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Abstract 

Reid, K.B. and W. Gu, Plurality preference digraphs realized by trees, II: On realization 

numbers, Discrete Mathematics 101 (1992) 231-249. 

A digraph D with vertex set X = {x,, x2, . , x,} is realizable by a connected graph G if there 

exists a subset C= {c,, ca, . , c,} of vertices of G so that for all distinct i and j in 

{ 1,2, , n}, x,x, is an arc of D if and only if more vertices of G are closer to c, than to c,. For 

a positive integer n, let .T,, denote the family of digraphs of order n which are realizable by 

trees. For a fixed D E F”, the realization number of D, denoted (Y(D), is the smallest order of 

a tree which realizes D. Let (u(Fn) = max{cy(D): D E F”}. In this paper (~(9~) is determined 

explicitly. 

1. Definitions and notations 

This paper may be considered a sequel to papers [l] and [4]. In particular, [4] 

contains some motivational material connecting this work with user preferences 

(based on distances) for location of desirable facilities on tree networks. All 

graphs (or oriented graphs) here are graphs (or oriented graphs) without loops 

and multiple edges (or arcs). For a graph G (or digraph D), let V(G) (or V(D)) 

denote its vertex set and let E(G) (or A(D)) d enote its edge set (or arc set). For 

a disconnected digraph D with components D,, D2, . . . , Dk we write D = D1 U 

D2U.- . U Dk (see [2]). A connected digraph D is said to be bipartitionable if 
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there exist two subdigraphs Di and D2 satisfying the following conditions: 

(1) V(D) = V(D,) U V(D,) and V(D,) fl V(4) = 0; and 

(2) For any ui E V(D,)(i = 1, 2), 2r1u2 E A(D). 

For bipartitionable D, write D = D1 =$ D2. 

Let T be a tree. For x E V(T), the branch weight of x is defined by 

b(x) = max{lV(T’)I: T ’ is a subtree of T -x}. The branch weight centroid of T 

(centroid of T for short), denoted C,(T), consists of all vertices x for which b(x) 

is a minimum. Each vertex in C,(T) is called a centroid vertex of T (see [5]). 

A digraph D with vertex set X = {x,, x2, . . . , x,} is (p, h, n)-realizable if there 

exists a connected graph G of order p, a subset V of h vertices of G (voters), and 

a subset C = {c,, c2, . . . , c,} of vertices of G (candidates) so that for all distinct i 

andjin {1,2,. . . , n}, XiXi is an arc of D if and only if a purlarity of the voters in 

V are closer to ci than ci in G, i.e., more vertices in V are closer to ci than ci in G. 

The terms voters and candidates arise from the connection with the location of 

deriable facilities on tree networks (see [4]). Note that any such D is necessarily 

an oriented graph. To say that D is realizable by G or that G realizes D means 

that p = h (i.e., all vertices of G are voters). Of course, n up. In this paper we 

restrict our attention to all digraphs realized only by trees. 

Let T be a tree. If x is a vertex of T and w is either a vertex or edge of T, then 

T[x, w] denotes the subtree of T - w which contains x. 

The following Theorem proved in [4] is useful in the next two sections: 

Theorem A. Let D be an oriented graph of order n which is (p, p, n)-realizable 

by a tree T of order p. Then xy E A(D) if and only if one of the following 

statements hoI& : 

(4 4(x, G(T)) < ddy, G(T)); 
(b) If d*(x, G(T)) = d&x, c) = d,(y, c) = dT(yj G(T)) for some c in G(T), 

let w be the vertex on the shortest path from x to y in T so that dT(x, w) = 

d,(y, w). Then 

IVWx, w))l ’ IVG‘TY, w))l . 

For a positive integer n, let 9jn be the family of oriented graphs of order n 

which are realizable by trees. For any D E %, D is said to be p-realizable if D is 

realizable by a tree of order p. The realization number of D, denoted a(D), is 

the smallest integer p for which D is p-realizable. Let CK(&) = max{a(D): D E 

SO}. The aim of this work is to evaluate c.Y(~$). 

In order to determine a(Sn), an interesting family of oriented graphs will be 

introduced in the next section. In the third section, an explicit formula for CY($~) 

will be derived. 
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2. An example 

An exhaustive examination of all digraphs of small orders yields the digraphs 
listed in Table 1 as those with the maximum realization number for each order 
n c 7. The labels on the vertices in the trees are to indicate the candidate vertices 
corresponding to the vertices in the digraphs. 

Table 1 suggests the following family of digraphs whose realization numbers 
attain the maximum values. 

For a positive integer n, let H,, be the oriented graph defined recursively by 
HI=K1,H2=KIjK1, andH,=(K,+H,_,)UK,. 

To simplify the proof of Theorem 2.1, we label all vertices of II, as 1,2, . . , , n 

Table I 

n D ! T realizing D a@ 

1 01 01 1 

2 1 2 
1 3 

% 
2 03 

3 1 

G&7) 2 

3 

4 tI 2 

1 
O4 Pqj+qq & 

5 28 

6 
1 46 
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‘k 

W(To; 2k- 1) 

(4 

W(Tb 2k) 

(b) 

Fig. 1 

so that A(H,) = {ij: i >j and n - i - 1 (mod 2)) U (21). Examples of labeled H,, 

(n s 7) are given in the second column of Table 1. 

In order to determine cr(H,), a tree of the smallest possible order will be 

constructed to realize H,. 

For a given tree To and c,, E V( 7;,), define a sequence of trees { W(7;,; i): i 2 0} 

and a sequence of vertices {ci: i 2 0}, where W(7;,; 0) = ?;,, according to the 

following rules: For k 2 1, 

(i) W(T,; 2k - 1) is obtained from two vertex-disjoint copies of W(7;,; 2k - 2) 

by adding a new vertex ck adjacent to exactly the two copies of ck_i (see Fig. 

l(a)); 
(ii) W(7’,‘,; 2k) . b is o tained from copies of W(7;,; 2k - 1) and W(T,; 2k - 2) by 

adding a new vertex adjacent to the copy of the vertex ck-i in W(T,; 2k - 2) and 

by adding an edge connecting the copy of ck in W( I;,; 2k - 1) and the copy of ck_, 

in W(T,; 2k - 2) (see Fig. l(b)). 

From the construction of the sequence of trees { W( T,; i): i 3 0}, it is easy to 

verify the following observations: 

(1) for any k 2 1, W(T,; k) has only one centroid vertex; W(T); 2k - 1) - ck 

contains exactly two identical components, each a copy of W(T);,; 2k - 2), while 

W(T,; 2k) - ck contains exactly three components, two of which are identical and 

a third one which has one more vertex than the other two identical components. 

(2) IV(W(T,; 2k))l = 3 IV(W(T,; 2k - 2))( + 2 

and 

IV(W(T,; 2k - 1))l = 2 IV(W(T,; 2k - 2))l + 1. 

(3) IVW(T,; =))I = 3kW(G)I + 1) - 1 

and 

IV(W(T,; 2k - 1))1= 2 - 3k-‘(IV(To)( + 1) - 1. 

Of course, as explicitly seen in (3), for any positive integer n, the order of tree 

W(7”; n) is a function of n and the order of the initial tree T,. 



On realization numbers 235 

(a) 
Fig. 2. 

(b) 

Now consider the oriented graph H,, which was defined above, when 

n = 2k + 1 (k 3 1). Let A denote the path of length three shown in Fig. 2(a). Let 

aO, bOc V(W(A; 1)) 1’ ie in the same component of W(A; 1) -cl so that 

4SJ(.4;1)(% c1) = dW(A;1) (b,, cl) = 2. Let Ui E V(W(A; i)) be any vertex in the 

component of W(A; i) - cri,21 not containing ui (0 S j c i - 1) so that 

dW(A;i)(ai, cri121) = Tfl + 1, 

where [.x1 is the least integer greater than or equal to X. In W(A; 2k - 1) consider 

the set {ao, b,,, ul, . . . , u~~-~} as the set of candidates. Then by Theorem A, it is 

straightforward, but tedious, to check that W(A; 2k - 1) realizes a digraph 

isomorphic to H, = H2k+l. Also, by observation (3), 

IV(W(A; 2k - l))[ = 2. 3(n-3)‘2(1V(A)I + 1) - 1 

= 2 . 3(n---3W . 5 _ 1 = 10 . y(n-W _ 1. 

So, for odd n, H,, is realizable by a tree of order 10. 3(n-3)‘2 - 1. By observation 

(1) above, the tree W*(A; 2k - 1) obtained from W(A; 2k - 1) by replacing the 

path of length two which contains centroid vertex ck as interior vertex with a 

single edge connecting the two ends of that path is also a tree that realizes H,,; 
moreover 

IV(W*(A; 2k - 1))1= IV(W(A; 2k - 1))l - 1= 10. 3(n-3)‘2 - 2. 

Therefore, the following result follows. 

Remark 2.1. For any odd integer n (n 2 3), H,, is (10 . 3(“-3)‘2 - 2)-realizable. 

Next consider H, when n = 2k (k 2 2). Let A denote the tree of order 7 shown 

in Fig. 2(b). Let a”, bO, d, E V(W(A; 1)) b e in the same component of W(A; 1) - 

c1 so that dwca;lj(uo, CJ = dWcA;l)(bO, cl) = dWcA;,)(dO, cl) = 2. For i 2 1, let ai be 

the vertex of W(A; i) defined as in the case when n = 2k + 1. In W(A; 2k - 3) 
consider the set {a,, bO, do, a,, . . . , uZ~-3) as the set of candidates. Then by 

Theorem A, it is straightforward, but tedious, to check that the tree W(A; 2k - 3) 
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realizes a digraph isomorphic to H, = H2k. Also, by observation (3), 

IV(W(A; 2k - 3))1 = 2. 3’“-4”2(IV(A)I + 1) - 1 

= 2. 3(“-4)‘2. 8 _ 1 = 16. 3(n--4P _ 1. 

So, H,, is (16.3 (n-4)n - 1)-realizable. By observation (1) above, the tree 

W*(A; 2k - 3) obtained from W(A; 2k - 3) by replacing the path of length two 

which contains centroid vertex c~__~ as interior vertex with a single edge 

connecting the two ends of that path is also a tree that realizes H,. Moreover, 

IV(W*(A; 2k - 3))l = IV(W(A; 2k - 3))l - 1 = 16. 3(“-4)‘2 - 2. 

Remark 2.2. For any even integer n (n 2 4), H, is (16 * 3(n-4)‘2 - 2)-realizable. 

An obvious observation from Theorem A is the following. 

Remark 2.3. Let D be a disconnected digraph. Zf D is realizable by a tree T, then 

all vertices of D in T have the same distance to Cd(T). Moreover, if C,(T) = {c} 

and each component of T - c contains a vertex of D, then all components of T - c 

have the same order. 

Lemma 2.1. Zf D is m-realizable by a tree T, then D is (m + 1)-realizable by a tree 

which contains exactly one centroid vertex. 

Proof. If T contains a single centroid vertex c, then let T* be the tree obtained 

from T by adding a new vertex adjacent to c. Then T* still realizes D and 

IV(T*)l = IV(T)1 + 1 = m + 1. So, we may assume that T contains two centroid 

vertices c1 and c2. It is well known that clc2 is an edge of T (see [3]), and that 

T - clc2 contains two components of the same order. Let T’ denote the tree 

obtained from T by deleting the edge clc2 and adjoining two new edges c’cl and 

c’c2, where c’ is a new vertex. Then c’ is the only centroid vertex of T’, T’ still 

realizes D (by Theorem A), and IV(T’)I = IV(T)1 + 1 = m + 1. 0 

Lemma 2.2. Let D be a disconnected digraph with components D,, D2, . . . , Dk. 

Zf T is a tree realizing D, then for each i (1 s i s k), there exists a centroid vertex c 

and a component C, of T -c containing all vertices of Di and so that 

Ill =Z 4 Ill. 

Proof. Since D is disconnected, by Remark 2.3, all vertices of D in T are equal 

distance to C,(T). Fix i, 1 G i G k. 

Case 1: If IC,(T)l = 2, let Cd(T) = { cl, c2}. Note that T - clc2 contains exactly 

two components UC,, ~1~2) and T(c2, ~1~2) with IV(T(c,, cIc2))I = 

IV(T(c,, c1c2))I. So, by Theorem A, the connectivity of Di implies that V(DJ 

must be contained in one of T(c,, c1c2) and T(c2, crc,), say T(q, c1c2). Then 
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IV(T(c,, c~cz))I = 4 IV(T)I. Thus, T(c,, clcJ is the required component of 
T - c2. 

Case 2: If IC,(T)I = 1, let Cd(T) = {c}. Pick two adjacent vertices x and y in Di 

( i.e., xy cA(Di) or YX EM). Suppose that T(x, C) # T(y, c). Then by 
Theorem A, 

IV(W, c))l + lV(T(y, c)W (1) 
Pick a vertex z in Dj, where i # i. If T(z, c) = T(x, c), it follows from (1) 
that IV(T(y, c))l# IV(T(z, c))l. By Theorem A again, y and z are adjacent, a 
contradiction to the fact that y and z are in different components of D. If 
T(z, c) # T(x, c), since z and x are not adjacent in D, by Theorem A, 

lV(T(x, ~111 = lVV(z, c)N H en=, by (11, IV(T(y, c))l + IV(W, c))l. That is, 
by Theorem A again, z and y are adjacent, again a contradiction. Therefore, 
T(x, c) = T(y, c). Consequently, any two adjacent vertices of Di are in T(x, c). 

Since Di is connected, all vertices of Di are in T(x, c). 

Let C be the component of T - c so that bw(c) = IV(C)1 (C might be T(x, c)). 

Since c is the only centroid vertex of T, by a basic result in [4] (Lemma 1.1)) 

IV(T)l - IV(C)l~ bw(c) = IV(‘X 

i.e., 2 IV(C)1 s IV(T)I. But 2 IV(T(x, c))ls2 IV(C)/. So, JV(T(x, c))l < 

f JV(T)I. Therefore, T(x, c) is as required. Cl 

Lemma 2.3. Let D be a disconnected digraph realized by a tree T of the smallest 

possible order with a single centroid vertex c. Then each component of T - c 

contains a vertex of D. 

Proof. Since D is disconnected, by Remark 2.3, for any x, y E V(D), dT(x, c) = 

d,(y> c). 
Let Y = {u: d&u, x) = d&u, y), f or all x, y E V(D)}. Pick a vertex w E 9’ so 

that, for x E V(D), 

dT(x, w) = min{dT(x, u): u E Y}. 

By the choice of w, at least two components of T - w contain a vertex of D. Let 

C,, c2,. . . , C, (k 2 2) be all components of T - w, each of which contains a 
vertex of D. Note that all vertices of D are in Uf=“=, V(Ci). Since D is 
disconnected, by Theorem A, for any i, i E (1, 2, . . . , k}, Ci and Cj have the 
same order. The subtree induced by (Uf=, V(Ci)) U {w}, denoted by T*, has a 
single centroid vertex w. By Theorem A again, T* realizes D. So, by the choice 
of T, T* = T. Therefore, w = c and hence each component of T - c contains a 
vertex of D. 0 

Theorem 2.1. For any integer n with n Z= 3, 

4X) = 
I 

10 . 3(n-3)‘2 - 2, if n is odd, 
16 . $n-9’2 _ 2 f if n is even. 
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Proof. Assume that H, is labeled as described following the definition of H,. 

(1) suppose that n is odd. Let Y1(H,) denote the set of trees which realize H, 

and contain exactly one centroid vertex. Pick a tree Til’ E Yi(H,J so that 

[V(T~“)I = min{lV(T)I: T E F,(H,)}. 

Let c, be the centroid vertex of Tc’. By Lemma 2.1, to show cu(H,) 2 

10. 3(n-3)‘2 - 2, it suffices to show that 

IV(Tt’)I 2 10. 3@-‘)” - 1. 

This is done by induction on odd n. 

If IZ = 3, it is straightforward to check that there does not exist a tree of order 

less than 9, with a single centroid vertex, which realizes H,. Thus, IV(Ty’)I 2 9. 
Suppose that the result is true for Hn-*, where n - 2 2 3. Note that H,, is 

disconnected with exactly two components {n} and {n - l} 3 Hn--2. So, by 

Lemmas 2.2 and 2.3, Tp’- c, contains exactly two components T(n, c,) and 

T(n - 1, c,). Since there are no arcs between n and n - 1, by Theorem A, 

IV(T(n, c,))l = IV(T(n - 1, c,))l. Note that T(n - 1, c,) is a tree realizing the 

digraph H,, -n. Let c,_, be the vertex in T(n - 1, c,) adjacent to c,. Then 

T(n - 1, c,) - c,_~ contains at least two components each of which contains a 

vertex of D. For otherwise, let w and T* be the vertex and the subtree of 

T(n - 1, c,) defined as in the proof of Lemma 2.3. Let T be the tree obtained 

from T* and a copy of T* by adding a new vertex v adjacent to c,_, and the copy 

of c~_~. Take a vertex in the copy of T*, which is a copy of a vertex of D, as the 

vertex it. Then the resulting tree T realizes D and contains a single centroid 

vertex v. But IV(T)1 < IV(T?‘)I. Th’ is contradicts the minimality of IV(Tc’)I. 
Let C(i) be the component of T(n - 1, c,) - c,-i containing the vertex i of 

H,, - n. Since T(n - 1, c,) - c,_i contains at least two components each of which 

contains a vertex of D, there is a vertex j E { 1, 2, . . . , n - 2) so that C(j) # 

C(n - 1). Note that, for j <n - 2, there is no arc in H, between n - 2 and j, but 

there is an arc from n - 1 to j. So, by Theorem A and the fact that C(j) is not 

equal to C(n - l), C(n - 2) is not equal to C(n - 1). 

Case 1: If C(n - 3) = C(n - 2), then since for any i E (1, 2, . . . , n - 4}, 

(n - 3)i E A(H,), but neither (n - 2)i nor i(n - 2) is in A(H,), C(i) = C(n - 2). 
Thus, T(n - 1, c,) - c,_~ contains exactly two components C(n - 1) and C(n - 2) 

(see Fig. 3(a)). And, C(n - 2) realizes HE_*. By the minimality of IV(T~“)I, 

IV(C(n - 1))l = IV(C(n - 2))1+ 1. 

By Lemma 2.1, cu(H,_J 3 IV(T~‘?,)I - 1, where T!,‘Jz is a tree of the smallest 

order in F,(H,_,). So, 

IV(Ti”)I = 2 (V(T(n - 1, c,))l + 132(2 IV(C(n - 2))/ + 2) + 1 

==4cv(H,_,) +5&4(IV(T:‘,)I - 1)+5 

23 IV(T;‘,)I + 2. 
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(a) (b) 

Fig. 3 

Case 2: If n - 3 $ V(C(n - 2)), then neither (n - 2)(n - 3) nor (n - 3)(n - 2) 

in A(&) implies that IV(C(n - 2))1 = IV(C(n - 3))1. Since IV(C(n - 1))l > 
(V(C(n - 2))1, n - 3 is not in C(n - 1). Note that the vertex IZ - 2 is not adjacent 

to i, but (n - 3)i E A(H,J, for any i E (1, 2, . . . , n - 4). So, by Theorem A, 

~EC(I~-3), for any iE{1,2 ,... , n - 4). It follows that T(n - 1, c,) - c,_, 

contains exactly three components C(n - l), C(n - 2), and C(n - 3) (see Fig. 

3(b)). By the minimality of IV(Tc’)I, 

IV(C(n - 1))l = IV(C(n - 2))( + 1 = IV(C(n - 3))l + 1. 

Note that the tree TA--2 obtained from T(n - 1, c,) by deleting C(n - 1) is in 

Y1(Hn_-2). It is easy to see that 

IW?‘)l3 2[IVV-,)I + i(lV(TL)l + III+ 1 

= 3 IV(T:_,)j + 2 z= 3 JV(T:‘!,‘l,)J + 2, 

where T!flz is a tree of smallest order in LY1(Hn_J. 

Hence, each case yields 1 V( Tc’)I 2 3 I V( T??2)l + 2. By the induction 

hypothesis, 

I V( Tc’)I G= (3(10 . 3((n--2)-3)‘2 - 1) + 2 

= 10 . 3@-3)‘2 - 3 + 2 = 10 . 3@--3)/2 _ 1. 

Therefore, LX(&) 2 10 .3@-‘)‘* - 2. By Remark 2.1, 

CY(zf,) = 10 - 3(n-3)‘2 - 2. 

(2) A similar analysis can be applied for the case when n is even. •i 
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3. Main results 

Lemma 3.1. Let D = D1 U Dz be realizable by a tree. Then 

max {3a(Di) + 3}, 
lGiS2 

if Di is disconnected (i = 1, 2), 

max {Za(Di U b;>)>, if D, is connected (i = 1, 2), 
cu(D) < 

I 

1==iS2 

max{3a(D,) + 3, $a(Dj U {Xj})}, if Di is disconnected 

and Dj is connected, 

lSi,jC2, i#j, 

where xi is a vertex not in V(D), for i = 1, 2. 

Proof. Case 1: Suppose that Di is disconnected for i = 1, 2. Let T be a tree of 

order cr(Di) + 1 with a single centroid vertex ci so that T realizes Di. By Remark 

2.3, all vertices of D, are at equal distance to ci. Denote this distance by di. 

For i = 1, 2, let k = 2, if i = 1, and k = 1, if i = 2. Let T be the tree obtained 

from T, and T2 by joining c1 to c2 by a path of length Id2 - d,l + 1 and adding (Y 

vertices and p vertices at Ci and ck, respectively, where 

and 

Ly = ( 

12 Iv(&)11 - IV(K)1 - (dk - 41, if di s d/c and IV(T)1 s lv(c)l, 
Tf IV(T,)Il - (d/c - 41, if di S dk and IV(T)1 2 IV(T,)l 

P=[ 
[+ Iv(r,)ll> if di cd, and IV(TJl G IV(T,)I, 

IV(T)1 - If IV(T,)I1, if di c dk and IV(TJl 2 IV(T,)I. 

The number 1x1 (or 1x1) is the least (respectively, greatest) integer greater 

(respectively, smaller) than or equal to x. The tree shown in Fig. 4 illustrates the 

case when dI Ed, and IV(T,)I G IV(T,)I. 

Let c be the vertex on the path joining c1 and c2, which is adjacent to ck. Then 

by the construction of T, c and ck are centroid vertices of T. Also, all vertices of 

D = D1 U D2 are at equal distance to C,(T). By Theorem A, it can be verified 

C 

I . I 

a : 
t 

.’ 
I 

I xx 3 ---. T2 
_-_ 

I P 

Fig. 4. 
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that T realizes D. Moreover, by calculating IV(T)1 in each case, 

Case 2: Suppose that Di is connected for i = 1, 2. Let T: be a tree of order 
CU(D, U {xi}) SO that TzT realizes Di U {Xi}, where Xi $ V(D). By Lemma 2.2 
applied to Di U {Xi}, there exists a component T of T,? - ci* containing all vertices 
of D,, where c: E C,(T,*). Moreover, 

Let ci E V(T) be adjacent to CT in TT. Let T be the tree constructed as in Case 1. 
Then T realizes D. By (2), 

Case 3: Suppose that only one of D1 and Dz is connected. Combining the two 
cases above, we can obtain the required result. 

This completes the proof. 0 

Note that the tree T’ obtained from the tree T constructed above by adding a 
new vertex adjacent to c1 realizes the digraph D = D, 3 D2, and T’ contains a 
single centroid vertex. Thus, the next Remark 3.1 follows immediately. 

Remark 3.1. Let D = D, + D2 be realizable by a tree. Then 

max {3a$DJ + 4}, 
lriS2 

if Di is disconnected (i = 1, 2), 

1 
max {zLy(Di U {Xi}) + l}, 

cu(D) ~ l=ziG2 

max{3a(Di) + 4, $a(Dj U {Xi}) + l}, if Di is disconnected 

and Dj is connected, 

ISi, jC2, i#j, 

if Di is connected (i = 1, 2), 

where xi is a vertex not in V(D), for i = 1, 2. 

Lemma 3.2. Let D = {u} U D2 (respectively D = {u} + D2, D = Dzj {u}), 

where D2 is a disconnected digraph. If T2 is a tree with a single centroid vertex c, 

which realizes 4 and is of the smallest order, then there exists a tree T with a single 
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centroid vertex which realizes D so that 

IVV)l +V(T,)I -; 

i 
respectively, 

IVU-)I +f(T,)I -;+ I), 

where k is the number of components of T2 - c. 

Proof. Let C,, CZ, . . . , Ck be the components of T2 - c and let ci be the vertex of 

C, adjacent to c (1 G i c k). By Remark 2.3, all vertices of D2 in T2 have the same 

distance to c, and each component of T, - c contains at least one vertex of D2. 

Moreover, the disconnectedness of D, implies, by Theorem A, that any two 

components of T2 - c have the same order. Hence, 

IV(G)l =; (IVCG)l - 1) (1 s i G k). 

Let T be the tree obtained from T, and a copy of C, by adding an edge 

connecting c to the copy of c,. This second copy of C, in T is denoted by C,,, 

(see Fig. 5). Denote a vertex of C k+l which is a copy of a vertex of D2 by u. 

Consider the vertices of T2 which represent vertices of D2, together with u, as the 

set of candidates, and consider V(T) as the set of voters. Then by Theorem A 

again, T realizes D = {u} U D2. Clearly, 

If D = {u} + D2 (respectively, D = D2+ {u}), let T be the tree obtained from 

the tree constructed above by adding a new vertex adjacent to the vertex of C,,, 

which is a copy of c, (respectively, deleting an end vertex of C,,,). Hence, T is as 

required. q 

______-_-s-_--i 

Fig. 5. 
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16 * 3(“-4)12 - LX(D) n is =s 2, if even, 

10 * 3(n-3)‘2 - 2, if n is odd. 

Proof. The proof is by induction on IZ. 

It is easy to check Table 1 in Section 2 to see that the inequality holds for 

IZ = 1, 2, 3, 4. Suppose that the result is true for any D E 4 (4 c k c n - 1). Let 

D E 9”. It is known (see Theorems 2.1 and 2.3 in [4]) that D is transitive and 

contains no anti-directed path of length 3. 

First of all, consider the case when n is even. Note that n 3 6. 

Case A: suppose that D is connected. Now by Lemma 2.5 in [4], D = D2 + D1 

for some subdigraphs D1 and 4 of D. Let IZ~ = IV(D;)j, i = 1, 2. 

Subcase A.l: Suppose that it; 3 2 (i = 1, 2). Let T be a tree realizing D so that 

IV(T)1 = a(D). By Remark 3.1, 

max {$a(Di U {Xi}) + l}, if Di is connected (i = 1, 2), 
(y(D) ~ ISiS2 

max{3a(Di) + 4, $a(Dj U {Xi}) + l}, if Di is disconnected 

and Dj is connected, 

l=Gi,j<2, i#j, ! 

max {3a(Di) + 4}, if Di is disconnected (i = 1, 2), 
lSis2 

where xi is a vertex not in V(D), for i = 1, 2. Note that the function f(x) = 3” (or 

g(x) = 3-7 is increasing (respectively, decreasing) and that if it; is odd, then 

IZ~ 6 n - 3 since 12 is even. By the induction hypothesis, for i = 1, 2, 

3a(DJ + 4 s 
( 

3(16 . 3@-‘)‘* - 2) + 4, if n, is even, 

3(10 * 3 (v~)‘* - 2) + 4, if n, is odd, 

~ 3 . 16 . 3(n-2-4)‘2 - 6 + 4, 

1 

if n; is even, 

3 . 10 . +fi-3-3)‘* _ 6 + 4 2 if n, is odd, 

< 16 . 3+4)‘2 _ 2 

and 

1 

s(16.3 (n,+l-4)/2 

&(D; U {xi}) + 1 s 
-2)+1, if IZ~ + 1 is even, 

$(lO . 3 (n,+l-3)/2 -2)+ 1, if 12; + 1 is odd, 

s ( 

$.16.3 (n-2+1-4)‘2 - 3 + 1, if ni + 1 is even, 
3 . 5 . +--2+1-W _ 3 + 1, ifn,+l isodd, 

< 16 . 3b--4W _ 2 

Thus, I V( T)J s 16 . 3@-‘)‘* - 2. 

Subcuse A.2: Suppose that n, = 1. Then n - n, = n - 1 is odd. By Lemma 2.1, 

D2 is (a(D2) + 1)-realizable by a tree, say T2, which contains a single centroid 
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vertex c. Let T be the tree obtained from T2 by adding two vertices u and v 

adjacent to c and to a vertex x furthest away from c, respectively. Consider the 

set V(D,) U { > r~ as the set of candidates, and consider the set V(T) as the set of 

voters, then T realizes D. So, by the induction hypothesis, 

IV(T)1 = 2 + IV(T,)I s 2 + 10. 3(n-1-3)‘2 - 1 < 16 - 3@-‘)‘* - 2. 

Subcase A.3: Suppose that n2= 1. Then IZ~ = n - 1 is odd. By Lemma 2.1, D, is 

(o(Di) + 1)-realizable by a tree, say T,, which contains a single centroid vertex c. 

Without loss of generality, assume that c is not used as a candidate, for otherwise 

c dominates every vertex in D1 and D = (D2 U {c}) + (Q - {c}), so that this case 

has been treated in Subcase A.l. So, let T = Tl and consider the centroid vertex 

of Tl as the only vertex of D2 (a candidate). Then T realizes D and 

IV(T)1 = IV(T,)I s 10 . 3(“-1-3)‘2 - 2 + 1 < 16. 3@-‘)‘* - 2. 

So, if IZ is even and D is connected, then (Y(D) < 16 - 3@-‘)‘* - 2. 

Now consider the case when D is disconnected. 

Case B: Suppose that D is disconnected. Assume that D = D1 U 4, where D1 

is connected. Let ni = IV(Di)l (i = 1, 2). 

Subcase B.l: Suppose that ni 3 2 (i = 1, 2). Let T be a tree realizing D so that 

IlV(T)I = a(D). By Lemma 3.1, 

ma {Sa(Di U {xi>)>, if D2 is connected, 
cu(D) ~ l=is* 

max{3a(D2) + 3, $a(D, U {xl})}, if 4 is disconnected 

where xi is a vertex not in V(D), for i = 1, 2. A computation very similar to that 

done in Subcase A.1 yields IV( T)I c 16 * 3@-‘)‘* - 2. 

Subcase B.2: Suppose that n, = 1. 

If D2 is disconnected, let T2 be a tree realizing 4 so that T2 contains a single 

centroid vertex and is of the smallest order. Then by Lemma 3.2, there exists a 

tree T realizing D and for some integer k 2 2, 

IV(Ol +qT,)I-;. 
By the induction hypothesis, 

IV(T)1 s? (10. $a-l--3)/* _ 1) _; 

<Le. 
k 

10.3’“-W-l_? 
k 

s 16 . 3(“-4)/* _ 2 

If D2 is connected, then by Lemma 2.5 in [4], D2 = D2*j D2i for some 

subdigraphs D2i and D2* of 4. Let q = ]V(D2J]. Note that LY* = n - 1 - (Ye. 



On realization numbers 245 

Subsubcase B.2.1: Suppose that ai 3 3 (i = 1, 2). Let T2 be a tree of order 
(u(4) which realizes 4. Then by Remark 3.1, cr(DJ is less than or equal to 

I max {~cx(D,) + 4}, 
l&d! 

if Dzi is disconnected (i = 1, 2), 

max {$c~(Dzi U {Xi}) + l}, 
l&G2 

if D~i is connected (i = 1, 2), 

max{3a(D,) + 4, $a(Dzj U {Xi}) + l}, if Dzi is disconnected I and D2j is connected, 

lsi, jC2, i#j, 

where xi $ V(D), for i = 1, 2. 
Note that 3 c Cui = IV(Dzi)l c n - 4. So, a computation very similar to that done 

in Subcase A.1 gives the following inequalities: 

. 3a(D2,) 4 3 16 . 3(“-w2 _ 2 if + ~ cyi is even, 
3 . 10. 3(“-*W - 

2’ 

3 if pi is odd, 

4 . 16 - 3(n-4)‘2 - 2, if pi is even, 
= 

3 * 10 * 3(n-4)‘2 - 2, if Cri is odd, 

and 

$(Y(Dzi U {Xi}) + 1~ ( 
2 * 16 * 3(“--8)‘2 - 2, if ai is odd, 

t - 10 . 3(n-6)‘2 - 2, if ai is even, 

a . 16 . 3(n-4)‘2 - 2, if CY,. is odd, 
= 

$ - 10 . 3(n-4)‘2 - 2, if cyi is even. 

Hence, 

IV(T,)( < 3(16. 3(n-4)‘2 - 2). (3) 

It may be assumed that T2 is a tree T’ described immediately prior to Remark 
3.1. So, T2 contains a single centroid vertex, denoted cO, and arose from the tree 
T of Lemma 3.1. By the construction in the proof of Lemma 3.1, it can be 
assumed that all vertices of D22 are closer to c0 than all vertices of D21 by exactly 
distance 1. Let w be the vertex adjacent to co so that the distance between w and 
some vertex of D21 is the same as the distance between co and some vertex of D22. 
Let T; be the tree obtained from T2 by deleting the edge wco and adding a new 
vertex v adjacent to both w and co. Let T be the tree obtained from two copies of 
T; by adding an edge connecting two copies of V. Note that all vertices of 4 are 
equi-distance from v. Then take all vertices of 4 in one copy of T$ and a vertex 
of D2 in another copy of T; as the set of candidates in T, and take the vertex set 
of T as the set of voters. Then by Theorem A, T realizes D. Also IV(T)1 = 

2 IW;)l = 2(IWG)I + 1). BY (3) 

IV(T)1 <$16. 3(“-4)n_ $ + 2s 16. 3(“-4)‘2_ 2. 
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Subsubcase B.2.2: Suppose that (Ye = 2 (The case (Ye = 2 can be treated 

similarly.) Then Q = at - 1 - LYE = it - 3 is odd and greater than or equal to 3. 

Let D&=&U {x}, where x $ V(D). Let T2*2 be a tree, of order a(D&), 

which realizes D&. By Lemma 2.2, there exists a component & of TTz - c, for 

some c E C,(T,*,), so that all vertices of Dz2 are in Tz2 and IV(Tz2)1 si IV(T,*)I. 
Let v be the vertex in V(Tz2) adjacent to c. Remark 2.3 implies that all vertices of 

DZ2 in Tz2 are at equal distance to U. Let T2 be the tree obtained from two 

vertex-disjoint copies of Tz2 by adding a new vertex u adjacent to both copies of 

the vertex u and adding another new vertex w adjacent to one of the copies of ‘u. 

Note that u and the copy of v adjacent to w are both centroid vertices of T2. As 

the set of candidates in T2, choose two vertices of Dz2 in the copy of T,, to which 

w is not added, together with a copy of V(D& in the other copy of Tz2. The 

former two vertices are chosen as follows: if D2, has no arc and there are two 

independent vertices in Dz2, choose copies of those two; if D2, consists of a single 

arc and there is an arc in Dz2, choose copies of those two vertices connected by 

that arc. This can be done unless 

(a) D2. consists of two independent vertices and Dz2 is complete, hence the 

transitive (n - 3)-tournament, or 

(b) Dzl consists of a single arc and Dz2 consists of n - 3 independent vertices. 

These two special cases will be handled separately below. Note that the latter 

n - 3 candidates chosen above are closer to C,(T,) than the former two 

candidates by exactly distance one. Take V(T,) as the set of voters in T2. Then by 

Theorem A, T2 realizes D2. Let T be the tree obtained from two vertex-disjoint 

copies of T2 by adding a new edge connecting two copies of u, each of which 

becomes a centroid vertex of T. As the set of candidates in T, choose a copy of a 

vertex of D2 in one copy of T2 together with all vertices of D2 in the other copy of 

T2. Take V(T) as the set of voters in T. Then T realizes D. Moreover, by the 

induction hypothesis, 

IV(T)l = 2 IVV-JI = 2(2 IVCGdl + 2) =s 2 IV(Wl + 4 

< 2(16 - 3 (n-3+1-4)/2 
- 2) + 4 < 16 . 3(n-4)‘2 - 2. 

In special case (a), define trees Hk, k 2 1, as follows: H, is K2, and for all 

ksl, &+, is obtained from vertex-disjoint copies of Hk and K,,k by adding one 

new edge between a vertex in C,(H,) and vertex in C,(K,,,). So, in Hn-3, if 

those IZ - 3 vertices which are adjacent to one fixed centroid vertex are 

considered as candidates and if all vertices are considered as voters, then Hn_3 
realizes Dz2, the transitive (n - 3)-tournament. Also, IV(H,_,)I = $(n2 - Sn + 8). 
Let T, be the tree obtained from two vertex-disjoint copies of Hn_-3, denoted 

HFJ3 and HF13, by adding a path of length two to a vertex v, in C,(H;l,), a new 

end vertex adjacent to a vertex v2 in Cd(HFj3), and a new vertex u adjacent to 

both v, and v2. Note that C,(G) = {u, v,}. Now, in G consider candidate 

vertices to be the copy of V(D,,) in Hy?? together with the two endvertices of T2 

adjacent to v2. Take V(T2) as the set of voters. Then T2 realizes D2. Form T as 
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above. Then T realizes D. and 
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IV(T)1 = 2 IV(G)1 = 2(2 IV(&,)I + 4) 

= 2n2 - 10n + 24 < 16.3@-‘)” - 2. 

Special case (b) can be treated similarly, where Z-&-3 is taken to be K,,n_-3. If 

the 12 - 3 endvertices of H,_, are considered as candidates and all n - 2 vertices 

of Hn-3 are considered as voters, then Hn-3 realizes Dz2. The same construction 

of T2 and T as in (a) yields a tree which realizes D, and 

IV(T)1 =s 4 IV(Hn_3)j + 8 = 4(n - 2) + 8 < 16. 3@-‘)” - 2. 

Subsubcase B.2.3: Suppose that (Ye = 1 (The case (Y, = 1 can be treated 

similarly.) Then a, =II - 1 - (Y* = n - 2 is even. Let V(D2J = {z}. If Dzl is 

connected, then by Lemma 2.5 in [4], 4, = Y +X, for some subdigraphs X and 

Y. So, D,=(YU{z})+X, and then this case is contained in previous cases 

unless IV(X)1 = 1. If IV(X)1 = 1 and Y is connected, then again by Lemma 2.5 in 

[4], Y = Y, j Y, for some subdigraphs Y1 and Y, of Y, and D2 = (Y, U {z}) + 

(Yl U X) can be treated as in previous cases. There remains the special instance 

where IV(X)1 = 1 and Y is disconnected. Note that IV( Y)( = n - 3. If Y = {y,} U 

{Yd U * . . U {Y_~}, then the tree T2 illustrated in Fig. 6 realizes 4. 

Let T be the tree obtained from two copies of T2 by adding an edge connecting 

the two copies of c. Then T realizes D and 

IV(T)1 = 2(IV(T,)I) = 4n - 2 s 16 . 3@-“*) - 2. 

So, we may assume that Y contains a component with at least two vertices. Let 

T(Y) be a tree with a single centroid vertex c which realizes Y and is of the 

smallest order. Let C1, CZ, . . . , C, be the components of T(Y) - c. As in the 

proof of Lemma 3.2, 

Ivtci)l =~(lv(r)l - l) (1 G i =Z k). 

Note that IV(C,)l 2 3. Construct T as in that proof, except that not only one copy 

C k+l, of C, is added, but two copies of C, are added, denoted C,,, and C,,,. To 

complete the construction of T delete one endvertex of C,,, and add a new 
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vertex adjacent to the vertex of C,,, which is a copy of cl. Choose a vertex of 

C,,, (respectively C,,,) which is a copy of a vertex of Y to be x (respectively to 

be z). Consider the vertices T(Y) in T which represent vertices of Y, together 

with x and z as the set of candidates, and consider V(T) as the set of voters in T. 

Then by Theorem A, T realizes D2, and T has a single centroid vertex c, and all 

vertices of D2 are at the same distance from c. Now, let T’ be the tree obtained 

from two copies of T by adding an edge connecting the two copies of c. Clearly 

T’ realizes D, and by the induction hypothesis (since IV(Y)1 = n - 3 is odd), 

IVGYI = 2 IVWI c ‘NV(W))l + f (IVG’V))I - 1) 

2(k + 2) = ~ 10 . 30-W _ 2 _ f c 16 . 3(-O’* _ 
3k 

2. 

Therefore, without loss of generality, assume that D2r is disconnected. Let T21 

be a tree, of the smallest order with a single centroid vertex, which realizes D2,. 

By Lemma 3.2, there exists a tree T2 with a single centroid vertex, say c, realizing 

D2 so that for some integer k a 2, 

IVG)l sy lv(z&)l-;+ 1. 

Let T be the tree obtained from T2 and a copy of T2 by adding an edge joining c 

and its copy. As the set of candidates in T, choose one vertex of D2 in one copy 

of T2, together with a copy of V(D2) in the other copy of T2. Take V(T) as the set 

of voters. Then by Theorem A, T realizes D. By the induction hypothesis and 

(4)? 

IVG’I = 2 IVG’3l ,~lv(~I)l_~ 

2(k + 1) 
sk (16 . $n--2--4)1* _ 1) _ y 

2(k + 1) <-----. 16 . 3(n-‘W* _ 4 s 
3k 

16 . 3(n-‘912 _ 
k 

2 

This completes the proof that a(D) =s 16. 3@-‘)‘* - 2 if n is even. 

Arguments similar to those in the case when n is even can be used in the case 

when n is odd. That is, if 12 is odd, then 

a(D) < 10 . 3(n-3)‘2 - 2. 

The proof is complete. q 
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Theorem 3.2. For any positive integer n, 

(1, ifn = 1, 

a( 9g = 
3, if n =2, 

10 . 3@-9’2 _ 2 
16 . 3(“-4)a _ 2: 

ifni.soddandnS3, 

ifnisevenandn~4. 

Proof. It is easy to check that a(4) = 1 and (~(5~) = 3. For n 3 3, the result 

follows from Remarks 2.1, 2.2, and Theorem 3.1. 0 
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