed, even if we abandon the requirement that E(M) have left quotient conditions.

Let R be a right Öre domain which is not a left Öre domain, and let Q be the right quotient ring of R. Choose nonzero elements a, b of R such that $Ra \cap Rb = 0$, and put $U = a^{-1}R + b^{-1}R$. Then $U \subset Q$, so U is a uniform torsion-free R-module, and of course U is finitely generated. Clearly $Hom(R, U) \neq 0$; let $f \in Hom(U, R)$. Then $f(a^{-1})a = f(b^{-1})b$. Since $Ra \cap Rb = 0$, this means that f = 0 and hence Hom(U, R) = 0. Therefore if we put $M = U \oplus R$, it follows that $g(U) \subseteq U$ for any endomorphism g of M. Let I be the set of all endomorphisms of M which map the second summand R into U and U into zero. Then if $h \in I$ and $g \in E(M)$, gh(U) = 0. Also the image of the second summand R under gh is in g(U) and hence in U. Clearly $I^2 = 0$, so I is a nonzero nilpotent ideal in E(M).

REFERENCES

- 1. FELLER, E. H., AND SWOKOWSKI, E. W. The ring of endomorphisms of a torsionfree module. J. London Math. Soc. 39 (1964), 41-42.
- GOLDIE, A. W. The structure of prime rings under ascending chain conditions. Proc. London Math. Soc. 8 (1958), 589-608.
- 3. GOLDIE, A. W. Semi-prime rings with maximum condition. Proc. London Math. Soc. 10 (1960), 201-220.