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Text. The purpose of this paper is to show that the reflex fields
of a given CM-field K are equipped with a certain combinatorial
structure that has not been exploited yet.
The first theorem is on the abelian extension generated by the
moduli and the b-torsion points of abelian varieties of CM-type, for
any natural number b. It is a generalization of the result by Wei on
the abelian extension obtained by the moduli and all the torsion
points. The second theorem gives a character identity of the Artin
L-function of a CM-field K and the reflex fields of K . The character
identity pointed out by Shimura (1977) in [10] follows from this.
The third theorem states that some Pfister form is isomorphic to
the orthogonal sum of TrK ∗(Φ)/Q(āa) defined on the reflex fields⊕

Φ∈Λ K ∗(Φ). This result suggests that the theory of complex
multiplication on abelian varieties has a relationship with the
multiplicative forms in higher dimension.
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0. Introduction

The moduli of abelian varieties of a CM-type and their torsion points generate an abelian exten-
sion, not of the field of complex multiplication, but of a reflex field of the field. This is the theory of
Shimura and Taniyama, which determines the Galois group of the abelian extension as the kernel of
the half norm map between the idele groups (cf. [12, Main Theorem 1, 2]).

After that, in order to give a more direct description of the Galois group, Shimura [9] and Ovseevich
[5] investigated into the abelian extension generated by the class-field of the maximal totally real
subfield of the CM-field K and complex multiplication. There is also the work by Kubota on the
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abelian extension generated by one CM-type of K [3]. On the other hand, Wei proved a theorem
on the abelian extension generated only by complex multiplication [13]. Our first theorem (2.1) is
a generalization of the theorem by Wei, which deals the abelian extension generated by the moduli
and the b-torsions for a natural number b. The proof uses a combinatorial property of the reflex fields
(Corollary 1.2).

In Section 3, a set of CM-fields K (I) including K is proposed as a dual set of the reflex fields of K .
A character identity holds between these two sets (Theorem 3.1). The character identity mentioned in
[10] is obtained from this. The set of K (I) consists of only conjugate fields of K over Q, if the degree
of K is 2, 4 or 8.

The third theorem (4.1) states the relation between reflex fields and some Pfister form. Let
K0 be the maximal totally real field of a given CM-field K . Then, K = K0(

√−d) for some to-
tally positive element d ∈ K0. Using the embeddings ϕ1, . . . , ϕN : K0 ↪→ C, the Pfister form q :=
〈1,ϕ1(d)〉 ⊗ · · · ⊗ 〈1,ϕN (d)〉 is defined over the Galois closure of K0 over Q. The third theorem states
that q is isomorphic to the orthogonal sum of 2−N TrK ∗(Φ)/Q(āa) defined on the reflex fields K ∗(Φ).

In the case of imaginary quadratic fields Q(
√−d), the Pfister form 〈1,d〉 equals the quadratic

form on Q(
√−d) defined by the norm NQ(

√−d)/Q . Theorem 4.1 is a generalization of this to higher
dimension.

Some basic notations and definitions are given in Section 1. Each following section depends on the
content of Section 1.

1. Some algebraic properties of CM-fields and their reflex fields

In this section, several results on the reflex fields and their Galois groups are shown. They are used
to prove the theorems in the remaining sections.

1.1. Basic notations

Here, recall the definitions of CM-types, their dual CM-types; let K be a CM field and K0 be its
maximal totally real field. Their Galois closures are denoted by K c and K c

0 respectively. We denote the
Galois groups:

G := Gal
(

K c/Q
)
, G0 := Gal

(
K c

0/Q
)
,

H := Gal
(

K c/K
)
, H0 := Gal

(
K c/K0

)
, C := Gal

(
K c/K c

0

)
,

where Q is the rational number field. There is an exact sequence:

1 C G G0 1.

Since K c is also a CM-field, the complex conjugation ι is a central element of G . The pair (K ,Φ)

is called a CM-type of K , when Φ is a set of the embeddings of K ↪→ C over Q such that Φ and
ιΦ are disjoint, and every embedding is contained in Φ ∪ ιΦ . Therefore, Φ and Φ ∪ ιΦ correspond
one-to-one to the left cosets G/H0, G/H respectively.

For a CM-type (K ,Φ) and a set SΦ :=⋃
ϕ∈Φ ϕH , define a subgroup H∗(Φ) of G by

H∗(Φ) := {
σ ∈ Gal

(
K c/Q

)
: σ SΦ = SΦ

}
. (1)

Then, ι /∈ H∗(Φ), and H∗(Φ)SΦ = SΦ . Hence, SΦ = H∗(Φ)ψ1 ∪ · · · ∪ H∗(Φ)ψM , which is a disjoint
union of right cosets. Let K ∗(Φ) be the fixed subfield of K c by H∗(Φ), then, K ∗(Φ) is a CM-field. If
we set Φ∗ := {ψ−1

1 |K ∗(Φ), . . . ,ψ
−1
M |K ∗(Φ)}, (K ∗(Φ),Φ∗) is also a CM-type. (K ∗(Φ),Φ∗) is called the

dual CM-type of (K ,Φ), and K ∗(Φ) is called the reflex field of (K ,Φ).
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1.2. On the structure of the Galois groups of CM-fields and their reflex fields

In this section, we define a 1-cocycle map and an embedding Gal(K c/Q) ↪→ IndG
H0

(Z2)� G0 to see
the structure of the Galois group of the reflex fields. The results in this section are already described
in [2] in a similar fashion. Here, we reformulate the descriptions in [2] to clarify the relation between
the structure and the action of G on the CM-types, for the proofs of the following theorems.

Let H0 act on Z2 trivially. The induced module IndG
H0

(Z2) can be regarded as a set of maps

Map(G/H0,Z2), on which G acts by σ( f )(τ H0) = f (σ−1τ H0). Since K c
0 is the composite field of all

the conjugate fields of K0 over Q, C =⋂
τ∈G τ H0τ

−1. Hence, the actions of C on G/H0 and IndG
H0

(Z2)

are trivial. Therefore, G0 = G/C also acts on G/H0 and IndG
H0

(Z2).

As an abelian group, we have C ∼= (Z2)
m for some integer m. In fact, since K = K0(

√−d) for some
totally positive d ∈ K0, K c equals K c

0(
√−ϕ1(d), . . . ,

√−ϕN (d)), where ϕ1, . . . , ϕN are the embeddings
of K0 ↪→ C over Q.

The following lemma shows that when G acts on C by conjugation τ · a = τaτ−1 for τ ∈ G and
a ∈ C , C can be embedded into IndG

H0
(Z2) as a G-module.

Lemma 1.1. Using a totally positive d such that K = K0(
√−d), define a map r : C → IndG

H0
(Z2) by

r(a)(ϕi H0) =
{

0 if a(
√−ϕi(d)) =√−ϕi(d),

1 otherwise.
(2)

Then, r does not depend on the choice of d, and it is an injective G-homomorphism.

Proof. It is clear that r does not depend on the choice of d. Furthermore, it is an injective homo-
morphism of additive groups, because K c = K c

0(
√−ϕ1(d), . . . ,

√−ϕN (d)). For any τ ∈ G , if we put

(−1)ni = τ−1(
√−ϕi(d))/

√−τ−1ϕi(d), then

τaτ−1(√−ϕi(d)
)= (−1)ni τa

(√−τ−1ϕi(d)
)

= (−1)ni+r(a)(τ−1ϕi H0)τ
(√−τ−1ϕi(d)

)
= (−1)r(a)(τ−1ϕi H0)

√−ϕi(d).

So, (τ · r)(a)(ϕi(d)) := r(a)(τ−1ϕi H0) = r(τaτ−1)(ϕi H0). Hence, r is a G-homomorphism. �
The embedding r given in Lemma 1.1 can be extended to a 1-cocycle map G → IndG

H0
(Z2).

Definition 1. For a CM-type (K ,Φ) with Φ = {ϕ1, . . . , ϕN}, define a map rΦ : G → IndG
H0

(Z2) to be

rΦ(τ )(ϕi H0) :=
{

0 if τ−1ϕi ∈ Φ,

1 otherwise.
(3)

Proposition 1.1. The map rΦ is a 1-cocycle that equals r on C . The cohomology class [rΦ ] in H1(G0, IndG
H0

(Z2))

is determined independently from the choice of the CM-type (K ,Φ). Moreover, (K ,Φ) �→ rΦ gives a map from
the CM-types of K onto the cohomology class [rΦ ]. For any two CM-types (K ,Φ) and (K ,Φ ′), rΦ = rΦ ′ if and
only if Φ ′ = Φ or ιΦ .

Proof. For a ∈ C , aϕi H = ϕi H or ιϕi H , since aϕi H0 = ϕi H0. Furthermore, aϕi H = ϕi H if and only if
a fixes

√−ϕi(d), since K c
0 · ϕi(K ) = K c

0(
√−ϕi(d)). Hence, rΦ |C = r.
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For any τ1, τ2 ∈ G ,

rΦ(τ1τ2)(ϕi H0) = 0 ⇐⇒ (τ1τ2)
−1ϕi ∈ Φ

⇐⇒ rΦ(τ2)
(
τ−1

1 ϕi H0
)=

{
0 if τ−1

1 ϕi ∈ Φ,

1 if τ−1
1 ϕi ∈ ιΦ

⇐⇒ rΦ(τ2)
(
τ−1

1 ϕi H0
)=

{
0 if rΦ(τ1)(ϕi H0) = 0,

1 if rΦ(τ1)(ϕi H0) = 1

⇐⇒ rΦ(τ1)(ϕi H0) + rΦ(τ2)
(
τ−1

1 ϕi H0
)= 0

⇐⇒ (
rΦ(τ1) + τ1 · rΦ(τ2)

)
(ϕi H0) = 0.

So rΦ is a 1-cocycle. Next, we shall show the map Φ �→ rΦ is onto [rΦ ]; using the CM-type Φ

and f ∈ IndG
H0

(Z2), any CM-types Φ ′ are represented by {ι f (ϕ1 H0)ϕ1, . . . , ι
f (ϕN H0)ϕN }. Then, rΦ ′ (τ ) =

rΦ(τ ) + τ · f − f , which implies that

rΦ ′(τ ) = rΦ(τ ) for all τ ∈ G ⇐⇒ f equals 0 or 1 constantly.

Hence, the last statement also holds. �
Since rΦ |C = r and G/C = G0, rΦ induces a 1-cocycle of H1(G0, IndG

H0
(Z2)/r(C)). There is the exact

sequence of cohomology groups:

H1(G0, IndG
H0

(Z2)/r(C)) H2(G0, r(C)) H2(G0, IndG
H0

(Z2)).

Lemma 1.2. Let [s] be the image of [rΦ ] by H1(G0, IndG
H0

(Z2)/r(C)) → H2(G0, r(C)). Then, [s] ∈
H2(G0, r(C)) corresponds to the exact sequence: 1 → C → G → G0 → 1.

Proof. For σ ∈ G0, fix a pre-image of G → G0, and denote it by σ̂ . Then, [s] in H2(G0, r(C)) is given
by

x(σ , τ ) = rΦ(σ̂ ) − rΦ(σ̂ τ ) + σ̂ · rΦ(τ̂ ).

Let a := σ̂ τ̂ σ̂ τ−1, then a ∈ C , and we have

x(σ , τ ) = rΦ(σ̂ ) − rΦ

(
a−1σ̂ τ̂

)+ σ̂ · rΦ(τ̂ )

= rΦ(σ̂ ) − (−rΦ(a) + rΦ(σ̂ ) + σ̂ · rΦ(τ̂ )
)+ σ̂ · rΦ(τ̂ )

= r(a) = r
(
σ̂ τ̂ σ̂ τ−1).

This means x(σ , τ ) coincides with the exact sequence. �
By Lemma 1.2, [s] belongs to the kernel of H2(G0, r(C)) → H2(G0, IndG

H0
(Z2)) in the exact se-

quence. Therefore, there is a commutative diagram of two exact sequences:
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1 C

r

G G0 1 (exact)

1 IndG
H0

(Z2) IndG
H0

(Z2) � G0 G0 1 (exact).

The group operation of the semi-direct group IndG
H0

(Z2) � G0 is defined by

( f ,σ )
(

f ′,σ ′)= (
f + σ · f ′,σσ ′). (4)

The projection on IndG
H0

(Z2) of the middle vertical homomorphism equals rΦ for a CM-type (K ,Φ).
The corollary follows from the discussion above.

Corollary 1.1. Let (K ,Φ) be a CM-type of K . Let ρ be the canonical epimorphism G � G0 . Then, the map
ρΦ : G → IndG

H0
(Z2) � G0 given by τ �→ (rΦ(τ ),ρ(τ )) is an injective homomorphism.

By the definition of rΦ , we have for any τ ∈ G ,

τ ∈ H∗(Φ) ⇐⇒ rΦ(τ ) equals 0 constantly. (5)

Therefore, using the embedding rΦ and ρ defined in Corollary 1.1, the subgroups of G can be restated
as follows:

C = {
τ ∈ G: ρ(τ ) = id

}
, (6)

H∗(Φ) = {
τ ∈ G: rΦ(τ ) = 0 for any τ

}
. (7)

In particular, by the injectivity of r on C , C ∩ H∗(Φ) = {id} for any (K ,Φ). On the other hand, C ⊂ H .
Hence, H∗(Φ) can equal H only when C = {id, ι}.

1.3. The conjugacy among CM-types

It is said that two CM-types (K ,Φ) and (K ,Φ ′) are conjugate if and only if Φ ′ = τΦ for some
τ ∈ G . Corresponding to the action of G on the CM-types of K , a new action of G on IndG

H0
(Z2) is

introduced in this section.
Fix a CM-type Φ0 := {ϕ1, . . . , ϕN } of K . Then, for f ∈ IndG

H0
(Z2), a CM-type Φ f is given by

Φ f := {
ι f (ϕ1 H0)ϕ1, . . . , ι

f (ϕN H0)ϕN
}
. (8)

The set of the CM-types of K has a one-to-one correspondence with IndG
H0

(Z2) by f �→ Φ f .

Regarding G as a subgroup of IndG
H0

(Z2) � G0 by the embedding ρΦ0 defined in Corollary 1.1, let

G act on IndG
H0

(Z2) � G0 by multiplication from the left-hand side. This yields a new action of G on

IndG
H0

(Z2) given by τ ∗ f := rΦ0 (τ ) + τ · f . This action depends on Φ0. We shall show the lemma:

Lemma 1.3. The identification between all the CM-types and IndG
H0

(Z2) given by f �→ Φ f coincides with their
G-structure, i.e., τΦ f = Φτ∗ f for τ ∈ G. Hence, H∗(Φ f ) coincides with the stabilizer of f , i.e., τ ∗ f = f ⇐⇒
τ ∈ H∗(Φ f ). In addition, two CM-types (K ,Φ f ), (K ,Φ f ′ ) are conjugate if and only if there exists τ ∈ G such
that f ′ = τ ∗ f .
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Proof. If we show τΦ f = Φτ∗ f for any τ ∈ G , it is easily seen that the remaining statements hold.
For τ ∈ G and ϕ ∈ Φ0, we have

rΦ f (τ )(ϕH0) = 0 ⇐⇒ ι f (ϕH0)ϕ ∈ τΦ f .

Hence,

τΦ f = {
ι
(rΦ f (τ )+ f )(ϕ1 H0)

ϕ1, . . . , ι
(rΦ f (τ )+ f )(ϕN H N )

ϕN
}
.

Since rΦ f (τ ) = rΦ0(τ ) + τ · f − f ,

rΦ f (τ ) + f = rΦ0(τ ) + τ · f = τ ∗ f . (9)

Therefore, τΦ f = Φτ∗ f . We proved the lemma. �
The set of the CM-types of K is divided into the orbits by the action of G . Each orbit corresponds

to a conjugacy class of the CM-types of K . The fixed subgroup of Φ is H∗(Φ). Therefore, the degree
of the reflex field K ∗(Φ) equals the cardinality of the orbit. From this, the following lemma follows
which is also described in [11]:

Lemma 1.4. Let Λ be a system of representatives for the conjugacy classes of the CM-types of K . Then, the sum
of the degrees of the reflex fields {K ∗(Φ)}Φ∈Λ equals 2N .

It is used in the proof of Theorem 2.1.

1.4. On a combinatorial property of half norm maps

For a CM-type (K ,Φ), a half norm map K × → K ∗(Φ)× is defined by a �→∏
ϕ∈Φ ϕ(a). In general,

for a given G-module M , a half norm map NΦ : M H → M H∗(Φ) is defined by a �→∑
ϕ∈Φ ϕ(a), where

M H , M H∗(Φ) are the subsets of M consisting of the fixed elements by H , H∗(Φ) respectively. Then,
NΦ(a + ιa) equals the norm map NG/H : a �→∑

σ∈G/H σ(a).
The following proposition shows a characteristic property of half norm maps.

Proposition 1.2. Let M be a G-module on which ι acts as −1. Denote the dual CM-type of (K ,Φ) by
(K ∗(Φ),Φ∗). Then, two maps are defined using the half norm maps:

(NΦ)Φ∈Λ : M H →
⊕
Φ∈Λ

M H∗(Φ),

a �→
(∑

ϕ∈Φ

ϕ(a)

)
Φ∈Λ

, (10)

∑
Φ∈Λ

NΦ∗ :
⊕
Φ∈Λ

M H∗(Φ) → M H ,

(bΦ)ϕ∈Φ �→
∑
Φ∈Λ

∑
ψ∈Φ∗

ψ(bΦ), (11)
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where Λ ranges all the conjugacy classes of the CM-types of K . Then, the composition of the following maps
equals the multiplication by 2N−1 on M H , where 2N is the degree of K over Q:

M H (NΦ)Φ∈Λ−−−−−→
⊕
Φ∈Λ

M H∗(Φ)

∑
Φ∈Λ NΦ∗−−−−−−−→ M H .

This lemma is generalized to Proposition 4.1 in Section 4. Hence, we omit the proof here.
Let IL be the idele group of a number field L. For a natural number b, define an open subgroup

U L((b)) ⊂ IL by

U L((b)) := (L∞)×+ ×
∏
p|(b)

(1 + bOp) ×
∏
p�(b)

O×
p , (12)

where Op is the ring of integers of the local field Lp , and (L∞)×+ is the connected open subgroup of
1 in (L ⊗Q R)× .

From Proposition 1.2, the corollary follows immediately. It will be used in the proof of Theorem 2.1.

Corollary 1.2. The composition of the following two maps equals the multiplication by 2N−1 on IK /

U K ((b))IK0 :

IK /IK0 U K ((b))
(NΦ)Φ∈Λ−−−−−→

⊕
Φ∈Λ

IK ∗(Φ)/IK ∗
0 (Φ)U K ∗(Φ)((b))

∑
Φ∈Λ NΦ∗−−−−−−−→ IK /IK0 U K ((b)).

In particular, the elements that belong to the kernel of (NΦ)Φ∈Λ , has an order dividing 2N−1 .

Remark 1. When K is a Galois extension over Q, all the reflex fields are contained in K . Therefore, in
this case, the elements that belong to the kernel of (NΦ)Φ∈Λ have an order dividing at most 2.

2. The abelian extension by complex multiplication

In this section, we shall prove the theorem on the abelian extension generated by complex multi-
plication.

First, we give some definitions; for a number field L, let CL := IL/L× , and denote the connected
component of the identity in CL by DL . By the main theorem of class field theory, there is the canon-

ical isomorphism φL : CL/DL
∼=→ Gal(Lab/L).

For a number field L and an integral ideal a of L, define an open subgroup U L(a) ⊂ IL associated
with a by

U L(a) := (L∞)×+ ×
∏
p|a

(1 + aOp) ×
∏
p�a

O×
p , (13)

where Op is the ring of integers of the local field Lp , and (L∞)×+ is the connected open subgroup in
(L ⊗Q R)× . Let La be the ray class field of L modulo a, then, φL gives an isomorphism IL/L×U L(a) →
Gal(La/L).

Let A be a polarized abelian variety of CM-type (K ∗(Φ),Φ∗). For a CM-type (K ,Φ) and the dual
CM-type (K ∗(Φ),Φ∗), we have a half norm map K × → K ∗(Φ)× defined by a �→∏

ϕ∈Φ ϕ(a). It also
induces a half norm map NΦ : C K → C K ∗(Φ) . By the theory of complex multiplication, the abelian
extension over K generated by the moduli and a-torsions of A corresponds to the kernel of the map
induced by NΦ :
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C K → IK ∗(Φ)/
(

K ∗(Φ)
)×

U K ∗(Φ)(a),

a �→
∏
ϕ∈Φ

ϕ(a).

In the sequel, let b be a natural number, and M K ,b be the subfield of K ab obtained by adjoining
to K , the moduli and the b-torsion points of all the polarized abelian varieties of a CM-type with the
reflex field contained in K . By the theory of complex multiplication, M K ,b is contained in K(b) , the
ray class field of K modulo b. Furthermore, we have the theorem:

Theorem 2.1. Let {K ∗(Φ)}Φ∈Λ be the set of the reflex fields of all the CM-types of K , and 2N0 be the maximum
2-power dividing the degrees of all the reflex fields of K . (Hence, 1 � N0 � N.)

Then, there exists a subgroup H(b) of Gal(K(b)/M K ,b) satisfying the following:

(i) 2N−1Gal(K(b)/M K ,b) ⊂ H(b) ⊂ Gal(K(b)/M K ,b),
(ii) 2N0 H(b) ⊂ Ver(Gal(K0,(b)/K0 · Q(b))) ⊂ H(b),

where K0,(b) is the ray class field of K0 modulo b, and Ver is the Verlagerung map Gal(K0,(b)/K0) →
Gal(K(b)/K ).

In particular, for any odd prime p, the p-component of Gal(K(b)/M K ,b) is isomorphic to that of
Ver(Gal(K0,(b)/K0 · Q(b))).

Proof. For an ideal (b), take U K ((b)) as (13). Let V K ((b)) be the image of U K ((b)) in C K . By class
field theory, there is a commutative diagram:

C K0/V K0((b))

φK0∼=
Gal(K0,(b)/K0)

Ver

C K /V K ((b))

φK∼=
Gal(K(b)/K ).

To prove the theorem, we use the commutative diagram of two exact sequences:

0 C 〈ι〉
K /V K ((b))〈ι〉 C K /V K ((b))

(NΦ)Φ∈Λ

C K /C 〈ι〉
K V K ((b)) 0

0
⊕

Φ∈Λ C 〈ι〉
K ∗(Φ)/V K ∗(Φ)((b))〈ι〉

⊕
Φ∈Λ C K ∗(Φ)/V K ∗(Φ)((b))

⊕
Φ∈Λ C K ∗(Φ)/C 〈ι〉

K ∗(Φ)V K ∗(Φ)((b)) 0

where the superscript 〈ι〉 means the subgroup fixed by the complex conjugation ι. We denote each
kernel of the vertical maps by

N1,b := Ker

(
C 〈ι〉

K /V K ((b))〈ι〉 →
⊕
Φ∈Λ

C 〈ι〉
K ∗(Φ)/V K ∗(Φ)((b))〈ι〉

)
,

N2,b := Ker

(
C K /V K ((b)) →

⊕
Φ∈Λ

C K ∗(Φ)/V K ∗(Φ)((b))

)
,

N3,b := Ker

(
C K /C 〈ι〉

K V K ((b)) →
⊕

C K ∗(Φ)/C 〈ι〉
K ∗(Φ)V K ∗(Φ)((b))

)
.

Φ∈Λ
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By the snake lemma, we have the exact sequence:

0 N1,b N2,b N3,b.

Furthermore, by the theory of complex multiplication, Gal(K(b)/M K ,b) equals φK (N2,b). On the other
hand, by Corollary 1.2, all the elements of N3,b have an order dividing 2N−1.

Let H(b) := φK (N1,b). Then, it is clear that the assertion (i) of the theorem holds.

Next, we show (ii); since H1(K ×) = 0, we have C 〈ι〉
K = I〈ι〉K /(K ×)〈ι〉 = C K0 . Hence, there is a com-

mutative diagram:

C K0/V K0((b))

NK0/Q

C 〈ι〉
K /V K ((b))〈ι〉

(NΦ)Φ∈Λ

0 (exact)

CQ/VQ((b))
⊕

Φ∈Λ C 〈ι〉
K ∗(Φ)/V K ∗(Φ)((b))〈ι〉.

Let J K0,b be the kernel of the left vertical map in the diagram, and J K ,b be the image of J K0,b in
C K /V K ((b)). Then, φK ( J K ,b) = Ver(Gal(K0,(b)/K0 · Q(b))). Since J K ,b ⊂ N1,b , (ii) is proved if 2N0 N1,b ⊂
J K ,b .

Let nΦ be the degree of K ∗(Φ). If a ∈ CQ belongs to V K ∗(Φ)((b))〈ι〉 for all CM-type (K ,Φ), then,
anΦ = NG/H∗(Φ)(a) ∈ VQ((b)). Hence, am ∈ VQ((b)), where m is the greatest common divisor of nΦ

(Φ ∈ Λ). Since the sum of nΦ (Φ ∈ Λ) equals 2N by Lemma 1.4, m equals 2N0 in the statement of the
theorem. �

In [13], Wei proved the following theorem on the abelian extension obtained from all the CM-
types whose reflex is contained in K . In the remaining part of this section, we prove the theorem by
Wei, using Theorem 2.1 and basic results of algebraic number theory.

Theorem 2.2 (Wei). Let M K be the subfield of K ab obtained by adjoining to K , the moduli and the torsion
points of all the polarized abelian varieties of a CM-type with the reflex field contained in K . The subgroup
corresponding to M K equals the image of Gal(K0

ab/K0 · Qab) in Gal(K ab/K ) under the Verlagerung map.

Proof. Denote each kernel of the maps induced by (NΦ)Φ∈Λ , by

N1 := Ker

(
C 〈ι〉

K /D〈ι〉
K →

⊕
Φ∈Λ

C 〈ι〉
K ∗(Φ)/D〈ι〉

K ∗(Φ)

)
,

N2 := Ker

(
C K /D K →

⊕
Φ∈Λ

C K ∗(Φ)/D K ∗(Φ)

)
,

N3 := Ker

(
C K /C 〈ι〉

K D K →
⊕
Φ∈Λ

C K ∗(Φ)/C 〈ι〉
K ∗(Φ)D K ∗(Φ)

)
.

These groups equal lim←−
b

N1,b , lim←−
b

N2,b , lim←−
b

N3,b respectively, the inverse limits of the groups defined in

the proof of Theorem 2.1. In addition, we define

J K0 := Ker(NK0/Q : C K0/D K0 → CQ/DQ),
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and denote the image in C K /D K by J K . J K0 is also the inverse limit of J K0,b in the proof of Theo-
rem 2.1. Then, Theorem 2.2 follows from Lemmas 2.1 and 2.2. �
Lemma 2.1. N1 = J K .

Lemma 2.2. N3 = {0}.

Lemma 2.4 is used to prove them. First, we prove Lemma 2.4 using Lemma 2.3.
Let EL be the group of units of a number field L. For any subgroup U ⊂ IL , U means its topological

closure. The image of L×∞ ⊂ IL in CL is denoted by L̃×∞ .

Lemma 2.3. Let L be a number field. If a ∈ IL satisfies am ∈ L× (resp. am ∈ L×∞L×) for a natural number m,
there exists d ∈ L× such that am = dm (resp. am

p = dm
p at any finite primes p). In particular, if a ∈ CL satisfies

am ∈ DL (resp. a ∈ L̃×∞DL ), then, a corresponds to b ∈ IL such that all the components bν at any primes (resp.
any finite primes) ν are m-th roots of unity.

Proof. Let Um ⊂ IL be an open subgroup such that EL ∩ Um ⊂ Em
L . Take c ∈ L× such that am ≡ c

mod Um . For any open subgroup U ′ ⊂ Um , there exists a unit ε of L such that am ≡ εmc mod U ′ .
Therefore, for any finite prime p of L, c1/m ∈ Lp . This means that the primes of L(ζm) except for a
finite number, are totally split over L(c1/m, ζm), where ζm is a primitive m-th root of unity. Hence,
c1/m belongs to L(ζm). Then, c1/m ∈ L, again since we have c1/m ∈ Lp for any finite prime p. There-

fore, the first statement follows. (Suppose that Um, U ′ ⊃ L×∞ for the case of am ∈ L×∞L× .) The second
statement follows immediately. �
Lemma 2.4. Let L ⊂ M be number fields. If a ∈ CL satisfies a ∈ DM (resp. a ∈ M̃×∞DM ) and am ∈ DL for a
natural number m, then, a ∈ DL (resp. a ∈ L̃×∞DL ).

Proof. By Lemma 2.3, we may assume that the components of a at any primes are m-th roots of
unity. Let U be an open subgroup in IM such that no roots of unity of M are contained in it. Take a
positive number l such that El

M ⊂ U ∩ EM . For any open subgroup U ′ ⊂ U such that U ′ ∩ EM ⊂ Eml
M ,

there exists ε ∈ EM such that a ≡ ε mod U ′ , because a ∈ DM . Then, εm ∈ Eml
M , since εm ≡ am ≡ 1

mod U ′ . Therefore, ζε ∈ El
M for some root of unity ζ ∈ M . In particular, a ≡ ε ≡ ζ mod U . Since U is

arbitrary, a = ζ for some root of unity ζ in L. Therefore, a ∈ DL . The proof is similar for the case of
a ∈ M̃×∞DM . �
Proof of Lemma 2.1. Since D〈ι〉

K = (K̃0)
×∞D K0 , we have C 〈ι〉

K /D〈ι〉
K = C K0/(K̃0)

×∞D K0 . Therefore,

N1 = Ker

(
C K0/(K̃0)

×∞D K0 →
⊕
Φ∈Λ

C K ∗
0 (Φ)/

(
K̃ ∗

0(Φ)
)×
∞D K ∗

0 (Φ)

)
.

This map is via the norm map NK0/Q : C K0/(̃K0)
×
∞D K0 → CQ/R̃×DQ . Take an element a ∈ CQ

that belongs to (K̃ ∗
0 (Φ))×∞D K ∗

0 (Φ) . Then, a2 ∈ D K ∗
0 (Φ) . In addition, the canonical map CQ/DQ →

C K ∗
0 (Φ)/D K ∗

0 (Φ) is injective, because both K ∗
0 (Φ) and Q are totally real fields [1]. Hence, a2 ∈ DQ .

Therefore, a ∈ R̃×DQ by Lemma 2.4; the statement follows. �
Proof of Lemma 2.2. Take a ∈ C K such that NΦ(a) ∈ C 〈ι〉

K ∗(Φ)D K ∗(Φ) for all the CM-types (K ,Φ). It is

enough if we can show a ∈ C 〈ι〉
K D K , which is equivalent to a1−ι ∈ D K . By Theorem 2.1, a2N−1 ∈ C 〈ι〉

K D K .

Hence, a2N−1(1−ι) ∈ D K . By Lemma 2.4, there exists b ∈ IK such that b ≡ a1−ι mod D K , and all the
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components of b at the primes of K , are 2N−1-th roots of unity. Moreover, NΦ(b) is a root of unity
of K ∗(Φ) for any Φ , since NΦ(b) ∈ D K ∗(Φ) . Hence, b1−ι = b2 is a root of unity, and b is also a root of
unity. Therefore, a1−ι ∈ D K . �
3. A character identity

In this section, we give a proof of a character identity between the Artin L-functions of a CM-field
K and the reflex of K .

For any group N0 and a normal subgroup N such that [N0 : N] = 2, we denote by χN0/N the

non-trivial character of N0 induced by the canonical homomorphisms N0 � N0/N
∼=→ {±1}.

Proposition 3.1. Let K be a CM-field. Let 0 and 1 be the elements of IndG
H0

(Z2) that map any ϕi H0 to 0 and 1

respectively. For a fixed CM-type (K ,Φ0), G can be regarded as a subgroup of IndG
H0

(Z2) � G0 by ρΦ0 defined
in Corollary 1.1. Then, the equation holds:

ResG Ind
IndG

H0
(Z2)�G0

〈1〉×G0
(χ〈1〉×G0/{0}×G0) =

∑
Φ∈Λ

IndG
H∗

0(Φ)(χH∗
0(Φ)/H∗(Φ)), (14)

where 〈1〉 is the subgroup of IndG
H0

(Z2) generated by 1, and Λ is a system of representatives for the conjugacy
classes of the CM-types of K .

Proof. We have

ResG Ind
IndG

H0
(Z2)�G0

〈1〉×G0
(χ〈1〉×G0/{0}×G0) =

∑
s∈G\IndG

H0
(Z2)�G0/〈1〉×G0

IndG
s(〈1〉×G0)s−1∩G

(
χ s),

where χ s is the character of s(〈1〉× G0)s−1 ∩ G such that χ s(x) = χ〈1〉×G0/{0}×G0(s−1xs) for x ∈ s(〈1〉×
G0)s−1 ∩ G . Let {si} be a system of representatives for G \ IndG

H0
(Z2)� G0/〈1〉× G0. We can choose {si}

from IndG
H0

(Z2) × {id}. Let si = ( f i, id), and Φ f i := {ι f i(ϕ1 H0)ϕ1, . . . , ι
f i(ϕN H0)ϕN } for a fixed CM-type

Φ0 := {ϕ1, . . . , ϕN }. Then, by Lemma 1.3, {Φ f i } makes a system of representatives for the conjugacy
class of the CM-types of K . Moreover, we have

si
(〈1〉 × G0

)
s−1

i ∩ G = {σ ∈ G: σ ∗ f i = f i or f i + 1} = H∗
0(Φ f i ).

Hence, χ si is the character induced by H∗
0(Φ f i ) � H∗

0(Φ f i )/H∗(Φ f i )
∼=→ {±1}. By this, the statement

follows. �
Let I be a subset of {ϕ1 H0, . . . , ϕN H0}. Then, the character of IndG

H0
(Z2) is given by χI ( f ) :=

(−1)
∑

ϕH0∈I f (ϕH0) . It is clear that I �→ χI gives a bijection from the subsets of {ϕ1 H0, . . . , ϕN H0} to
the characters of IndG

H0
(Z2). For f ∈ IndG

H0
(Z2) and s = ( f ′, σ ) ∈ IndG

H0
(Z2) � G0, we define f s such

that ( f s, id) = s−1 · ( f , id) · s, and χ s
I ( f ) := χI ( f s). Then, for s = ( f ′, σ ),

χ s
I ( f ) = χI

(
σ−1 · f + σ−1 · f ′ − f ′)

= χI
(
σ−1 · f + σ−1 · f ′)− χI

(
f ′)

= χσ I
(

f + f ′)− χI
(

f ′), (15)
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where σ I := {σϕ1 H0, . . . , σϕN H0}. Hence, χ s
I = χI means χσ I ( f + f ′) = χI ( f + f ′) for any f , there-

fore, σ I = I .
Let H0,I := {σ ∈ G0: σ I = I}. Then, χI is extended to a character of IndG

H0
(Z2) � H0,I by

χI (( f ,σ )) = χI ( f ). (16)

This character is denoted by χ̃I .
For an irreducible representation π of H0,I , let π̃ be the irreducible representation of

IndG
H0

(Z2) � H0,I given by composing π with IndG
H0

(Z2) � H0,I � H0,I . We denote the representation

Ind
IndG

H0
(Z2)�G0

IndG
H0

(Z2)�H0,I
(χ̃I ⊗ π̃ ) by θI,π and the character of θI,π by χI,π .

Proposition 3.2. Let |I| be the cardinality of I . Then,

(a) θI,π is irreducible.
(b) If θI,π and θI ′,π ′ are isomorphic, then I ′ = σ I for some σ ∈ G0 , and π ′ is isomorphic to π .
(c) Every irreducible representation of IndG

H0
(Z2) � G0 is isomorphic to one of the θI,π .

Proof. See, e.g., [8, Proposition 25]. �
For any odd number d, G0 acts on {ϕ1 H0, . . . , ϕN H0} by ϕi H0 �→ σϕi H0, which induces an action

of G0 on the set {I ⊂ {ϕ1 H0, . . . , ϕN H0}: |I| = d} for any natural number d. Let Jd be a system of
representatives for the orbits, and Jodd :=⋃

1�d�N: odd Jd .

Lemma 3.1. The following gives an irreducible decomposition:

Ind
IndG

H0
(Z2)�G0

〈1〉×G0
(χ〈1〉×G0/{0}×G0) =

∑
I∈ Jodd

χI,id. (17)

Proof. In the sequel, for any representation π , we denote the character of π by χπ . From the above
proposition, it suffices if the multiplicities of θI,π are computed. By the Frobenius reciprocity,

〈
Ind

IndG
H0

(Z2)�G0

〈1〉×G0
(χ〈1〉×G0/{0}×G0),χI,π

〉
IndG

H0
(Z2)�G0

= 〈
χ〈1〉×G0/{0}×G0 ,Res〈1〉×G0 Ind

IndG
H0

(Z2)�G0

IndG
H0

(Z2)�H0,I
(χ̃I ⊗ χπ̃ )

〉
〈1〉×G0

= 〈
χ〈1〉×G0/{0}×G0 , Ind〈1〉×G0

〈1〉×H0,I
(χ̃I ⊗ χπ̃ )

〉
〈1〉×G0

= 〈χ〈1〉×H0,I /{0}×H0,I , χ̃I ⊗ χπ̃ 〉〈1〉×H0,I .

Moreover,

〈χ〈1〉×H0,I /{0}×H0,I , χ̃I ⊗ χπ̃ 〉〈1〉×H0,I

= ∣∣〈1〉 × H0,I
∣∣−1 ∑

t∈〈1〉×H0,I

χ〈1〉×H0,I /{0}×H0,I (t)(χ̃I ⊗ χπ̃ )
(
t−1)

= 1

2
|H0,I |−1

∑
t∈{0}×H

(χ̃I ⊗ χπ̃ )
(
t−1)(1 − (χ̃I ⊗ χπ̃ )

(
(1, id)−1))
0,I
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= 1 − χI (1)

2
|H0,I |−1

∑
t∈{0}×H0,I

χ̃I ⊗ χπ̃

(
t−1)

= 1 − χI (1)

2
〈π, id〉H0,I .

Therefore,

〈
Ind

IndG
H0

(Z2)�G0

〈1〉×G0
(χ〈1〉×G0/{0}×G0), χI,π

〉
IndG

H0
(Z2)�G0

=
{

1 if |I| is odd and π is the trivial representation of G0,

0 otherwise.

We obtain the lemma. �
Let I be a subset of {ϕ1 H0, . . . , ϕN H0} such that |I| is odd. Define

H(I) :=
{
σ ∈ G:

∑
ϕH0∈I

rΦ(σ )(ϕH0) = 0, ρ(σ ) ∈ H0,I

}
. (18)

The definition of H(I) is independent of the choice of Φ . If I = {H0}, then, H(I) = H . Moreover, for
H0(I) := (IndG

H0
(Z2) � H0,I ) ∩ G ,

ResH (χI,id) = ResG Ind
IndG

H0
(Z2)�G0

IndG
H0

(Z2)�H0,I
(χ̃I ) = IndG

H0(I)(χ̃I ), (19)

since |G \ (IndG
H0

(Z2) � G0)/(IndG
H0

(Z2) � H0,I )| = 1.
We denote the field corresponding to the subgroup H0(I) by K0(I). Since ι ∈ H0(I), K0(I) is a

totally real field. Let K (I) be the quadratic extension of K0(I) corresponding to the kernel of the
character χ̃I . Since ι does not belong to the kernel, K (I) is a CM-field. For I = {H0}, K (I) = K .

We obtain the theorem from the above argument.

Theorem 3.1. Let Λ be a system of representatives for the conjugacy classes of the CM-types of K . Then,

∑
(K ,Φ)∈Λ

IndG
H∗

0(Φ)(χH∗
0(Φ)/H∗(Φ)) =

∑
I∈ Jodd

IndG
H0(I)(χ̃I ). (20)

Now, we can apply the character identity to obtain a relation formula of the Artin L-functions and
relative invariants of a CM-field and its reflexes, as is done in [10].

For a field F , we denote the discriminant, the class number and the unit group of F by dF , hF and
E F respectively.

Corollary 3.1. There is a relation formula of the Artin L-functions:

∏
(K ,Φ)∈Λ

L(s,χH∗
0(Φ)/H∗(Φ)) =

∏
I∈ J

L(s, χ̃I |H0(I)), (21)

odd
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where Λ is a system of representatives for the conjugacy classes of the CM-types of K . Therefore,

∏
(K ,Φ)∈Λ

∣∣∣∣dK ∗(Φ)

dK ∗
0 (Φ)

∣∣∣∣= ∏
I∈ Jodd

∣∣∣∣ dK (I)

dK0(I)

∣∣∣∣, (22)

∏
(K ,Φ)∈Λ

hK ∗(Φ)/hK ∗
0 (Φ)

[E K ∗(Φ) : E K ∗
0 (Φ)] =

∏
I∈ Jodd

hK (I)/hK0(I)

[E K (I) : E K0(I)] . (23)

Proof. The first equation follows from Theorem 3.1; in general, L(s,χ) = L(s, IndG
H (χ)) holds for any

character χ of a finite dimensional representation of H . We denote the number of the roots of unity
in K , K0 by w K , w K0 , and the regulator of K , K0 by R K , R K0 . Then,

L(1,χK/K0) = lim
s→1

ζK (s)

ζK0(s)
=
(

(2π)NhK R K

w K
√|dK |

)(
2NhK0 R K0

w K0

√|dK0 |
)−1

= π N

∣∣∣∣ dK

dK0

∣∣∣∣−
1
2 hK /hK0

[E K : E K0 ]
.

For a character χ of G , let f(χ) be the conductor of the character χ . Then,

(dK ) = f
(
IndG

H (idH )
)
,

(dK0) = f
(
IndG

H0
(idH0)

)
,

where idH and idH0 are the trivial representations of H and H0 respectively (cf. [7, Chapter VI, Corol-
lary 1 of Prop. 6]). Hence,(

dK

dK0

)
= f

(
IndG

H (idH )
)
f
(
IndG

H0
(idH0)

)−1 = f
(
IndG

H (χH0/H )
)
.

Therefore, the corollary follows. �
It is clear that C ⊂ H(I). Therefore, K (I) is different from any reflex fields of K at least when

C �= {id,ρ}, since C ∩ H∗(Φ) = {id} by (6) and (7) in Section 1.2. By this, Example 1 is the only case
when the set of K (I) totally coincides with the set of the reflex fields of K , i.e., the character identity
is trivial.

Example 1. Suppose that G = 〈ι〉 × G0 and the degree N of K0 is an odd number, i.e., there is a
section homomorphism G0 ↪→ G . Let Φ0 be a CM-type of K such that SΦ0 = {id} × G0. For a subset
I ⊂ {ϕ1 H0, . . . , ϕN H0}, define f I ∈ IndG

H0
(Z2) by

f I (ϕH0) :=
{

0, ϕH0 /∈ I,
1, ϕH0 ∈ I.

(24)

Then, for the fixed CM-type Φ0, we have (id, σ )∗ f I = σ · f I = fσ I , and (ι,σ )∗ f I = 1+ fσ I . Therefore,
when the cardinality of I is odd, we have

H∗(Φ f I ) = {
(id,σ ) ∈ 〈ι〉 × G0: σ I = I

}= H(I).



2456 R. Oishi-Tomiyasu / Journal of Number Theory 130 (2010) 2442–2466
Hence, K (I) and K ∗(Φ f I ) coincide. The set of K (I) (I ∈ Jodd) has a one-to-one correspondence with
the reflexes K ∗(Φ f I ) of K .

Example 2. Let G be the dihedral group D2n of degree 2n. Then, G has two generators α, β such that
α2n = id, β2 = id, and βαβ−1 = α−1. Regard the central element αn as the complex conjugation ι.
Then, the fixed subfield K by H := {id, β} is a CM-field and Φ0 := {id|H ,α|H , . . . ,αn−1|H } is a CM-
type of K . We have H∗(Φ0) = {id,αn−1β}. When n is odd, it is the case of Example 1.

So, let n be even. In this case, K and K ∗(Φ0) are not conjugate. Nevertheless, as Shimura pointed
out in [10],

IndG
H0

(χH0/H ) = IndG
H∗

0(Φ0)(χH∗
0(Φ0)/H∗(Φ0)). (25)

In [2], this type of character identity is investigated for dihedral groups, responding to Shimura’s
suggestion. We shall show that Eq. (25) follows from Theorem 3.1; regard G0 as a subgroup of the
symmetry group Sn by the canonical action on G/H0 = {H0,αH0, . . . ,α

n−1 H0}. A map ρΦ0 := (rΦ0 ,ρ)

is defined in Corollary 1.1. The image of αi is given by

rΦ0

(
αi)= (1, . . . ,1︸ ︷︷ ︸

i

,0, . . . ,0︸ ︷︷ ︸
n−i

), ρ
(
αi)= (1 2 . . . n)i .

Similarly, the image of αiβ is given by

rΦ0

(
αiβ

)= (0, . . . ,0︸ ︷︷ ︸
i+1

,1, . . . ,1︸ ︷︷ ︸
n−i−1

),

ρ
(
αiβ

)=
(⌊

n + i + 1

2

⌋⌈
n + i + 3

2

⌉)
· · · (i + 3 n − 1)(i + 2 n)(1 i + 1)(2 i) · · ·

(⌊
i + 1

2

⌋⌈
i + 3

2

⌉)
,

where �∗� and �∗� are the floor function and the ceiling function respectively.
Let k0 be the maximum number such that 2k0 | n. For the CM-type Φ0, if we define Φ f as (8),

σ ∈ G is contained in H∗(Φ f ) if and only if rΦ0 (σ ) = ρ(σ ) · f − f . Therefore, let (i,2n) be the
greatest common divisor of i and 2n, then,

αi ∈ H∗(Φ) for some Φ ⇐⇒ α(i,2n) ∈ H∗(Φ) for some Φ ⇐⇒ 2k0+1 | i,

αiβ ∈ H∗(Φ) for some Φ ⇐⇒ i is odd.

Similarly, for I ⊂ {H0,αH0, . . . ,α
n−1 H0}, σ ∈ G is contained in H(I) if and only if σ I = I and∑

α j H0∈I rΦ0 (σ )(α j H0) = 0. Therefore, under the assumption that the cardinality of I is odd,

αi ∈ H(I) ⇐⇒ α(i,2n) ∈ H(I) ⇐⇒ 2k0+1 | i and α(i,n) I = I,

αiβ ∈ H(I) ⇐⇒ i is even and αiβ I = I.

Hence, H∗(Φ) is conjugate to (i) 〈α2k0+1 j〉, or (ii) 〈α2k0+1 j,αn−1β〉 for some j such that 2k0 j | n.
Similarly, H(I) is conjugate to (iii) 〈α2k0+1 j〉, or (iv) 〈α2k0+1 j, β〉.

In the sequel, Φ0 is replaced by the CM-type such that αi |H ∈ Φ0 ⇐⇒ i ≡ 0, . . . ,2k0 −1 mod 2k0+1.
For I ⊂ {H0,αH0, . . . ,α

n−1 H0}, define f I ∈ IndG
H0

(Z2) as (24). Then, since we have rΦ0(α
2k0+1 j) = 0

for any j, and rΦ0 (α
n−1β) = 0,
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α2k0+1 j ∈ H∗(Φ f I ) ⇐⇒ α2k0 j I = I,

αn−1β ∈ H∗(Φ f I ) ⇐⇒ αn−1β I = I.

For a natural number j such that 2k0 j | n, define

S j := {
I ⊂ {ϕ1 H0, . . . ,ϕN H0}: α2k0 j I = I and α2k0 j0 I �= I for any j0 | j

}
,

S̃ j := {
I ∈ S j: αn−1β I = I

}
,

T j := {
I ∈ S j: |I| is odd

}
,

T̃ j := {
I ∈ S j: |I| is odd, and β I = I

}
.

Let s j := |S j|, s̃ j := | S̃ j|, t j := |T j |, t̃ j := |T̃ j |. Using these variables, we can count the number of the
orbits of G such that the stabilizer is conjugate to each subgroup. By Theorem 3.1,

∑
0< j|2−k0 n

s j − [G : 〈α2k0 j,αn−1β〉]s̃ j

[G : 〈α2k0+1 j〉] IndG

〈α2k0 j〉(χ〈α2k0 j〉/〈α2k0+1 j〉)

+
∑

0< j|2−k0 n

s̃ j

[〈α2k0 j,αn−1β〉 : 〈α2k0+1 j,αn−1β〉] IndG

〈α2k0 j ,αn−1β〉(χ〈α2k0 j ,αn−1β〉/〈α2k0+1 j ,αn−1β〉)

=
∑

0< j|2−k0 n

t j − [G : 〈α2k0−1 j, β〉]t̃ j

[G : 〈α2k0 j〉] IndG

〈α2k0 j〉(χ〈α2k0 j〉/〈α2k0+1 j〉)

+
∑

0< j|2−k0 n

t̃ j

[〈α2k0−1 j, β〉 : 〈α2k0 j, β〉] IndG

〈α2k0 j ,β〉(χ〈α2k0 j ,β〉/〈α2k0+1 j ,β〉).

Since we have ρ(α) = (1 2 . . . n), ρ(β) = ( n
2

n+4
2 ) · · · (3 n − 1)(2 n), and ρ(αn−1β) = (1 n)(2 n − 1)

· · · ( n
2

n+2
2 ), the subsets can be restated;

S j = {
I ⊂ {1, . . . ,n}: 2k0 j is the minimum periodicity of I

}
,

S̃ j = {I ∈ S j: i ∈ I ⇐⇒ n − i + 1 ∈ I},
T j = {

I ∈ S j:
∣∣I ∩ {

1, . . . ,2k0 j
}∣∣ is odd

}
,

T̃ j =
{

I ∈ S j: 1 ∈ I ⇐⇒ n

2
+ 1 /∈ I, and i ∈ I ⇐⇒ n − i + 2 ∈ I

(
2 � i � n

2

)}
.

Hence, we have s j = 2t j , s̃ j = t̃ j . Therefore,

∑
0< j|2−k0 n

s̃ j

2
IndG

〈α2k0 j ,αn−1β〉(χ〈α2k0 j ,αn−1β〉/〈α2k0+1 j ,αn−1β〉)

=
∑

0< j|2−k0 n

s̃ j

2
IndG

〈α2k0 j ,β〉(χ〈α2k0 j ,β〉/〈α2k0+1 j ,β〉).

By induction on j, we obtain (25).
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4. Reflex fields and a Pfister form

In this section, we show Proposition 4.1, then, give a proof of the third theorem which states that
some Pfister form is decomposed into quadratic forms defined on a set of reflex fields of K . Pfister
forms are known as the only case of anisotropic multiplicative quadratic forms ([6], cf. [4]).

For a CM-type (K ,Φ) and I ⊂ {ϕ1 H0, . . . , ϕN H0} with odd cardinality, a CM-field K (I) is intro-
duced in Section 3. These CM-fields are also used for the proof of the third theorem. First, we give a
definition of the CM-type (K (I),Φ(I)); using ρΦ : G ↪→ IndG

H0
(Z2) � G0 in Corollary 1.1, we defined

the subgroups H(I) and H0(I) of G by

H(I) :=
{
σ ∈ G:

∑
ϕH0∈I

rΦ(σ )(ϕH0) = 0, ρ(σ )I = I

}
, (26)

H0(I) := {
σ ∈ G: ρ(σ )I = I

}
. (27)

Then, H(I) and H0(I) are independent of the choice of the CM-type Φ , and H0(I) = H(I) ∪ ιH(I).
A CM-field K (I) is the fixed subfield by H(I). Furthermore, if we set

SΦ(I) :=
{
σ ∈ G:

∑
ϕH0∈I

rΦ

(
σ−1)(ϕH0) = 0

}
, (28)

then, H∗(Φ)SΦ(I) = SΦ(I) and SΦ(I)H(I) = SΦ(I) . Denote the set of the embeddings K (I) ↪→ C cor-
responding to the left cosets SΦ(I)/H(I) by Φ(I), and the set of the embeddings K ∗(Φ) ↪→ C given
by the inverse of the right cosets H∗(Φ) \ SΦ(I) by Φ(I)∗ . Φ(I) and Φ(I)∗ are CM-types of K (I)
and K ∗(Φ) respectively. In addition, (K (I),Φ(I)) contains the dual CM-type of (K ∗(Φ),Φ(I)∗), and
(K ∗(Φ),Φ(I)∗) contains the dual of (K (I),Φ(I)).

For 0 � d � N , there is the canonical action of G on {I ⊂ {ϕ1 H0, . . . , ϕN H0}: |I| = d}; let Jd be
a system of representatives for the orbits, and Jodd := ⋃

1�d�N: odd Jd . Since the stabilizer of I is

〈H(I), ι〉, there is the decomposition given by H0(I)σ �→ σ−1 I:

{
I ⊂ {ϕ1 H0, . . . ,ϕN H0}: |I| is odd

}=
⋃

I∈ Jodd

H0(I) \ G. (29)

On the other hand, for a fixed CM-type (K ,Φ0), a G-action on IndG
H0

(Z2) is defined by f �→ σ ∗ f
in Section 1.3. Since the stabilizer of f is H∗(Φ f ), there is the decomposition for each I , given by
σ H∗

0(Φ f ) �→ σ ∗ f :

IndG
H0

(Z2)/〈1〉 =
⋃

Φ f ∈Λ

G/H∗
0(Φ f ), (30)

where 〈1〉 is the subgroup of IndG
H0

(Z2) generated by 1 ∈ IndG
H0

(Z2) that maps all G/H0 to 1, and Λ

is a system of representatives for the conjugacy classes of the CM-types of K . When the degree of K
is 2N , the dimension of

⊕
I∈ Jodd

K (I) over Q is 2N , which is same as that of
⊕

Φ∈Λ K ∗(Φ).
The following proposition also shows that the set of (K (I),Φ(I)) can be regarded as the dual of

the set of (K ∗(Φ),Φ∗); for a G-module M , denote by M H , the subset of M consisting of all the fixed
elements by H . Then, the half norm map NΦ(I) : M H(I) → M H∗(Φ) is defined by a �→ ∑

ϕ∈Φ(I) ϕ(a).

The norm map NG/H : M H → MG is also defined by a �→∑
σ∈G/H σ(a).

Proposition 4.1. Let M be a G-module on which ι acts as −1. Using the half norm maps, define two maps
N J→Λ , NΛ→ J by
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N J→Λ :
⊕

I∈ Jodd

M H(I) →
⊕

Φ f ∈Λ

M H∗(Φ f ),

(aI )I∈ Jodd �→
( ∑

I∈ Jodd

ι
∑

ϕH0∈I f (ϕH0)NΦ f (I)(aI )

)
Φ f ∈Λ

,

NΛ→ J :
⊕

Φ f ∈Λ

M H∗(Φ f ) →
⊕

I∈ Jodd

M H(I),

(bΦ f )ϕ∈Φ f �→
( ∑

Φ f ∈Λ

ι
∑

ϕH0∈I f (ϕH0)NΦ f (I)∗(bΦ f )

)
I∈ Jodd

.

Then, the compositions N J→Λ ◦ NΛ→ J and NΛ→ J ◦ N J→Λ equal the multiplication by 2N−1 .

We use the following two lemmas for the proof.

Lemma 4.1. For any I, I ′ ∈ Jodd,∑
Φ f ∈Λ

ι
∑

ϕ′ H0∈I′ f (ϕ′ H0)+∑ϕH0∈I f (ϕH0)NΦ f (I ′)∗ ◦ NΦ f (I)

=
{

2N−2(id − ι) + 2N−2NG/H(I) if I = I ′,
0 otherwise.

(31)

Proof. The left-hand side of (31) equals∑
Φ f ∈Λ

∑
ψ ′∈G/H∗

0(Φ f )

ι
∑

ψ H0∈I′ ( f +rΦ f (ψ ′))(ϕH0)
ψ ′ ∑

ψ∈H0(I)\G

ι
∑

ϕH0∈I ( f +rΦ f (ψ))(ϕH0)
ψ−1

=
∑

Φ f ∈Λ

∑
ψ ′∈G/H∗

0(Φ f )

ι
∑

ϕH0∈I′ ψ ′∗ f (ϕH0)
∑

ψ∈H0(I)\G

ι
∑

ϕH0∈I ψ∗ f (ϕH0)
ψ ′ψ−1

=
∑

Φ f ∈Λ

∑
ψ ′∈G/H∗

0(Φ f )

ι
∑

ϕH0∈I′ ψ ′∗ f (ϕH0)
∑

ψ∈H0(I)\G

ι
∑

ϕH0∈I ψψ ′∗ f (ϕH0)
ψ−1

=: (�).

Using the decomposition (30),

(�) =
∑

f ∈IndG
H0

(Z2)/〈1〉
ι
∑

ϕH0∈I′ f (ϕH0)
∑

ψ∈H0(I)\G

ι
∑

ϕH0∈I ψ∗ f (ϕH0)
ψ−1

=
∑

ψ∈H0(I)\G

ι
∑

ϕH0∈I rΦ0 (ψ)(ϕH0)
ψ−1

∑
f ∈IndG

H0
(Z2)/〈1〉

ι
∑

ϕH0∈I′ f (ϕH0)+∑ϕH0∈I ψ · f (ϕH0)

=
∑

ψ∈H0(I)\G

ι
∑

ϕH0∈I rΦ0 (ψ)(ϕH0)
ψ−1

∑
f ∈IndG

H0
(Z2)/〈1〉

ι
∑

ϕH0∈I′ f (ϕH0)+∑
ϕH0∈ψ−1 I f (ϕH0)

= 2N−1
∑

ψ∈H (I)\G, I ′=ψ−1 I

ψ−1 + 2N−2
∑

ψ∈H (I)\G, I ′ �=ψ−1 I

(1 + ι)ψ−1.
0 0
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If I ′ = ψ−1 I for some ψ ∈ H0(I) \ G , then, I = I ′ and ψ ∈ H0(I) since I , I ′ ∈ Jodd . Therefore,

(�) =
{

2N−2(id − ι) + 2N−2NG/H(I) if I = I ′,
0 otherwise.

We obtain the lemma. �
Lemma 4.2. For Φ f ,Φ f ′ ∈ Λ,

∑
I∈ Jodd

ι
∑

ϕH0∈I ( f ′+ f )(ϕH0)NΦ f ′ (I) ◦ NΦ f (I)∗

=
{

2N−2(id − ι) + 2N−2NG/H∗(Φ f ) if f = f ′,
0 otherwise.

(32)

Proof. The left-hand side of (32) equals

∑
I∈ Jodd

∑
ψ ′∈H0(I)\G

ι
∑

ϕH0∈I ( f + f ′+rΦ f ′ (ψ
′))(ϕH0)

ψ ′−1
∑

ψ∈G/H∗
0(Φ f )

ι
∑

ϕH0∈I rΦ f (ψ)(ϕH0)
ψ

=
∑

I∈ Jodd

∑
ψ ′∈H0(I)\G

ι
∑

ϕH0∈I ( f + f ′+rΦ f ′ (ψ
′))(ϕH0) ∑

ψ∈G/H∗
0(Φ f )

ι
∑

ϕH0∈I rΦ f (ψ ′ψ)(ϕH0)
ψ

=: (�).

Since rΦ f ′ (τ ) = rΦ f (τ ) + τ · ( f − f ′) − ( f − f ′),

(
f + f ′ + rΦ f ′

(
ψ ′)+ rΦ f

(
ψ ′ψ

))
(ϕH0) = (

ψ ′ · ( f − f ′)+ rΦ f

(
ψ ′)+ rΦ f

(
ψ ′ψ

))
(ϕH0)

= (
ψ ′ · ( f − f ′)+ ψ ′ · rΦ f (ψ)

)
(ϕH0)

= ψ ′ · (ψ ∗ f − f ′)(ϕH0).

Then, by the decomposition (29),

(�) =
∑

I∈ Jodd

∑
ψ ′∈H0(I)\G

∑
ψ∈G/H∗

0(Φ f )

ι

∑
ϕH0∈ψ ′−1 I

(ψ∗ f − f ′)(ϕH0)
ψ

=
∑

ψ∈G/H∗
0(Φ f )

ψ
∑

I⊂{ϕ1 H0,...,ϕN H0}, |I|: odd

ι
∑

ϕH0∈I (ψ∗ f − f ′)(ϕH0)

= 2N−1
∑

ψ∈G/H∗
0(Φ f ), f ′=ψ∗ f

ψ + 2N−1
∑

ψ∈G/H∗
0(Φ f ), f ′=ιψ∗ f

ιψ + 2N−2
∑

ψ∈G/H∗
0(Φ f ), f ′=ιψ∗ f

(id + ι)ψ.

If ψ ∗ f = f ′ for some ψ ∈ G/H∗(Φ f ), then, f ′ = f and ψ ∈ H∗(Φ f ) since f , f ′ ∈ Λ. Therefore,

(�) =
{

2N−2(id − ι) + 2N−2NG/H∗(Φ f ) if f = f ′,
0 otherwise.

We obtain the lemma. �
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Proof of Proposition 4.1. Denote the canonical embedding M H(I ′) ↪→ ⊕
I∈ Jodd

M H(I) by i I ′ , and the

canonical projection
⊕

I∈ Jodd
M H(I) � M H(I ′) by pI ′ . Then, for I ′, I ′′ ∈ Jodd by Lemma 4.1,

pI ′′ ◦ NΛ→ J ◦ N J→Λ ◦ i I ′ =
∑

Φ f ∈Λ

ι
∑

ϕ′′ H0∈I′′ f (ϕ′′ H0)+∑ϕ′ H0∈I′ f (ϕ′ H0)NΦ f (I ′′)∗ ◦ NΦ f (I ′)

=
{

2N−1 id if I ′′ = I ′,
0 otherwise.

Similarly, denote the canonical embedding M H∗(Φ ′) ↪→ ⊕
Φ∈Λ M H∗(Φ) and the projection⊕

Φ∈Λ M H∗(Φ) � M H∗(Φ ′) by iΦ ′ and pΦ ′ . Then, for Φ f ′ ,Φ f ′′ ∈ Λ by Lemma 4.2,

pΦ f ′′ ◦ N J→Λ ◦ NΛ→ J ◦ iΦ f ′ =
∑

I∈ Jodd

ι
∑

ϕH0∈I ( f ′+ f ′′)(ϕH0)NΦ f ′′ (I) ◦ NΦ f ′ (I)∗

=
{

2N−1 id if f ′ = f ′′,
0 otherwise.

Therefore, the assertion holds. �
For a given CM-field L, we denote by L1−ι , the subspace consisting of a ∈ L such that ιa = −a.

Then, NΛ→ J defined in Proposition 4.1 induces an isomorphism as Q-linear spaces:

NΛ→ J :
⊕
Φ∈Λ

K ∗(Φ)1−ι
∼=→

⊕
I∈ Jodd

K (I)1−ι. (33)

Even if the cardinality of I is even, H(I), H0(I) and SΦ(I) are well defined by (26), (27) and (28).
Φ(I) and Φ(I)∗ are also defined similarly. When the cardinality of I is odd, we have ι ∈ H(I), hence,
the fixed field K (I) by H(I) is a totally real field. [H0(I) : H(I)] = 1 or 2 in this case.

Let M be a 2-divisible G-module M on which ι acts as −1. Then, for I ⊂ {ϕ1 H0, . . . , ϕN H0} with
odd cardinality, the half norm map NΦ(I) , NΦ(I)∗ satisfies on M H(I) , M H∗(Φ) respectively,

NΦ(I) = 1

2

∑
ψ∈H(I)\G

(−1)
∑

ϕH0∈I rΦ(ψ)(ϕH0)
ψ−1, (34)

NΦ(I)∗ = 1

2

∑
ψ∈G/H∗(Φ)

(−1)
∑

ϕH0∈I rΦ(ψ)(ϕH0)
ψ. (35)

In the sequel, we use (34), (35) as the definition of the half norm map NΦ(I) and NΦ(I)∗ . It is well
defined since

∑
ϕH0∈I rΦ(σ )(ϕH0) depends only on the double coset of H(I)σ H∗(Φ). By this, we can

calculate NΦ(I) , NΦ(I)∗ for I ⊂ {ϕ1 H0, . . . , ϕN H0} with even cardinality. It is also possible to omit the
assumption that ι acts on M as −1.

NΦ(I) gives a map from M H(I) to M H∗(Φ) because we have for σ ∈ H∗(Φ),

σ NΦ(I) = 1

2

∑
ψ∈H(I)\G

(−1)
∑

ϕH0∈I rΦ(ψ)(ϕH0)
σψ−1

= 1

2

∑
ψ∈H(I)\G

(−1)
∑

ϕH0∈I rΦ(ψσ )(ϕH0)
ψ−1 = NΦ(I).

Similarly, NΦ(I)∗ (M H∗(Φ)) ⊂ M H(I) , ιNΦ(I) = (−1)|I|NΦ(I) and ιNΦ(I)∗ = (−1)|I|NΦ(I)∗ also hold.
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For a G-module M , we denote the complex conjugation of a ∈ M by ā. Let L be a CM-field or a
totally real field, and F be a subfield of L. Then, a positive definite quadratic form over L is defined
by a �→ TrL/F (āa).

On each direct sum
⊕

Φ∈Λ K ∗(Φ) and
⊕

I∈ Jodd
K (I), a quadratic form is defined by the orthogonal

sum of TrK (I)/Q(āa), TrK ∗(Φ)/Q(āa) respectively. Denote them by Q J and Q Λ . They have canonical
linear extensions to K c

0 ⊗Q (
⊕

I∈ Jodd
K (I)), K c

0 ⊗Q (
⊕

Φ∈Λ K ∗(Φ)), which are denoted by K c
0 ⊗Q Q J

and K c
0 ⊗Q Q Λ .

For the maximum totally real field K0 of K , take a totally positive element d ∈ K0 such that
K = K0(

√−d). Then, we have the Pfister form defined over K c
0:

q := 〈
1,ϕ1(d)

〉⊗ · · · ⊗ 〈
1,ϕN(d)

〉
, (36)

where 〈1,a〉 represents the quadratic form x2 + ay2. This quadratic form can be regarded as a tensor
product of the norm N

K c
0(
√−ϕi(d))/K c

0
defined on

V := K c
0

(√−ϕ1(d)
)⊗K c

0
· · · ⊗K c

0
K c

0

(√−ϕN(d)
)
, (37)

which is a K c
0-algebra.

For I ⊂ {ϕ1 H0, . . . , ϕN H0}, let

v I := c1 ⊗ · · · ⊗ cN , ci :=
{√−ϕi(d) if ϕi H0 ∈ I,

1 otherwise.
(38)

Then, {v I : I ⊂ {ϕ1 H0, . . . , ϕN H0}} makes a basis of V as a linear space over K c
0.

Now, we have
∏

ϕH0∈I

√−ϕ(d) ∈ K (I), since H(I) fixes it. Let [I] := {σ I: σ ∈ G}. Then, there is the
canonical isomorphism:

K c
0 ⊗Q K (I)

∼=→
⊕
I ′∈[I]

K c
0

(∏
ϕ∈I ′

√−ϕ(d)

)
. (39)

We denote by J , a system of representatives for the orbits of the action of G on {ϕ1 H0, . . . , ϕN H0}.
Then,

K c
0 ⊗Q

(⊕
I∈ J

K (I)

)
∼=

⊕
I⊂{ϕ1 H0,...,ϕN H0}

K c
0

(∏
ϕ∈I

√−ϕ(d)

)
. (40)

This map gives an embedding φ Jodd : K c
0 ⊗Q (

⊕
I∈ Jodd

K (I)1−ι) ↪→ V . Hence, by (33), there is also an

embedding φ Jodd ◦ NΛ→ J : K c
0 ⊗Q (

⊕
Φ∈Λ K ∗(Φ)1−ι) ↪→ V .

Theorem 4.1 shows that φ Jodd ◦ NΛ→ J is extended to an isomorphism between K c
0 ⊗Q

(
⊕

Φ∈Λ K ∗(Φ)) and V , conserving their quadratic forms.

Theorem 4.1. For a totally positive d ∈ K0 such that K = K0(
√−d), define a Pfister form q and K c

0-algebra V
by (36) and (37) respectively. Then, there is an isomorphism as K c

0-algebras:

φΛ : K c
0 ⊗Q

(⊕
Φ∈Λ

K ∗(Φ)

) ∼=→ V .

Furthermore, such isomorphisms satisfy q(φΛ(w)) = 2−N K c
0 ⊗Q Q Λ(w), where Q Λ is the orthogonal sum of

the quadratic form TrK ∗(Φ)/Q(āa).
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The following lemma is used for the proof.

Lemma 4.3. Let I , I ′ be subsets of {ϕ1 H0, . . . , ϕN H0}, and denote their exclusive disjunction by I � I ′ . For any
2-divisible G-module M and Φ f ,Φ f ′ ∈ Λ, let a, b be elements of M fixed by H∗(Φ f ), H∗(Φ f ′) respectively.
Then,

∑
I⊂{ϕ1 H0,...,ϕN H0}

(−1)
∑

ϕH0∈I f (ϕH0)+∑ϕH0∈I�I′ f ′(ϕH0)NΦ f (I)∗(a)NΦ f ′ (I�I ′)∗(b)

=
{

2N−1(−1)
∑

ϕH0∈I′ f (ϕH0)NΦ f (I ′)∗(a × σ(b)) if f = σ ∗ f ′ for some σ ∈ G,

0 otherwise.
(41)

Proof. The left-hand side of (41) equals

1

4

∑
ψ∈G/H∗(Φ f )

∑
ψ ′∈G/H∗(Φ f ′ )

ψ(a)ψ ′(b)

×
∑

I⊂{ϕ1 H0,...,ϕN H0}
(−1)

∑
ϕH0∈I ( f +rΦ f (ψ))(ϕH0)+∑ϕH0∈I�I′ ( f ′+rΦ f ′ (ψ

′))(ϕH0) =: (�).

We have

∑
ϕH0∈I

(
f + rΦ f (ψ)

)
(ϕH0) +

∑
ϕH0∈I�I ′

(
f ′ + rΦ f ′

(
ψ ′))(ϕH0)

=
∑

ϕH0∈I

(
f + rΦ f (ψ)

)
(ϕH0) +

∑
ϕH0∈I ′

(
f + rΦ f (ψ)

)
(ϕH0)

+
∑

ϕH0∈I ′

(
f + rΦ f (ψ)

)
(ϕH0) +

∑
ϕH0∈I�I ′

(
f ′ + rΦ f ′

(
ψ ′))(ϕH0)

=
∑

ϕH0∈I�I ′

(
f + f ′ + rΦ f (ψ) + rΦ f ′

(
ψ ′))(ϕH0) +

∑
ϕH0∈I ′

(
f + rΦ f (ψ)

)
(ϕH0). (42)

Furthermore, since rΦ f ′ (τ ) = rΦ f (τ ) + τ · ( f ′ − f ) − ( f ′ − f ), we have

f + f ′ + rΦ f (ψ) + rΦ f ′
(
ψ ′)= ψ · ( f − f ′)+ rΦ f ′ (ψ) + rΦ f ′

(
ψ ′)

= ψ · ( f − f ′)+ rΦ f ′ (ψ) + rΦ f ′ (ψ) + ψ · rΦ f ′
(
ψ−1ψ ′)

= ψ · ( f − (
ψ−1ψ ′) ∗ f ′).

Hence,

(�) = 1

4

∑
ψ∈G/H∗(Φ f )

∑
ψ ′∈G/H∗(Φ f ′ )

(−1)

∑
ϕH0∈I′ ( f +rΦ f (ψ))(ϕH0)

ψ(a)ψ ′(b)

×
∑

I⊂{ϕ H ,...,ϕ H }
(−1)

∑
ϕH0∈I�I′ ψ ·( f −(ψ−1ψ ′)∗ f ′)(ϕH0)

.

1 0 N 0
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Hence, let σ = ψ−1ψ ′ , then,

(�) =
{

2N−2∑
ψ∈G/H∗(Φ f )

(−1)

∑
ϕH0∈I′ ( f +rΦ f (ψ))(ϕH0)

ψ(a × σ(b)) if f = σ ∗ f ′ for some σ ∈ G,

0 otherwise.

Therefore, Eq. (41) follows. �
Proof of Theorem 4.1. If there is an isomorphism φΛ such that q(φΛ(w)) = 2−N Q Λ(w), the other
isomorphisms also have the property, because Q Λ ◦σ = Q Λ holds for any automorphisms σ of K c

0 ⊗Q

(
⊕

Φ∈Λ K ∗(Φ)).
For (aΦ f ) ∈⊕Φ f ∈Λ K ∗(Φ f ), define φΛ by

φΛ((aΦ f )) := 2−N+1
∑

I

v I∏
ϕH0∈I

√−ϕ(d)

∑
Φ f ∈Λ

(−1)
∑

ϕH0∈I f (ϕH0)NΦ f (I)∗(aΦ f ). (43)

The coefficient of vi is an element of K c
0, because we have cNΦ f (I)∗ = (−1)

∑
ϕH0∈I rΦ f (c)(ϕH0)

NΦ f (I)∗
for c ∈ C , and furthermore, by Lemma 1.1 and Proposition 1.1,

c

( ∏
ϕH0∈I

√−ϕ(d)

)
= (−1)

∑
ϕH0∈I rΦ f (c)(ϕH0)

∏
ϕH0∈I

√−ϕ(d). (44)

Hence, (43) is well defined.
Let’s see that φΛ satisfies the assertion of the theorem. It is clear that φΛ is K c

0-linear. We divide
the proof into two parts.

(i) φΛ is a homomorphism between K c
0-algebras; it is enough if we can show φΛ((aΦ))φΛ((bΦ)) =

φΛ((aΦbΦ)) for any (aΦ)Φ∈Λ, (bΦ)Φ∈Λ ∈⊕Φ∈Λ K ∗(Φ). Denote the exclusive disjunction of I and
I ′ by I � I ′ . Then, we have

φΛ((aΦ f ))φΛ((bΦ f ))

= 2−2N
∑

Φ f ∈Λ

∑
Φ f ′ ∈Λ

∑
I

∑
I ′

v I�I ′∏
ϕH0∈I�I ′

√−ϕ(d)

×
∑

ψ∈G/H∗(Φ f )

(−1)

∑
ϕH0∈I ( f +rΦ f (ψ))(ϕH0)

ψ(aΦ f )

×
∑

ψ ′∈G/H∗(Φ f ′ )
(−1)

∑
ϕH0∈I′ ( f ′+rΦ f ′ (ψ

′))(ϕH0)
ψ ′(bΦ f ′ )

= 2−2N
∑

Φ f ∈Λ

∑
Φ f ′ ∈Λ

∑
I

∑
I ′

v I ′∏
ϕH0∈I ′

√−ϕ(d)

×
∑

ψ∈G/H∗(Φ f )

(−1)

∑
ϕH0∈I ( f +rΦ f (ψ))(ϕH0)

ψ(aΦ f )

×
∑

ψ ′∈G/H∗(Φ f ′ )
(−1)

∑
ϕH0∈I�I′ ( f ′+rΦ f ′ (ψ

′))(ϕH0)
ψ ′(bΦ f ′ )



R. Oishi-Tomiyasu / Journal of Number Theory 130 (2010) 2442–2466 2465
= 2−2N+2
∑

Φ f ∈Λ

∑
Φ f ′ ∈Λ

∑
I ′

v I ′∏
ϕH0∈I ′

√−ϕ(d)

×
∑

I

(−1)
∑

ϕH0∈I f (ϕH0)+∑ϕH0∈I�I′ f ′(ϕH0)NΦ f (I)∗(aΦ f )NΦ f ′ (I)∗(bΦ f ′ ).

Therefore, by Lemma 4.3,

φΛ(aΦ f )φΛ(bΦ f ) = 2−N+1
∑

Φ f ∈Λ

∑
I ′

v I ′∏
ϕH0∈I ′

√−ϕ(d)
(−1)

∑
ϕH0∈I′ f (ϕH0)NΦ f (I ′)∗(aΦ f bΦ f )

= φΛ(aΦ f bΦ f ).

(ii) q(φΛ(w)) = 2−N K c
0 ⊗Q Q Λ(w); it is enough if we can show q(φΛ((aΦ))) = 2−N Q Λ((aΦ)) for

(aΦ)Φ∈Λ ∈⊕Φ∈Λ K ∗(Φ). We have

q
(
φΛ((aΦ f ))

)= 2−2N+2
∑

I

q(v I )∏
ϕH0∈I (−ϕ(d))

( ∑
Φ f ∈Λ

(−1)
∑

ϕH0∈I f (ϕH0)NΦ f (I)∗(aΦ f )

)2

= 2−2N+1
∑

I

(−1)|I|
∑

Φ f ∈Λ

(−1)
∑

ϕH0∈I f (ϕH0)NΦ f (I)∗(aΦ f )

×
∑

Φ f ′ ∈Λ

∑
ψ ′∈G/H∗(Φ f ′ )

(−1)

∑
ϕH0∈I ( f ′+rΦ f ′ (ψ))(ϕH0)

ψ ′(aΦ f ′ ).

Since ι ∗ f (ϕH0) = (rΦ0 (ι) + ι · f )(ϕH0) = f (ϕH0) + 1 for any f ,

q
(
φΛ((aΦ f ))

)
= 2−2N+1

∑
I

∑
Φ f ∈Λ

(−1)
∑

ϕH0∈I f (ϕH0)NΦ f (I)∗(aΦ f )

×
∑

Φ f ′ ∈Λ

∑
ψ ′∈G/H∗(Φ f ′ )

(−1)

∑
ϕH0∈I (ι∗ f ′+rΦι∗ f ′ (ψ))(ϕH0)

ψ ′(aΦ f ′ )

= 2−2N+2
∑

I

∑
Φ f ∈Λ

∑
Φ f ′ ∈Λ

(−1)
∑

ϕH0∈I f (ϕH0)+∑ϕH0∈I ι∗ f ′(ϕH0)NΦ f (I)∗(aΦ f )NΦι∗ f ′ (I)∗(aΦ f ).

Therefore, by Lemma 4.3,

q
(
φΛ((aΦ f ))

)= 2−N+1
∑

Φ f ∈Λ

NΦ f (∅)∗(aΦ f aΦ f )

= 2−N
∑

Φ f ∈Λ

∑
ψ∈G/H∗(Φ f )

ψ(aΦ f aΦ f ) = 2−N Q Λ((aΦ f )).

It is clear that q and Q Λ(w) are positive definite. Since q(φΛ(w)) = 2−N K c
0 ⊗Q Q Λ(w) for any

w ∈ K c
0 ⊗Q (

⊕
Φ∈Λ K ∗(Φ)), φΛ must be injective. Hence, by comparing the dimensions, it is an iso-

morphism. Therefore, the assertion holds. �
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