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Abstract

We consider metric results for the asymptotic behavior of the number of solutions of Diophantine ap-
proximation inequalities with restricted denominators for Laurent formal power series with coefficients in
a finite field. We especially consider approximations by rational functions whose denominators are powers
of irreducible polynomials, and study the strong law of large numbers for the number of solutions of the
inequalities under consideration.
© 2008 Elsevier Inc. All rights reserved.
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1. Introduction

The metric theory of Diophantine approximation and, particularly, the asymptotic behavior of
the number of solutions of Diophantine approximation inequalities has given rise to substantial
literature in the real case, see e.g. [5,10]. Such results can also be naturally extended to the case
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of Laurent formal power series with coefficients in a finite field. Let us quote e.g. [6] and [8]
who discuss the strong law of large numbers in metric theory of Diophantine approximation
in positive characteristics. In the present paper, we consider specific inequalities with restricted
denominators (powers of irreducible polynomials) with an approximation function which does
not only depend on the degree of the denominator.

As usual, let Fq be a finite field of cardinality q , and we denote by

F[X], F(X), F
((

X−1)), L

the set of polynomials (with Fq -coefficients), the set of rational functions, the set of Laurent
formal power series, and the set of Laurent formal power series of negative degree, respectively.
Here we define the degree of f �= 0

f = anX
n + an−1X

n−1 + · · ·

with an �= 0 by degf = n. We define as usually deg 0 = −∞. We consider the topology on L

induced by the (ultra-)metric d(f,g) = |f − g| for f,g ∈ L, where |f | := qdegf . We denote by
m the Haar probability measure on L. We recall that measure of cylinders is just the product
measure. Indeed, for any â1, . . . , âk ∈ Fq ,

m
{
f ∈ L: f = a1X

−1 + · · · + akX
−k + · · · , a1 = â1, . . . , ak = âk

} = 1

qk
.

We consider for a given formal power series f ∈ L the solutions P
Q

with P,Q polynomials
with coefficients in Fq of

∣∣∣∣f − P

Q

∣∣∣∣ <
Ψ (Q)

|Q| , P ,Q: coprime, Q: monic. (1)

In the case where the approximation function Ψ depends only on the degree of Q, i.e., if Ψ

has form Ψ (Q) = 1
qn+ln

if degQ = n, with ln being a nonnegative integer, then the strong law

of large numbers holds whenever
∑ 1

qln
= ∞. Moreover, some limit theorems can be obtained

under a mild condition on ln, see [4,6,2,3]. Note that although it is not explicitly stated as such
in [6], the proof of the Khintchine type theorem stated in [6] implies results on the asymptotic
behavior of the number of solutions for non-Archimedean Diophantine approximations. It is
furthermore proved in [8] that the strong law of large numbers also holds even if we do not
assume the coprimeness of P and Q.

However, it does not seem to be very easy to get the strong law of large numbers for Ψ not
depending only on the degree of Q. Indeed, the only known result in the general case (Ψ not
depending only on degQ) is a Duffin–Schaeffer type theorem, i.e., a generalized Khintchine
type theorem (see [6]). In this paper, we thus consider some special cases of the approximation
function Ψ :

(i) Ψ is positive only when Q is irreducible, otherwise it takes value 0,
(ii) Ψ is positive only when Q is the t th power, with t being fixed, of a single monic irreducible

polynomial, otherwise it takes value 0,
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(iii) Ψ is positive when Q is some power of a single monic irreducible polynomial, otherwise it
takes value 0.

More precisely, we consider the three following inequalities for coprime polynomials P and Q:

(i)

∣∣∣∣f − P

Q

∣∣∣∣ <
1

q2n+lQ
, degQ = n, Q: monic and irreducible,

where the sequence of nonnegative integers (lQ) is given (see Section 2);

(ii)

∣∣∣∣f − P

Q

∣∣∣∣ <
1

q(t+1)n+lQ1
, degQ1 = n, Q1: monic and irreducible, Q = Qt

1,

where t is a fixed positive integer and the sequence of nonnegative integers (lQ1) is given
(see Section 3);

(iii)

∣∣∣∣f − P

Q

∣∣∣∣ <
1

q(t+1)n+lQ1+lt
, degQ1 = n, Q1: monic and irreducible, Q = Qt

1,

for some positive integer t , where both sequences of nonnegative integers (lQ1) and
(lt : t � 1) are given and

∑
t�1

1
qlt

is assumed to be a convergent series (see Section 4).

Obviously, (ii) is a special case of (iii) and (i) is a special case of (ii). However, we estimate the
asymptotic behavior of the number of solutions of these inequalities step by step, first for clarity,
and secondly because (i) is interesting as a Diophantine approximation problem: this corresponds
to the approximation of irrational numbers by rational numbers with prime denominators. Note
that (ii) is somehow a natural generalization of (i). On the other hand, (iii) illustrates the difficulty
of finding a sufficient condition for Ψ such that the strong law of large numbers holds: indeed,
we have to add as an extra hypothesis that

∑
t�1

1
qlt

is assumed to be a convergent series.
The main tool of our proofs will be the following lemma, which is also used in [8]. We recall

here that the notation X � Y is equivalent to the notation X = O(Y).

Lemma 1.1. (See Sprindžuk [10, p. 45].) Let (ξn(ω): n � 1) be a sequence of random variables
defined on a probability space (Ω, B,P ). Moreover let (ηn: n � 1) and (η̂n: n � 1) be sequences
of real numbers such that

(i) 0 � ηn � η̂n � 1 for all n � 1,

(ii) for any positive integers N1 < N2

∫
Ω

(
N2∑

n=N1

ξn(ω) − ηn

)2

dP �
N2∑

n=N1

η̂n.

Then, one has

N∑
n=1

ξn(ω) =
N∑

n=1

ηn + O
(
Ξ(N)1/2 log

3+ε
2 Ξ(N)

)
for P -a.e.,

where ε > 0 is arbitrary and Ξ(N) = ∑N
η̂n.
n=1
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This lemma can be considered as a refinement of Khintchine’s theorem. The idea of this
lemma (called Schmidt’s method in [5]) was used in metric theory of classical Diophantine ap-
proximation in the 1950s (see e.g. [9]). As applications of Schmidt’s method in the real case,
one obtains asymptotic formulas for the number of solutions of Diophantine inequalities for re-
stricted sets of denominators such as the set of prime numbers (see Theorem 18 in [10]) or sets
of positive lower density (see e.g. Chapter 4 in [5]).

Note that we may apply this lemma if the approximation function Ξ is large. However, in
such a case, the error term might be larger than the main term. This is one of the reasons we have
chosen an approximation function Ξ of type (ii) and (iii) on the right-hand side of inequality (1).

In all that follows, the denominators that we consider are assumed to be monic.

2. Metric Diophantine approximation by irreducible polynomial denominators

In this section, we consider an inequality of type (1) with restricted denominators that are
supposed to be monic irreducible polynomials and a function Ψ : Fq [X] → R of the form Q �→
(|Q| · qlQ)

−1
, where lQ takes nonnegative integer values for Q monic irreducible, and infinite

value otherwise. We thus consider the following inequality over L:∣∣∣∣f − P

Q

∣∣∣∣ <
1

q2n+lQ
(2)

where P and Q are coprime, degQ = n, and lQ takes infinite value whenever Q is not monic
irreducible.

Theorem 2.1. For almost all f ∈ L, the number of solutions of (2) with degQ � N satisfies

Ξ(N) + O
(
Ξ1/2(N) log

3+ε
2 Ξ(N)

)
with

Ξ(N) =
N∑

n=1

∑
Q: degQ=n

1

qn+lQ

for any ε > 0.

Remark 2.2. If Ξ(N) does not diverge at ∞ as N → ∞, then Theorem 2.1 means that there
exist at most finitely many solutions for a.e. f ∈ L.

We first need the following lemma:

Lemma 2.3. We fix coprime monic polynomials Q and Q′ such that n = degQ and m = degQ′.
Let l be a nonnegative integer. The number of pairs of non-zero polynomials (P,P ′) with degP <

degQ and degP ′ < degQ′ that satisfy∣∣∣∣PQ − P ′

Q′

∣∣∣∣ <
1

qm+l

is less than qn−l .
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Proof. Let (P,P ′) be a such a pair of polynomials. Since

∣∣∣∣PQ − P ′

Q′

∣∣∣∣ =
∣∣∣∣PQ′ − P ′Q

QQ′

∣∣∣∣
we have

n + m − deg(PQ′ − P ′Q) > m + l

and so

deg(PQ′ − P ′Q) < n − l.

If l � n then there exists no such pair of polynomials (P,P ′). Hence, we may assume n > l.
Note that the number of non-zero polynomials of degree less than n − l is equal to qn−l − 1.

Now suppose that there exist two pairs of polynomials (P1,P
′
1) and (P2,P

′
2) that satisfy

P1Q
′ − P ′

1Q = P2Q
′ − P ′

2Q

with

degP1,degP2 < degQ and degP ′
1,degP ′

2 < degQ′.

Since (Q,Q′) = 1, we deduce from

(P1 − P2)Q
′ = (

P ′
1 − P ′

2

)
Q

that we have P1 = P2 and P ′
1 = P ′

2. Thus the number of pairs of non-zero polynomials (P,P ′)
such that ∣∣∣∣PQ − P ′

Q′

∣∣∣∣ <
1

qm+l

is less than qn−l . �
Proof of Theorem 2.1. For Q monic polynomial of degQ = n and for P polynomial, we put

F P
Q

:=
{
f ∈ L:

∣∣∣∣f − P

Q

∣∣∣∣ <
1

q2n+lQ

}
,

FQ :=
⋃

P : 0�degP<degQ,gcd(P,Q)=1

F P
Q

,

and

Fn :=
⋃

FQ.
Q: irr.,degQ=n
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Let us note that the sets FQ’s are disjoint for a given n. Furthermore, one checks that

m(F P
Q

) = 1

q2n+lQ
, m(FQ) = qn − 1

q2n+lQ
, m(Fn) =

∑
Q: irr.,degQ=n

qn − 1

q2n+lQ
.

Hence

m(Fn) ∼
∑

Q: irr.,degQ=n

1

qn+lQ
.

Note that we can give a more precise estimate for m(Fn) but that we do not need more in the
present proof.

Let us apply Lemma 1.1 by setting, for all n, ξn := χFn , the indicator function of the set Fn,
and ηn := η̂n := ∫

ξn dm. Condition (i) of Lemma 1.1 is satisfied. Let us consider now condi-
tion (ii). It is enough to show

N2∑
n=N1

N2∑
m=N1

m(Fn ∩ Fm) − m(Fn)m(Fm) �
N2∑

n=N1

m(Fn)

for any positive integers N1 < N2. For this, it is sufficient to show that

n−1∑
m=N1

m(Fn ∩ Fm) − m(Fn)m(Fm) � m(Fn).

Now we see that

n−1∑
m=N1

m(Fn ∩ Fm) − m(Fn)m(Fm)

=
∑

Q: degQ=n

n−1∑
m=N1

∑
Q′: degQ′=m

m(FQ ∩ FQ′) − m(FQ)m(FQ′)

=
∑
Q

n−1∑
m=N1

∑
Q′

∑
P

∑
P ′

m(F P
Q

∩ F P ′
Q′

) − m(F P
Q

)m(F P ′
Q′

).

Let us distinguish two cases according to the value of 2n + lQ with respect to that of 2m + lQ′ .

• We first assume that 2n + lQ � 2m + lQ′ . Then, m(F P
Q

∩ F P ′
Q′

) = 1
q

2n+lQ
whenever F P

Q
∩

F P ′
Q′

�= ∅. In this case, it follows that | P
Q

− P ′
Q′ | < 1

q
2m+l

Q′ . So by Lemma 2.3, we see that the

number of pairs (P,P ′) with F P
Q

∩ F P ′
Q′

�= ∅ is less than qn−m−lQ′ . We thus deduce that

m(FQ ∩ FQ′) <
qn−m−lQ′

2n+lQ
= 1

n+lQ

1
m+lQ′ .
q q q
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• If 2n + lQ < 2m + lQ′ , then we have m(F P
Q

∩ F P ′
Q′

) = 1

q
2m+l

Q′ whenever F P
Q

∩ F P ′
Q′

�= ∅ and

| P
Q

− P ′
Q′ | < 1

q
2n+lQ

by the same way.

In either case, we get

n−1∑
m=N1

m(Fn ∩ Fm) − m(Fn)m(Fm)

<
∑
Q

n−1∑
m=N1

∑
Q′

1

qn+lQ

1

qm+lQ′ − (1 − 1
qn )

qn+lQ

(1 − 1
qm )

qm+lQ′

<
∑
Q

n−1∑
m=N1

∑
Q′

1

qn+lQ

1

qm+lQ′

(
1

qn
+ 1

qm

)

<
∑
Q

n−1∑
m=N1

∑
Q′

1

qn+lQ
· 1

qm+lQ′ · 2

qm
.

Finally, we estimate

∑
Q

n−1∑
m=N1

∑
Q′

1

qn+lQ

1

qm+lQ′
1

qm
<

∑
Q

1

qn+lQ

n−1∑
m=N1

1

qm+lQ′

based on the fact that there exist at most qm polynomials Q′, which yields

∑
Q

n−1∑
m=N1

∑
Q′

1

qn+lQ

1

qm+lQ′
1

qm
�

∑
Q

1

qn+lQ
∼ m(Fn).

Consequently, we get

n−1∑
m=N1

m(Fn ∩ Fm) − m(Fn)m(Fm) � m(Fn),

which completes the proof. �
As an application, we now consider the particular case where lQ vanishes, i.e., lQ takes zero

value if Q is monic irreducible, and lQ takes infinite value otherwise:

Corollary 2.4. For almost all f ∈ L, one has

Card

{
1 � n � N : ∃Q irr. with degQ = n and ∃P s.t.

∣∣∣∣f − P

Q

∣∣∣∣ <
1

q2n

}

= logN + O
(
log1/2 N · log(3+ε)/2 logN

)
, for any ε > 0.
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Proof. We first note that the number l(n) of monic irreducible polynomials of degree n is equiv-
alent to qn

n
. Indeed, it is well known (see e.g. [7]) that

l(n) = 1/n
∑
d|n

μ(n/d)qd

where μ is the Möbius function. Let r(n) = ∑
d|n,d<n μ(n/d)qd . One has l(n) = 1

n
qn + 1

n
r(n).

Furthermore, |rn| � ∑�n/2�
d=1 qd = q

q�n/2�−1
q−1 . Consequently,

|rn| � q�n/2�+1

q − 1
, (3)

and thus l(n) ∼ qn/n.
We then deduce Corollary 2.4 from Theorem 2.1 by noting that

Ξ(N) =
N∑

n=1

∑
Q: irr.,degQ=n

1

qn
=

N∑
n=1

1

n
+

N∑
n=1

1

n

rn

qn
,

and then, by applying (3). �
We denote by Pn

Qn
the nth convergent of the continued fraction expansion of f ∈ L. It is well

known that if ∣∣∣∣f − P

Q

∣∣∣∣ <
1

|Q|2

holds for P
Q

, then

P

Q
= Pn

Qn

for some n � 0, see [1] for example. Example 2 in [6] claimed that

Card

{
1 � n � N : ∃Q irr. with degQ = n and ∃P s.t.

∣∣∣∣f − P

Q

∣∣∣∣ <
1

q2n

}
= ∞

for almost all f ∈ L. Thus we see that there exist infinitely many convergents with irreducible
Qn’s for almost all f ∈ L. As a by-product of Corollary 2.4, we can obtain the more precise
result:

Corollary 2.5. For almost all f ∈ L,

Card{1 � n � N : Qn irr.} ∼ logN

where Pn stands for the nth convergent of the continued fraction expansion of f .

Qn
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Proof. For almost all f ∈ L, we have

degQN ∼ q

q − 1
N,

see [1] for example. From Corollary 2.4 and the above criterion on P
Q

and Pn

Qn
, we have

Card{1 � n � N : Qn irr.} ∼ log degQN ∼ logN

for almost all f ∈ L. �
3. Fixed powers of irreducible denominators

The aim of this section is to extend the set of admissible denominators in (1). We thus fix
a positive integer t � 2 and consider denominators Q of the form Q = Qt

1 with monic irre-
ducible Q1. We first discuss what could be a reasonable inequality (1) with respect to the strong
law of large numbers. We thus also fix k � 1 and consider

∣∣∣∣f − P

Q

∣∣∣∣ <
1

q(t+k)n
, Q = Qt

1, degQ1 = n, Q1: irreducible, gcd(P,Q) = 1. (4)

Let

F (t,k)
n := {

f ∈ L: f satisfies (4) for some Q = Qt
1, degQ1 = n

}
.

One has

m
(
F (t,k)

n

)
�

∑
Q: Q=Qt

1,degQ1=n,Q1 irr.

m
(
F

(t,k)
Q

) =
∑
Q

∑
P

m
(
F

(t,k)
P
Q

)

where

F
(t,k)
P
Q

:=
{
f ∈ L:

∣∣∣∣f − P

Q

∣∣∣∣ <
1

q(t+k)n

}
with gcd(P,Q) = 1,

F
(t,k)
Q :=

⋃
P : 0�degP<degQ,gcd(P,Q)=1

F
(t,k)
P
Q

.

Since Q1 is monic and degQ1 = n, then the number of polynomials Q of the form Qt
1 is less

than qn, and we deduce

m
(
F (t,k)

n

)
<

qn · qtn

q(t+k)n
= 1

q(k−1)n
. (5)

If k � 2, we see that
∑

m(F
(t,k)
n ) < ∞. Thus, by the Borel–Cantelli lemma, there exist at most

finitely many solutions of (4) for a.e. f . Note that the bound for k = 0 is too large for a Dio-
phantine approximation inequality. On the other hand, if k = 1, we see that

∑
m(F

(t,k)
) = ∞.
Q
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Hence, the only case which is of interest with respect to the strong law of large numbers is the
k = 1 case that we study below.

We thus consider the following inequality

∣∣∣∣f − P

Q

∣∣∣∣ <
1

q(t+1)n+lQ1
, Q = Qt

1, Q1 irreducible, degQ1 = n (6)

where P and Q are coprime, t is a fixed positive integer, and lQ1 takes nonnegative integer values
if Q1 is a monic irreducible polynomial, and infinite value otherwise.

Theorem 3.1. For almost all f ∈ L, the number of solutions of (6) with degQ1 � N is equal to

Ξ(N) + O
(
Ξ1/2(N) log

3+ε
2 Ξ(N)

)
, for any ε > 0

with

Ξ(N) =
N∑

n=1

∑
Q1: Q1 irr.,degQ1=n

1

qn+lQ1
.

Proof. As in the proof of Theorem 2.1, we define for a given t and for Q = Qt
1 with Q1 monic

irreducible of degree n

E P
Q

=
{
f ∈ L: ∃P s.t.

∣∣∣∣f − P

Q

∣∣∣∣ <
1

q(t+1)n+lQ1

}
,

EQ =
⋃

P : 0�degP<degQ,gcd(P,Q)=1

E P
Q

,

En = {
f ∈ L: f satisfies (6) for some Q1, degQ1 = n

}
.

The proof of Theorem 2.1 is based on the fact that the FQ’s were disjoint. However, the sets
EQ’s may no longer be disjoint even if we fix the degree n (note that the sets E P

Q
’s remain

disjoint for a given Q). Therefore we have to define ξn at a different level. We will thus have to
change the summation with respect to the index m which now ranges from N1 → n instead of
N1 → n−1. Indeed, the term corresponding to m = n in the following summation will no longer
vanish. Furthermore, we will have to distinguish two cases Q1 = Q′

1, and Q1 �= Q′
1, in order to

apply Lemma 2.3 (where Q and Q′ are assumed to be coprime).
Let

ξn :=
∑

Q=Qt
1,degQ1=n,Q1 irr.

χEQ

and ηn = η̂n = ∫
ξn dm. One has

m(E P
Q

) = 1
(t+1)n+lQ

, m(EQ) = qtn − q(t−1)n

(t+1)n+lQ
,

q 1 q 1
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by noting that there are qtn − q(t−1)n polynomials P coprime with Q = Qt
1, and

ηn =
∑

Q1: degQ1=n,Q1 irr.

m(EQ) =
∑

Q1: degQ1=n,Q1 irr.

1

qn+lQ1

(
1 − 1

qn

)

∼
∑

Q1: degQ1=n,Q1 irr.

1

qn+lQ1
.

Note that condition (i) in Lemma 1.1 is satisfied. To check condition (ii), we need to estimate

∫ (
N2∑

n=N1

ξn − ηn

)2

dm =
N2∑

n,m=N1

∑
degQ1=n

Q=Qt
1

∑
degQ′

1=m

Q′=Q′
1
t

m(EQ ∩ EQ′) − m(EQ)m(EQ′).

It will be sufficient to show that

n∑
m=N1

∑
degQ1=n

Q=Qt
1

∑
degQ′

1=m

Q′=Q′
1
t

m(EQ ∩ EQ′) − m(EQ)m(EQ′) � ηn.

Note that we deduce from the fact that the sets E P
Q

’s are disjoint that

∑
degQ1=n

Q=Qt
1

∑
degQ′

1=m

Q′=Q′ t
1

m(EQ ∩ EQ′) − m(EQ)m(EQ′)

=
∑
Q1

∑
Q′

1

∑
P

∑
P ′

m(E P
Q

∩ E P ′
Q′

) − (E P
Q

)m(E P ′
Q′

).

We have two cases, namely Q1 = Q′
1 and Q1 �= Q′

1.
For the first case (Q1 = Q′

1), we have

∑
Q1

∑
Q′

1

∑
P

∑
P ′

m(E P
Q

∩ E P ′
Q′

) − m(E P
Q

)m(E P ′
Q′

) �
∑
Q1

∑
P

m(E P
Q

) =
∑
Q1

m(EQ) = ηn.

When Q1 �= Q′
1, we again distinguish two cases.

• Let us assume that (t + 1)n + lQ1 � (t + 1)m + lQ′
1
. Then, m(E P

Q
∩ E P ′

Q′
) = 1

q
(t+1)n+lQ1

,

whenever E P
Q

∩ E P ′
Q′

�= ∅, and the number of pairs of non-zero polynomials (P,P ′) such

that E P
Q

∩ E P ′
Q′

�= ∅ is less than q
tn−m−lQ′

1 by Lemma 2.3.

• If (t + 1)n + lQ1 < (t + 1)m + lQ′
1
, then one similarly has m(E P

Q
∩ E P ′

Q′
) = 1

q
(t+1)m+l

Q′
1

whenever E P
Q

∩ E P ′
Q′

�= ∅ and the number of pairs (P,P ′) such that E P
Q

∩ E P ′
Q′

�= ∅ is less

than qtm−n−lQ1 .
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We thus deduce that

∑
degQ1=n

Q=Qt
1

∑
degQ′

1=m

Q′=Q′
1
t

m(EQ ∩ EQ′) − m(EQ)m(EQ′)

<
∑
Q1

∑
Q′

1

1

qn+lQ1

1

q
m+lQ′

1

− (1 − 1
qn )

qn+lQ1

(1 − 1
qm )

q
m+lQ′

1

=
∑
Q1

∑
Q′

1

1

qn+lQ1

1

q
m+lQ′

1

(
1

qn
+ 1

qm

)
.

Consequently,

n∑
m=N1

∑
degQ1=n

Q=Qt
1

∑
degQ′

1=m

Q′=Q′
1
t

m(EQ ∩ EQ′) − m(EQ)m(EQ′)

<
∑
Q1

n∑
m=N1

∑
Q′

1

1

qn+lQ1
· 1

q
m+lQ′

1

· 2

qm
�

∑
Q1

1

qn+lQ1
∼ ηn,

which concludes the proof of Theorem 3.1. �
We similarly deduce, as for Corollary 2.4, the following application in the case where lQ1

vanishes, i.e., lQ1 takes infinite value if Q1 is not monic irreducible, and zero value otherwise.

Corollary 3.2. Let t � 2 be a fixed positive integer. For almost all f ∈ L,

Card

{
1 � n � N : ∃Q1 irr., degQ1 = n,∃P s.t. gcd(P,Q) = 1 and

∣∣∣∣f − P

Qt+1
1

∣∣∣∣ <
1

q(t+1)n

}

= logN + O
(
log1/2 N log(3+ε)/2 logN

)
, for any ε > 0.

By (5) and the Borel–Cantelli lemma, we cannot deduce here a statement analogous to Corol-
lary 2.5: indeed, for a.e. f ∈ L, there exist finitely many convergents Pn/Qn, with Qn being a
fixed power of an irreducible polynomial.

4. Variable powers of irreducible denominators

In Section 3, we have considered denominators that are powers of an irreducible polynomial,
i.e., Q = Qt

1, for a fixed t � 2. Let us generalize this situation to the case where the power t is
variable. Thus we consider the following inequality;

∣∣∣∣f − P

Q

∣∣∣∣ <
1

t+1 lQ +lt
, t � 1, Q = Qt

1, Q1 irreducible, (7)
|Q1| q 1
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where lQ1 takes nonnegative integer values if Q1 is a monic irreducible polynomial, and infinite
value otherwise, and lt takes nonnegative integer values. As before, we also assume that P and
Q are coprime.

Theorem 4.1. We assume that the series
∑

t�1
1

qlt
is convergent. Then, for almost all f ∈ L, the

number of solutions of (7) with degQ � N is

Ξ(N) + O
(
Ξ1/2(N) log

3+ε
2 Ξ(N)

)
for any ε > 0

with

Ξ(N) =
N∑

n=1

∑
(k,t): kt=n

∑
Q=Qt

1
Q1 irr.

degQ1=k

1

qk+lt+lQ1

(
1 − 1

qk

)
.

Proof. For Q = Qt
1, k = degQ1, and n = degQ, we put

⎧⎨
⎩

G P
Q

= {
f ∈ L:

∣∣f − P
Q

∣∣ < 1

q
(t+1)k+lQ1

+lt

}
,

GQ = ⋃
P : 0�degP<degQ,gcd(P,Q)=1 G P

Q
.

Then we define ξn, ηn, η̂n for all n as

ξn :=
∑

(k,t): kt=n

∑
Q1: irr.,degQ1=k

χG
Qt

1
and ηn = η̂n =

∫
ξn dm.

One has

m(G P
Q

) = 1

q(t+1)k+lQ1+lt
, m(GQ) = 1

q(t+1)k+lQ1+lt

(
qtk − q(t−1)k

)
.

We first estimate ηn:

ηn =
∑

(k,t): kt=n

∑
Q1: irr.,degQ1=k

m(GQt
1
)

=
∑

(k,t): kt=n

∑
Q1: irr.,degQ1=k

1

q(t+1)k+lQ1+lt

(
qtk − q(t−1)k

)

=
∑ ∑ 1

qk+lQ1+lt

(
1 − 1

qk

)
.

(k,t): kt=n Q1: irr.,degQ1=k
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Consequently, there exists M > 0 such that ηn � M for any n � 1. Hence we can apply
Lemma 1.1 to ( 1

M
ξn: n � 1) which satisfies condition (i) of Lemma 1.1. Note, furthermore,

that we have

∑
(k,t): kt=n

∑
Q1: irr.,degQ1=k

1

qk+lQ1+lt
� ηn.

It remains to show (and this will be sufficient) that the sequence (ξn) satisfies condition (ii) of
Lemma 1.1. One has

∫ (
N2∑

n=N1

(ξn − ηn)

)2

dm

=
∫ (

N2∑
n=N1

( ∑
(k,t): kt=n

∑
Q1: irr.,degQ1=k

(
χG

Qt
1
− m(GQt

1
)
)))2

dm

=
∫ [

N2∑
n=N1

( ∑
(k1,t1): k1t1=n

∑
Q1: irr.,degQ1=k1

(
χG

Q
t1
1

− m(G
Q

t1
1
)
))]

×
[

N2∑
m=N1

( ∑
(k2,t2): k2t2=m

∑
Q2: irr.,degQ2=k2

(
χG

Q
t2
2

− m(G
Q

t2
2
)
))]

dm

=
∫ [

N2∑
k1=1

� N2
k1

�∑
t1=� N1

k1
�

∑
Q1

(
χG

Q
t1
1

− m(G
Q

t1
1
)
)]

×
[

N2∑
k2=1

� N2
k2

�∑
t2=� N1

k2
�

∑
Q2

(
χG

Q
t2
2

− m(G
Q

t2
2
)
)]

dm

� 2
∫ N2∑

k1=1

k1∑
k2=1

� N2
k1

�∑
t1=� N1

k1
�

∑
Q1

� N2
k2

�∑
t2=� N1

k2
�

∑
Q2 �=Q1

(
χG

Q
t1
1

− m(G
Q

t1
1
)
)(

χG
Q

t2
2

− m(G
Q

t2
2
)
)
dm

+
∫ N2∑

k1=1

� N2
k1

�∑
t1=� N1

k1
�

∑
Q1

� N2
k1

�∑
t2=� N1

k1
�

(
χG

Q
t1
1

− m(G
Q

t1
1
)
)(

χG
Q

t2
1

− m(G
Q

t2
1
)
)
dm

=: 2[A] + [B]
=: 2[A] + [B1: t1 = t2] + 2[B2: t1 > t2],

by setting
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[A] :=
∫ N2∑

k1=1

k1∑
k2=1

� N2
k1

�∑
t1=� N1

k1
�

∑
Q1

� N2
k2

�∑
t2=� N1

k2
�

∑
Q2 �=Q1

(
χG

Q
t1
1

− m(G
Q

t1
1
)
)(

χG
Q

t2
2

− m(G
Q

t2
2
)
)
dm,

[B1] =
∫ N2∑

k1=1

� N2
k1

�∑
t1=� N1

k1
�

∑
Q1

(
χG

Q
t1
1

− m(G
Q

t1
1
)
)2

dm,

[B2] =
∫ N2∑

k1=1

� N2
k1

�∑
t1=� N1

k1
�

∑
Q1

� N2
k1

�∑
t2: t2<t1, t2=� N1

k1
�

(
χG

Q
t1
1

− m(G
Q

t1
1
)
)(

χG
Q

t1
1

− m(G
Q

t2
1
)
)
dm.

We will follow the same scheme of proof as previously, but for the estimate of [B2], we shall
need an extended version of Lemma 2.3.

Estimate for [A]. To estimate [A], we distinguish two cases as in the proofs of Theo-
rems 2.1 and 3.1. We first suppose that (t1 + 1)k1 + lQ1 + lt1 � (t2 + 1)k2 + lQ2 + lt2, i.e.,
m(G P

Q
t1
1

) � m(G P

Q
t2
2

). We then decompose [A] by introducing a further summation over P

and P ′. If G
Q

t1
1

∩ G
Q

t2
2

�= ∅, then there exist P and P ′ such that G P

Q
t1
1

∩ G P ′
Q

t2
2

�= ∅. One

has m(G P

Q
t1
1

∩ G P ′
Q

t2
2

) = 1

q
(t1+1)k1+lQ1

+lt1
and similarly as in the previous proofs, | P

Q
− P ′

Q′ | <

1

q
(t2+1)k2+lQ2

+lt2
. From Lemma 2.3, there exist at most k1t1 − (k2 + lQ2 + lt2) such pairs of poly-

nomials (P,P ′). Thus we get

m(G
Q

t1
1

∩ G
Q

t2
2
) − m(G

Q
t1
1
)m(G

Q
t2
2
) � 1

qk1+lQ1+lt1

1

qk2+lQ2+lt2

2

qk2

since we are assuming k1 � k2. The same holds when assuming (t1 + 1)k1 + lQ1 + lt1 <

(t2 + 1)k2 + lQ2 + lt2 . Now we have

N2∑
k1=1

k1∑
k2=1

� N2
k1

�∑
t1=� N1

k1
�

∑
Q1

� N2
k2

�∑
t2=� N1

k2
�

∑
Q2 �=Q1

1

qk1+lQ1+lt1

1

qk2+lQ2+lt2

1

qk2

=
N2∑

k1=1

� N2
k1

�∑
t1=� N1 �

∑
Q1

1

qk1+lQ1+lt1

k1∑
k2=1

� N2
k2

�∑
t2=� N1 �

∑
Q2 �=Q1

1

qk2+lQ2+lt2

1

qk2
.

k1 k2
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We then use the fact that
∑ 1

qlt
< ∞ to deduce that

[A] �
N2∑

k1=1

� N2
k1

�∑
t1=� N1

k1
�

∑
Q1

1

qk1+lQ1+lt1
�

N2∑
n=N1

ηn.

Estimates for [B1] and [B2]. We now estimate [B1]:

∫ N2∑
k1=1

∑
t1

∑
Q1

(
χG

Q
t1
1

− m(G
Q

t1
1
)
)2

dm �
N2∑

k1=1

∑
t1

∑
Q1

m(G
Q

t1
1
) =

N2∑
n=N1

ηn.

Concerning [B2], we need to estimate

N2∑
k1=1

∑
t1

∑
Q1

∑
t2

m(G
Q

t1
1

∩ G
Q

t2
1
) − m(G

Q
t1
1
)m(G

Q
t2
1
)

with t1 > t2. Again we decompose [B2] by introducing a further summation over P and P ′ and
by comparing (t1 + 1)k1 + lQ1 + lt1 with (t2 + 1)k1 + lQ1 + lt2 . We thus assume that (t1 + 1)k1 +
lQ1 + lt1 � (t2 + 1)k1 + lQ1 + lt2 , with the other case being handled similarly. We have to extend
Lemma 2.3 in the following way: we prove that there exist at most qt1k1−(k1+lQ1+lt2 ) pairs of
non-zero polynomials (P,P ′) with degP < t1 degQ1 and degP ′ < t2 degQ1 that satisfy∣∣∣∣ P

Q
t1
1

− P ′

Q
t2
1

∣∣∣∣ <
1

q(t2+1)k1+lQ1+lt2
.

Consider indeed such a pair (P,P ′). Then

k1t1 − deg
(
P − P ′Qt1−t2

1

)
> (t2 + 1)k1 + lQ1 + lt2 .

Thus we see that

deg
(
P − P ′Qt1−t2

1

)
< (t1 − t2)k1 − (k1 + lQ1 + lt2).

Hence there exist at most q(t1−t2)k1−(k1+lQ1+lt2 ) polynomials of the form P − P ′Qt1−t2
1 . Let us

now fix (P,P ′). If

P − P ′Qt1−t2
1 = P1 − P ′

1Q
t1−t2
1 ,

then

(P − P1) = Q
t1−t2
1

(
P ′ − P ′

1

)
.

This implies

(t1 − t2)k1 + deg
(
P ′ − P ′) = deg(P − P1) < t1k1,
1
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which in turn implies

deg
(
P ′ − P ′

1

)
< t2k1.

Hence there exist at most qt2k1 pairs of polynomials (P1,P
′
1) that satisfy P − P ′Qt1−t2

1 =
P1 −P ′

1Q
t1−t2
1 . Consequently, the possible numbers of pairs (P,P ′) is at most qt1k1−(k1+lQ1+lt2 ).

We deduce that

m(GQ ∩ GQ′) � 1

q(t1+1)k1+lQ1+lt2
qt1k1−(k1+lQ1+lt2 ) = 1

qk1+lQ1+lt1

1

qk1+lQ1+lt2
.

Therefore we have, by using the fact that
∑ 1

qlt
converges

N2∑
k1=1

∑
t1

∑
Q1

∑
t2

m(G
Q

t1
1

∩ G
Q

t2
1
) − m(G

Q
t1
1
)m(G

Q
t2
1
)

�
N2∑

k1=1

∑
t1

∑
Q1

1

qk1+lQ1+lt1

1

qk1+lQ1

�
N2∑

k1=1

∑
t1

∑
Q1

1

qk1+lQ1+lt1
�

N2∑
n=N1

ηn,

which ends the proof of Theorem 4.1. �
By (5) we cannot deduce here again a statement analogous to Corollary 2.5 concerning con-

vergents: indeed, for a.e. f ∈ L, there exist finitely many convergents Pn/Qn, with Qn being
some power of an irreducible polynomial.
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