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Abstract

Reid, K.B. and W. Gu, Plurality preference digraphs realized by trees, II: On realization
numbers, Discrete Mathematics 101 (1992) 231-249.

A digraph D with vertex set X = {x, x,, ..., x,} is realizable by a connected graph G if there
exists a subset C={c, ¢y, ...,c,} of vertices of G so that for all distinct i and j in
{1,2,...,n}, x;x; is an arc of [ if and only if more vertices of G are closer to ¢; than to ¢;. For

a positive integer n, let %, denote the family of digraphs of order n which are realizable by
trees. For a fixed D € %,, the realization number of D, denoted a(D), is the smallest order of
a tree which realizes D. Let a(%,) = max{a(D): D € %,}. In this paper a(%,) is determined
explicitly.

1. Definitions and notations

his
contains some motivational material connecting this work with user preferences
(based on distances) for location of desirable facilities on tree networks. All
graphs (or oriented graphs) here are graphs (or oriented graphs) without loops
and multiple edges (or arcs). For a graph G (or digraph D), let V(G) (or V(D))
denote its vertex set and let E(G) (or A(D)) denote its edge set (or arc set). For
a disconnected digraph D with components Dy, D,, ..., D, we write D = D; U
D,U---UD; (see [2]). A connected digraph D is said to be bipartitionable if
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there exist two subdigraphs D; and D, satisfying the following conditions:

(1) V(D)=V(D,)UV(D,) and V(D,) N V(D,) =#; and

(2) For any v, e V(D))(i =1, 2), v,v, € A(D).

For bipartitionable D, write D = D= D,.

Let T be a tree. For x € V(T), the branch weight of x is defined by
b(x)=max{|V(T')|: T' is a subtree of T —x}. The branch weight centroid of T
(centroid of T for short), denoted C,(T), consists of all vertices x for which b(x)
is a minimum. Each vertex in C,(T) is called a centroid vertex of T (see [S]).

A digraph D with vertex set X = {x,, x5, ..., x,,} is (p, h, n)-realizable if there
exists a connected graph G of order p, a subset V of h vertices of G (voters), and
a subset C = {¢,, ¢3, . . ., ¢,} of vertices of G (candidates) so that for all distinct i
andjin {1,2,...,n}, x,x;is an arc of D if and only if a purlarity of the voters in
V are closer to c; than ¢; in G, i.e., more vertices in V are closer to ¢; than ¢; in G.
The terms voters and candidates arise from the connection with the location of
deriable facilities on tree networks (see [4]). Note that any such D is necessarily
an oriented graph. To say that D is realizable by G or that G realizes D means
that p = h (i.e., all vertices of G are voters). Of course, n <p. In this paper we
restrict our attention to all digraphs realized only by trees.

Let T be a tree. If x is a vertex of T and w is either a vertex or edge of T, then
T[x, w] denotes the subtree of T — w which contains x.

The following Theorem proved in [4] is useful in the next two sections:

Theorem A. Let D be an oriented graph of order n which is (p, p, n)-realizable
by a tree T of order p. Then xy € A(D) if and only if one of the following
statements holds:

(@) dr(x, Co(T)) <dr(y, Cu(T));

(b) If dy(x, CT)) =ds(x, c) =dr(y, c) =dr(y, C4i(T)) for some c in Cy(T),
let w be the vertex on the shortest path from x to y in T so that dr(x, w) =
dr(y, w). Then

V(T (x, w)| > |V(T(y, w))l .

For a positive integer n, let %, be the family of oriented graphs of order »
which are realizable by trees. For any D € %,, D is said to be p-realizable if D is
realizable by a tree of order p. The realization number of D, denoted a(D), is
the smallest integer p for which D is p-realizable. Let a(%,) = max{a(D): D €
%.}. The aim of this work is to evaluate a(%,).

In order to determine «(%,), an interesting family of oriented graphs will be
introduced in the next section. In the third section, an explicit formula for a(%,)
will be derived.
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2. An example

An exhaustive examination of all digraphs of small orders yields the digraphs
listed in Table 1 as those with the maximum realization number for each order
n =<7. The labels on the vertices in the trees are to indicate the candidate vertices
corresponding to the vertices in the digraphs.

Table 1 suggests the following family of digraphs whose realization numbers
attain the maximum values.

For a positive integer n, let H, be the oriented graph defined recursively by
H =K, H,=K,>K,,and H,=(K,=> H, ,)UK,.

To simplify the proof of Theorem 2.1, we label all vertices of H, as 1,2,...,n
Tabie 1

n D T realizing D o (D)

1 1

2 3

3 8

4 14

3 28

6 46

7 88
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k
W(T; 2k-1) W(T; 2k)
(a) (b)

Fig. 1.

so that A(H,)={ij:i>j and n —i=1(mod 2)} U {21}. Examples of labeled H,
(n =<7) are given in the second column of Table 1.

In order to determine «(H,), a tree of the smallest possible order will be
constructed to realize H,,.

For a given tree T; and ¢, € V(T;), define a sequence of trees {W(T;;i): i =0}
and a sequence of vertices {¢;:i=0}, where W(T,;0)=T,, according to the
following rules: For k=1,

(i) W(Ty; 2k — 1) is obtained from two vertex-disjoint copies of W (Ty; 2k —2)
by adding a new vertex ¢, adjacent to exactly the two copies of ¢;_; (see Fig.
1(a));

(i1) W(T;; 2k) is obtained from copies of W(T,; 2k — 1) and W(T; 2k —2) by
adding a new vertex adjacent to the copy of the vertex ¢, _; in W(Tg; 2k —2) and
by adding an edge connecting the copy of ¢, in W(T; 2k — 1) and the copy of ¢, _,
in W(Ty; 2k ~ 2) (see Fig. 1(b)).

From the construction of the sequence of trees {W(T;;i):i =0}, it is easy to
verify the following observations:

(1) for any k=1, W(T;; k) has only one centroid vertex; W(Ty; 2k — 1) — ¢,
contains exactly two identical components, each a copy of W(Ty; 2k — 2), while
W(Ty; 2k) — ¢, contains exactly three components, two of which are identical and
a third one which has one more vertex than the other two identical components.

(2)  V(W(Ty;2k))| =3 |V(W(To; 2k —2))| +2
and
V(W (To; 2k = 1)) = 2|V(W(Ty; 2k = 2))| + 1.
B)  IVIW(T; 2k)| =3“(IV(To)| + 1) — 1
and
V(W (T 2k — 1) =2-3*(V(T)I +1) - 1.

Of course, as explicitly seen in (3), for any positive integer n, the order of tree
W(Ty; n) is a function of n and the order of the initial tree T,
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Now consider the oriented graph H,, which was defined above, when
n=2k +1 (k=1). Let A denote the path of length three shown in Fig. 2(a). Let
ag, boeV(W(A;1)) lie in the same component of W(A;1)—c, so that
dwa;1 @0, €1) = dway(bo, ¢1) =2. Let a,€ V(W(A;i)) be any vertex in the
component of W(A; i) — c[;») not containing a; (0<j <i— 1) so that

i

+
|+

dW(A;i)(ai) C[i/z]) = {
where [x] is the least integer greater than or equal to x. In W(4; 2k — 1) consider
the set {ao, by, a,, . . ., ax_,} as the set of candidates. Then by Theorem A, it is
straightforward, but tedious, to check that W(A;2k —1) realizes a digraph
isomorphic to H, = Hy,,,. Also, by observation (3),

[V(W(A; 2k = 1)) =2-3""D2(|V(A)| + 1) - 1
=2.30"92.5_1=10.3"2 1,

So, for odd n, H, is realizable by a tree of order 10 - 3**~*”2 — 1, By observation
(1) above, the tree W*(A; 2k — 1) obtained from W(A; 2k — 1) by replacing the
path of length two which contains centroid vertex ¢, as interior vertex with a
single edge connecting the two ends of that path is also a tree that realizes H,,;
moreover

[V(W*(A;2k — 1)) = [V(W(A; 2k — 1)) - 1 =10 - 3¢~H2 _ 3,

Therefore, the following result follows.
Remark 2.1. For any odd integer n (n =3), H, is (10 - 3"~ — 2)-realizable.

Next consider H, when n =2k (k =2). Let A denote the tree of order 7 shown
in Fig. 2(b). Let ay, by, dy € V(W (A; 1)) be in the same component of W(A4; 1) —
¢y so that dy 4,1)(a0, ¢1) = dwa;1)(bo, ¢1) = dw(a.1)(do, ¢;) =2. For i=1, let a; be
the vertex of W(A;i) defined as in the case when n =2k + 1. In W(A;2k —3)
consider the set {a,, by, dy, ay, . .., ax_s3} as the set of candidates. Then by
Theorem A, it is straightforward, but tedious, to check that the tree W(A; 2k — 3)
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realizes a digraph isomorphic to H, = H,,. Also, by observation (3),
|[V(W(A;2k —3))|=2-3C"92(V(A) + 1)~ 1
=2-30""92.8_1=16-3""%2_1,

So, H, is (16-3™ 92— 1)-realizable. By observation (1) above, the tree
W*(A; 2k — 3) obtained from W(A;2k — 3) by replacing the path of length two
which contains centroid vertex c,.; as interior vertex with a single edge
connecting the two ends of that path is also a tree that realizes H,. Moreover,

[V(W*(A; 2k = 3))| = |V(W(A;2k —3))|—1=16-30"92_2,
Remark 2.2. For any even integer n (n=4), H, is (16 - 3*~92 — 2)_realizable.
An obvious observation from Theorem A is the following.

Remark 2.3. Let D be a disconnected digraph. If D is realizable by a tree T, then
all vertices of D in T have the same distance to C,(T). Moreover, if C,(T)= {c}
and each component of T — c contains a vertex of D, then all components of T — ¢
have the same order.

Lemma 2.1. If D is m-realizable by a tree T, then D is (m + 1)-realizable by a tree
which contains exactly one centroid vertex.

Proof. If T contains a single centroid vertex ¢, then let T* be the tree obtained
from T by adding a new vertex adjacent to c. Then T* still realizes D and
[V(T*)|=|V(T)|+1=m+ 1. So, we may assume that T contains two centroid
vertices ¢; and c,. It is well known that c;c, is an edge of T (see [3]), and that
T — c;c, contains two components of the same order. Let T’ denote the tree
obtained from T by deleting the edge c,c, and adjoining two new edges ¢’c; and
c’c,, where ¢’ is a new vertex. Then ¢’ is the only centroid vertex of 7', T still
realizes D (by Theorem A), and |V(T")|=|V(T)|+1=m+1. O

Lemma 2.2. Let D be a disconnected digraph with components D, D,, . . ., D,.
If T is a tree realizing D, then for each i (1 <i < k), there exists a centroid vertex c
and a component C; of T —c containing all vertices of D; and so that
V(CHI=<3|V(T)

Proof. Since D is disconnected, by Remark 2.3, all vertices of D in T are equal
distance to C,(T). Fix i, 1 si=<k.

Case 1: If |Cy(T)| =2, let Cy(T) = {c,, ¢c,}. Note that T — ¢,c, contains exactly
two components T(c,, cic;) and  T(cy, ¢1¢5)  with  |V(T(cy, ¢1¢0))| =
|[V(T(cs, ¢1¢2))|. So, by Theorem A, the connectivity of D; implies that V(D))
must be contained in one of T(cy, c;c;) and T(c,, ¢,¢;), say T(cy, ¢1¢;). Then
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[V(T(cy, €1¢2))| =3 |V(T)|. Thus, T(c,, c,c,) is the required component of
T —c,.

Case 2: If |C,(T)| =1, let C4,(T) = {c}. Pick two adjacent vertices x and y in D;
(i.e., xye A(D;) or yxe A(D;)). Suppose that T(x,c)# T(y,c). Then by
Theorem A,

V(T (x, ) #|V(T(y, ). (1)
Pick a vertex z in D;, where j#i. If T(z,c)=T(x,c), it follows from (1)
that |V(T(y, ¢))| #|V(T(z, c))|. By Theorem A again, y and z are adjacent, a
contradiction to the fact that y and z are in different components of D. If
T(z,c)#T(x,c), since z and x are not adjacent in D, by Theorem A,
IV(T(x, ¢))l =1V(T(z, ¢))|.- Hence, by (1), |[V(T(y, c)|#|V(T(z, ¢))|. That is,
by Theorem A again, z and y are adjacent, again a contradiction. Therefore,
T(x, c)=T(y, c). Consequently, any two adjacent vertices of D; are in T(x, c).
Since D; is connected, all vertices of D; are in T'(x, c).

Let C be the component of T — ¢ so that bw(c) = |V(C)| (C might be T(x, c¢)).
Since c is the only centroid vertex of T, by a basic result in [4] (Lemma 1.1),

V(D) = V(C)| = bw(c) =V (C)],

ie., 2|IV(C)=|V(T). But 2[V(T(x, c)|<2|V(C). So, |V(T(x c))|<
1|V(T)|. Therefore, T(x, c) is as required. O

Lemma 2.3. Let D be a disconnected digraph realized by a tree T of the smallest
possible order with a single centroid vertex ¢. Then each component of T —c
contains a vertex of D.

Proof. Since D is disconnected, by Remark 2.3, for any x, y € V(D), d+(x, ¢) =

dr(y, ).
Let &= {u:dr(u, x)=dr(u, y), for all x,y e V(D)}. Pick a vertex we & so
that, for x ¢ V(D),

dr(x, w) =min{d,;(x, u): u € ¥}.

By the choice of w, at least two components of T — w contain a vertex of D. Let

Cy, Cy, ..., Ci (k=2) be all components of T —w, each of which contains a
vertex of D. Note that all vertices of D are in U, V(C;). Since D is
disconnected, by Theorem A, for any i,je{1,2,...,k}, C; and C; have the

same order. The subtree induced by (L, V(C;)) U {w}, denoted by T*, has a
single centroid vertex w. By Theorem A again, T* realizes D. So, by the choice
of T, T* = T. Therefore, w =c and hence each component of T — ¢ contains a
vertex of D. [

Theorem 2.1. For any integer n with n =3,

10-3"=32 -2 if nis odd,
16 -3¢=92 2 if nis even.

ot =
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Proof. Assume that H, is labeled as described following the definition of H,,.
(1) suppose that n is odd. Let J,(H,) denote the set of trees which realize H,
and contain exactly one centroid vertex. Pick a tree T € 9,(H,,) so that

V(T = min{|V(T)|: T € J1(H,)}.

Let ¢, be the centroid vertex of T\". By Lemma 2.1, to show a(H,)=
10 - 3¢*=32 _ 2 it suffices to show that

V(TP)| =10 - 3092 — 1.

This is done by induction on odd n.

If n =3, it is straightforward to check that there does not exist a tree of order
less than 9, with a single centroid vertex, which realizes H,. Thus, |V(T§")|=09.
Suppose that the result is true for H,_,, where n—2=3. Note that H, is
disconnected with exactly two components {n} and {n—1}=>H, ,. So, by
Lemmas 2.2 and 2.3, T{” —c, contains exactly two components T(n, c,) and
T(n—1,c,). Since there are no arcs between n and n—1, by Theorem A,
[V(T(n, c,))|=|V(T(n -1, c,))|. Note that T(n —1, c,) is a tree realizing the
digraph H, —n. Let c¢,_, be the vertex in T(n—1, c,) adjacent to c,. Then
T(n—1,c,)—c,_, contains at least two components each of which contains a
vertex of D. For otherwise, let w and T* be the vertex and the subtree of
T(n—1, c,) defined as in the proof of Lemma 2.3. Let T be the tree obtained
from 7* and a copy of T* by adding a new vertex v adjacent to ¢,_, and the copy
of ¢,_;. Take a vertex in the copy of T*, which is a copy of a vertex of D, as the
vertex n. Then the resulting tree T realizes D and contains a single centroid
vertex v. But |V(T)| < [V(T{)|. This contradicts the minimality of |V (T{)|.

Let C(i) be the component of T(n~1, ¢,) —c,_; containing the vertex i of
H, —n. Since T(n -1, ¢,) — c,_, contains at least two components each of which
contains a vertex of D, there is a vertex je{1,2,...,n—2} so that C(j)+#
C(n —1). Note that, for j <n — 2, there is no arc in H, between n — 2 and j, but
there is an arc from n — 1 to j. So, by Theorem A and the fact that C(j) is not
equal to C(n — 1), C(n —2) is not equal to C(n — 1).

Case 1: If C(n—3)=C(n—2), then since for any ie{1,2,...,n—4},
(n —3)i € A(H,), but neither (n —2)i nor i(n —2) is in A(H,), C(i)=C(n —2).
Thus, T(n—1, c,) — ¢,—, contains exactly two components C(n—1) and C(n—2)
(see Fig. 3(a)). And, C(n — 2) realizes H, ,. By the minimality of |V (T'V)],

WV(C(n—1)=V(C(n-2))|+ 1.
By Lemma 2.1, a(H,_,) = |V(T,)| — 1, where T, is a tree of the smallest
order in J,(H, _,). So,
V(T =2|V(T(n—1,c,)| +1 222 IV(IC(n=-2)|+2)+1
=z4a(H, 5)+5= 4(|V(T£,122)| —-1)+5
=3 |V(TM,) +2.
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n-1 n-1

(a) (b)

Fig. 3.

Case 2: If n —3¢ V(C(n — 2)), then neither (n —2)(n — 3) nor (n —3)(n —2)
in A(H,) implies that |V(C(n—2))|=|V(C(n—3))|. Since |V(C(n—1))>
[V(C(n —2))|, n —3 is not in C(n — 1). Note that the vertex n — 2 is not adjacent
to I, but (n—3)ie A(H,), for any ie{1,2,...,n—4}. So, by Theorem A,
ieC(n—3), for any ie{1,2,...,n—4}. It follows that T(n—1,c,)—c,_,
contains exactly three components C(n —1), C(n —2), and C(n —3) (see Fig.
3(b)). By the minimality of |[V(T{)],

V(C(n=1))[=|V(C(n—-2))|+1=|V(C(n—3))| +1.

Note that the tree T,_, obtained from T(n — 1, ¢,) by deleting C(n —1) is in
J(H,_,). It is easy to see that

V(TO)| = 2[|V(T, )| + 3(V(Tr2) + D] +1
=3\V(T,)|+2=3 |V(Tf,llz)| +2,
where T, is a tree of smallest order in J,(H,_,).
Hence, each case yields |V(T")|=3|V(T{,)|+2. By the induction
hypothesis,
IV(TD)| = (3(10 - 3@—2=92 _ 1) 4 2
=10-3C"2_342=10.30"I2_ ],
Therefore, a(H,) =10 -3""»?2 -2 By Remark 2.1,

«(H,)=10-30"2 2,

(2) A similar analysis can be applied for the case when n is even. [
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3. Main results

Lemma 3.1. Let D = D, U D, be realizable by a tree. Then

 max {3a(D;) + 3}, if D, is disconnected (i =1, 2),
1=i=2
max {3a(D;U {x;})}, if D, is connected (i =1, 2),
CY(D) = 4 1=i=2

max{3a(D;) + 3, 3a(D; U {x;})}, if D; is disconnected

and D; is connected,

r

1si,js2,i4=j,

Punnl MNMacnr 1. Cuiememncn that N Aigannnan ad Far 71— 1 D T At T ha o tenn ~F
L IUULs, LWoC 1. \)UPPUDC uiatr o/; la UIDUUIIIICDLCU iUl I — 1, 4. 1LCL 4; UL a ifce O1
order «(D;) + 1 with a single centroid vertex c; so that T; realizes D,. By Remark
2.3, all vertices of D, are at equ al distance to ¢;. Denote this distance by 4.

Fori=1,2,let k=2,ifi=1, and k=1, if i=2. Let T be the tree obtained
from 7, and 7, by joining c, to ¢, by a path of length |d, —d,| + 1 and adding «
vertices and f vertices at ¢; and ¢,, respectively, where

N [2 (T = IWV(TD| — (d — d), ifd,=d, and |V(T)| < |V(T)
121" ) \*tJ1 \ i (24 (] K i \*e/1 I \*k/J»
[2 IV(TII| — (di — d), if d;<d, and |V(T;)| = |V (T,)I
and
_ [ ZIV(TIN, if d; <d, and |V(T))| <|V(T)I,
UV = BV, if d,<d, and [V(T)|= |[V(T)I.
The number [x] (or |x|) is the least (respectively, greatest) integer greater
~1 o\ \ 4 Jr & bt (=) f- ol
(respectively, smaller) than or equal to x. The tree shown in Fig. 4 illustrates the

case when d, < d, and |V(T)| < |V(T)|.

Let ¢ be the vertex on the path joining ¢, and c,, which is adjacent to ¢,. Then
by the construction of 7, ¢ and ¢, are centroid vertices of 7. Also, all vertices of
D =D, U D, are at equal distance to C,(T). By Theorem A, it can be verified
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that 7 realizes D. Moreaover, by calculating |V(T)| in eac

(D) <|V(T)| < max {3|V(T)])

=2

{3(a(D) +1)} = max {3a(D )+ 3}.
Case 2: Suppose that D, is connected for i =1, 2. Let T} be a tree of order
a(D; U {x,;}) so that T} realizes D;U {x;}, where x; ¢ V(D). By Lemma 2.2
applied to D; U {x;}, there exists a component T; of T — ¢* containing all vertices

Fky AL

of U,, where C € Ld(l ). MOreover,

V(T <3z |V(T)!. (2

Let ¢c; € V(T;) be adjacent to ¢ in T}. Let T be the tree constructed as in Case 1.
Then T realizes D. By (2),

1=i=2 1=i=2
= max 130D U fx 1))
A Rl Nl F IV
1=i=2
Case 3: Suppose that only one of nd nnected. Combining the two

Note that the tree T’ obtained from the tree T constructed above by adding a
new vertex adjacent to ¢, realizes the digraph D = D, = D,, and T' contains a
single centroid vertex. Thus, the next Remark 3.1 follows immediately.

Remark 3.1. Let D = D, = D, be realizable by a tree. Then

( max {3a(D;) + 4}, if D; is disconnected (i = 1, 2),
1=<i=<2
max {3a(D;U {x;}) + 1}, if D, is connected (i = 1, 2),

1=<i=<2

max{3a(D;) + 4, 3a(D; U {x;}) + 1}, if D, is disconnected

and D; is connected,

1<i,j<2,i#j,
where x; is a vertex not in V(D), fori=1, 2.
Lemma 3.2. Let D={u}JUD, (respectively D={u}=>D,, D=D,=>{u}),

where D, is a disconnected digraph If T, is a tree with a single centroid vertex c,

Y Ay Lo L4l ezl ocs nada. oL Py A i S P S

wru(,n reuu/.é.) U2 una l-) Uj e .)rnuuc.u Oraéer, iiern inere exisis a iree 1 Wll’l u blllgl({



k+1 1
VD<=~ V(BRI -
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\respectively,
k+1 1
VT = V(T - +1)
k k ’
yy;hero I ls o l’i!lm"!ﬂ" f\{‘ rTOamnnNnnonifc nf e
here k is the number of components of T, — ¢
Proof. let C,, C,, , Ci be the components of T, — ¢ and let ¢; be the vertex of

. po a

C,; adjacent to ¢ (1 <i=<k). By Remark 2.3, all vertices of D, in T, have the same
distance to ¢, and each component of 7, — ¢ contains at least one vertex of D,.
Moreover, the disconnectedness of D, implies, by Theorem A, that any two
components of T, — ¢ have the same order. Hence,

V= VTmI-1)  (=i<k)

Let T be the tree obtained from T, and a copy of C, by adding an edge
connecting ¢ to the copy of c¢;. This second copy of C, in T is denoted by C,,,
(see Fig. 5). Denote a vertex of C,,, which is a copy of a vertex of D, by u.
Consider the vertices of T, which represent vertices of D,, together with u, as the
set of candidates and consider V(T) as the set of voters. Then by Theorem A

1, N =7 (1) 1
1 1

I ely, D =D,= {u}), let T be the tree obtained from
the tree constructed above by adding a new vertex adjacent to the vertex of C, .,
which is a copy of ¢, (respectively, deleting an end vertex of C, ;). Hence, T is as
required. O

ikt 1
T2 £
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Theorem 3.1. For any D € %,,

ooy=[ 10732 s e
10-3"=32_2 ifnis odd.
Proof. The proof is by induction on n.

It is easy to check Table 1 in Section 2 to see that the inequality holds for
n=1, 2,3, 4. Suppose that the result is true for any D e %, (4<k=<n—1). Let
D e %,. It is known (see Theorems 2.1 and 2.3 in [4]) that D is transitive and
contains no anti-directed path of length 3.

First of all, consider the case when n is even. Note that n = 6.

Case A: suppose that D is connected. Now by Lemma 2.5 in [4], D=D,> D,
for some subdigraphs D, and D, of D. Let n,= |V(D,)|, i=1, 2.

Subcase A.1: Suppose that n;=2 (i =1, 2). Let T be a tree realizing D so that

|V(T)| = (D). By Remark 3.1,

r max {3a(D;) + 4}, if D; is disconnected (i = 1, 2),
i=si=s2
max {3a(D;U {x;}) + 1}, if D; is connected (i =1, 2),
1=si=<2

a(D) =
D) } max{3a(D;) + 4, 3a(D; U {x;}) + 1}, if D; is disconnected

and D; is connected,

{ 1<i,j<2,i#j,

where x; is a vertex not in V/(D), for i =1, 2. Note that the function f(x) = 3* (or
g(x)=37") is increasing (respectively, decreasing) and that if n; is odd, then
n; <n — 3 since n is even. By the induction hypothesis, for i =1, 2,

3(16 - 32 _2) + 4, if n; is even,

3(10 - 332 —2) + 4, if n; is odd,

B {3 -16-30""2=92_6 4+ 4, if n, is even,

T 13:10-30 392 _6+4, ifn,is odd,

<16-3"92_-2

3cv(D,-) +4=< {

and

3(16 - 3+1=92_ 2y + 1, if n; + 1 is even,

3(10-3¢*1=92 2y + 1, if n;+ 1 is odd,
<{% 16 -3 =2+1=92 _3 4+ 1 if n,+ 1 is even,
T 13.5.3¢" 212301 if p, + 1 is odd,
<16 - 3(n—4)/2 -2

Thus, |V(T)| <16-3""92 -2,

Subcase A.2: Suppose that n;=1. Then n —n;=n —1is odd. By Lemma 2.1,
D, is (a(D) + 1)-realizable by a tree, say 7,, which contains a single centroid

3a(D,U () + 1<
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vertex c. Let T be the tree obtained from 7, by adding two vertices u and v
adjacent to ¢ and to a vertex x furthest away from ¢, respectively. Consider the
set V(D,) U {v} as the set of candidates, and consider the set V(T) as the set of
voters, then T realizes D. So, by the induction hypothesis,

V(T)| =2+ |V(T)|<2+10-3" 192 _1 < 16.3¢=92_ 2,

Subcase A.3: Suppose that n,=1. Then n;, = n—11is odd. By Lemma 2.1, D, is
(a(Dy) + 1)-realizable by a tree, say T;, which contains a single centroid vertex c.
Without loss of generality, assume that c is not used as a candidate, for otherwise
¢ dominates every vertex in D; and D = (D, U {c})=> (D, — {c¢}), so that this case
has been treated in Subcase A.1. So, let T = T; and consider the centroid vertex
of T; as the only vertex of D, (a candidate). Then T realizes D and

IV(T)|=|V(T)|<10-3""1"H2 24 1<16-30"92 2,

So, if n is even and D is connected, then a(D) < 16-3"~9?2 2,

Now consider the case when D is disconnected.

Case B: Suppose that D is disconnected. Assume that D = D; U D,, where D,
is connected. Let n; = |V(D))| (i=1, 2).

Subcase B.1: Suppose that n;, =2 (i =1, 2). Let T be a tree realizing D so that
|V(T)| = «(D). By Lemma 3.1,

max {3a(D; U {x;})}, if D, is connected,
a’(D) < 1=<si=2
max{3a(D,) + 3, 3a(D; U {x,})}, if D, is disconnected

where x; is a vertex not in V(D), for i =1, 2. A computation very similar to that
done in Subcase A.1 yields |V(T)|<16-3"~42_2,

Subcase B.2: Suppose that n, = 1.

If D, is disconnected, let T, be a tree realizing D, so that T, contains a single
centroid vertex and is of the smallest order. Then by Lemma 3.2, there exists a
tree T realizing D and for some integer k =2,

1

k+1
|V(T)|<TIV(Tz)|—E-

By the induction hypothesis,

k+1 1
|V (T)| < (10 -3¢=1732 1) — P

k+1 2
s—2.10-30%2_1_Z2
k k

<16-30"92 2

If D, is connected, then by Lemma 2.5 in [4], D,= D, > D,, for some
subdigraphs D, and D,, of D,. Let «; = |V (D,;)|. Note that a, =n — 1 — ;.
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Subsubcase B.2.1: Suppose that ;=3 (i=1, 2). Let T, be a tree of order
«(D,) which realizes D,. Then by Remark 3.1, a(D,) is less than or equal to

( max {3a(D,)+4}, if D,, is disconnected (i =1, 2),
1=<i<2

| max Za(D,; U {x;}) + 1}, if D,; is connected (i =1, 2),
1=<i=2

max{3a(D,;) + 4, 3a(D,; U {x;}) + 1}, if D; is disconnected

and D,; is connected,

N 1<i,j<2,i#j,

where x; ¢ V(D), fori=1, 2.
Note that 3 < ; = |V(D,;)| <n — 4. So, a computation very similar to that done
in Subcase A.1 gives the following inequalities:

3:-16-3"92_2  if qa, is even,
3-10-3¢""82_2  if &, is odd,
2163922 if , is even,
2103722 if @, is odd,

30(Dy;) + 4 s{

|

Wik I

and

-16-3¢"®2 3 jf «; is odd,

-10-3092 -2 if @, is even,
216 -3¢"92 2 jf «; is odd,

2103092 o §f a; is even.

Ja(Dy U () + 1=

Ni= Q= N N

Il
——

Hence,
IV(T)I <316 - 377972 - 2). (3)

It may be assumed that T, is a tree T' described immediately prior to Remark
3.1. So, T, contains a single centroid vertex, denoted c,, and arose from the tree
T of Lemma 3.1. By the construction in the proof of Lemma 3.1, it can be
assumed that all vertices of D,, are closer to ¢, than all vertices of D,;, by exactly
distance 1. Let w be the vertex adjacent to ¢, so that the distance between w and
some vertex of D,, is the same as the distance between ¢, and some vertex of D,,.
Let T be the tree obtained from 7, by deleting the edge wc, and adding a new
vertex v adjacent to both w and ¢,. Let T be the tree obtained from two copies of
T; by adding an edge connecting two copies of v. Note that all vertices of D, are
equi-distance from v. Then take all vertices of D, in one copy of T3 and a vertex
of D, in another copy of T as the set of candidates in 7, and take the vertex set
of T as the set of voters. Then by Theorem A, T realizes D. Also |V(T)|=
2|V(T2)l =2(IV(T)| + 1). By (3),

IV(T)| <2316-3"92 41 2<16-30—92_7



246 K.B. Reid, W. Gu

Subsubcase B.2.2: Suppose that «; =2 (The case a,=2 can be treated
similarly.) Then a, =n —1— &; =n — 3 is odd and greater than or equal to 3.

Let D3 =Dy, U {x}, where x ¢ V(D). Let T, be a tree, of order a(D3),
which realizes D3,. By Lemma 2.2, there exists a component T, of 15 —c, for
some ¢ € C,(T3), so that all vertices of D,, are in Ty, and |V(T3,)| <3 |V(T3)|.
Let v be the vertex in V(T,) adjacent to c. Remark 2.3 implies that all vertices of
D,, in T, are at equal distance to v. Let T, be the tree obtained from two
vertex-disjoint copies of T, by adding a new vertex u adjacent to both copies of
the vertex v and adding another new vertex w adjacent to one of the copies of v.
Note that « and the copy of v adjacent to w are both centroid vertices of 7,. As
the set of candidates in 7,, choose two vertices of D,, in the copy of T,, to which
w is not added, together with a copy of V(D,;) in the other copy of T,,. The
former two vertices are chosen as follows: if D,, has no arc and there are two
independent vertices in D,,, choose copies of those two; if D, consists of a single
arc and there is an arc in D,,, choose copies of those two vertices connected by
that arc. This can be done unless

(a) D, consists of two independent vertices and D,, is complete, hence the
transitive (n — 3)-tournament, or

(b) D, consists of a single arc and D,, consists of n — 3 independent vertices.

These two special cases will be handled separately below. Note that the latter
n —3 candidates chosen above are closer to Cu(7T;) than the former two
candidates by exactly distance one. Take V(7)) as the set of voters in 7;. Then by
Theorem A, T realizes D,. Let T be the tree obtained from two vertex-disjoint
copies of T, by adding a new edge connecting two copies of u, each of which
becomes a centroid vertex of T. As the set of candidates in T, choose a copy of a
vertex of D, in one copy of T, together with all vertices of D, in the other copy of
T,. Take V(T) as the set of voters in 7. Then T realizes D. Moreover, by the
induction hypothesis,

V(T =2|V(T)| =22 |V(TR)| +2) <2 |V(T)| + 4
<2(16- 3031 H2 _2) 4 4<16- 32—,

In special case (a), define trees H,, k=1, as follows: H, is K,, and for all
k=1, H,,, is obtained from vertex-disjoint copies of H, and K, ; by adding one
new edge between a vertex in C,(H,) and vertex in C,(K, ). So, in H,_;, if
those n —3 vertices which are adjacent to one fixed centroid vertex are
considered as candidates and if all vertices are considered as voters, then H,_;
realizes D, the transitive (n — 3)-tournament. Also, |V (H,_3)| = 3(n*—5n + 8).
Let T, be the tree obtained from two vertex-disjoint copies of H,_;, denoted
H, and H? 5, by adding a path of length two to a vertex v, in C,(H."5), a new
end vertex adjacent to a vertex v, in C,(H{?;), and a new vertex u adjacent to
both v, and v,. Note that C,(T;) ={u, v,}. Now, in 7, consider candidate
vertices to be the copy of V(D,,) in H{"; together with the two endvertices of 7,
adjacent to v,. Take V(T,) as the set of voters. Then T, realizes D,. Form T as
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V(T)|=2|V(T)| =22 |V(H,_3)| +4)
=22 - 10n+24<16-3"92_19,

Special case (b) can be treated similarly, where H,_; is taken to be K, _5. If
the n — 3 endvertices of H, _; are considered as candidates and all n — 2 vertices
of H,_, are considered as voters, then H,_; realizes D,,. The same construction
of T, and T as in (a) yields a tree which realizes D, and

V(T)|<4|V(H,_3)| +8=4(n —2)+8<16-3=92_3

Crshorshingos, I DY 2 Crisnevman +that —1 (Tha rnon Py Ao ha tenntad
DUUYUHULUHC 12.L.0. DU})PUDC tiiat uz — 1 \LIIC wvanc u] - 1 wdall U trcawtcu
similarly.) Then a,=n—-1~ cvz =n-—2is even. Let V(D)= {z}. If D, is
connected, then by Lemma 2.5 in [4], D,; = Y > X, for some subdigraphs X and

Y. So, D,=(YU {z})=> X, and then this case is contained in previous cases
unless |V(X)|=1. If |[V(X)| =1 and Y is connected, then again by Lemma 2.5 in
[4], Y=Y,=>Y, for some subdigraphs Y, and Y, of Y, and D,=(Y, U {z})>
(Y; U X) can be treated as in previous cases. There remains the special instance
where |V (X)| =1 and Y is disconnected. Note that |V(Y)|=n—-3. f Y= {y} U
{y:}U---U{y,_3}, then the tree T, illustrated in Fig. 6 realizes D,.

Let T be the tree obtained from two copies of 7, by adding an edge connecting
the two copies of c. Then T realizes D and

IV(T)| =2(V(D)|) =4n —2<16-3"~4D 2,

VU= (VI-1)  (=<i=k)

Note that |V (C;)| = 3. Construct T as in that proof, except that not only one copy
Cr41, of C, is added, but two copies of C, are added, denoted C,,, and C,,,. To
complete the construction of 7 delete one endvertex of C,,, and add a new

C

A
T

e
0
=
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vertex adjacent to the vertex of C,,, which is a copy of ¢;. Choose a vertex of
Cr41 (respectively C;.,) which is a copy of a vertex of Y to be x (respectively to
be z). Consider the vertices T(Y) in T which represent vertices of Y, together
with x and z as the set of candidates, and consider V(T') as the set of voters in T.
Then by Theorem A, T realizes D,, and T has a single centroid vertex ¢, and all
vertices of D, are at the same distance from c. Now, let T’ be the tree obtained
from two copies of T by adding an edge connecting the two copies of c¢. Clearly
T’ realizes D, and by the induction hypothesis (since |V (Y)| =n — 3 is odd),

VT =2 V(DI <20V (T +2 (VT - 1)

_2Ak+2) A _2UkED) o smen_py d
=SV I~ ST (1030702 - ) 2
=2(k+2)

8
10-3-92 2 —<16-30""92 2,
3k k
Therefore, without loss of generality, assume that D,, is disconnected. Let T,
be a tree, of the smallest order with a single centroid vertex, which realizes D,,.
By Lemma 3.2, there exists a tree T, with a single centroid vertex, say c, realizing
D, so that for some integer k =2,
1

k+1

V(D s——IV(Tn)| -7+ 1. “4)
k k

Let T be the tree obtained from 7, and a copy of 7, by adding an edge joining ¢

and its copy. As the set of candidates in 7, choose one vertex of D, in one copy

of T,, together with a copy of V(D,) in the other copy of T,. Take V(T) as the set

of voters. Then by Theorem A, T realizes D. By the induction hypothesis and

4,

2(k+1 2(1-k
viry=2wv@ <2y - 220
2k + 1) N 2(1 - k)
< 7/ 16_3(n 2 4)/2_1 el Sl
k ( ) k
2(k+1) _ 4 _
<METD) 163092 2 <16. 3092 _ o
T 16-3 k<16 3 2

This completes the proof that a(D) <16 -3"~2—2 if n is even.
Arguments similar to those in the case when »n is even can be used in the case
when n is odd. That is, if n is odd, then

a(D)<10-3¢"2_3

The proof is complete. O



On realization numbers 249

Theorem 3.2. For any positive integer n,

1, ifn=1,
3, ifn=2,
10-3""32 -2 ifnis odd and n =3,
16-3""92_2  if nis even and n = 4.

Proof. It is easy to check that a(%)=1 and a(%)=23. For n=3, the result
follows from Remarks 2.1, 2.2, and Theorem 3.1. [
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