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Abstract

Quasi-Monte Carlo (QMC) methods are successfully used for high-dimensional integrals

arising in many applications. To understand this success, the notion of effective dimension has

been introduced. In this paper, we analyse certain function classes commonly used in QMC

methods for empirical and theoretical investigations and show that the problem of

determining their effective dimension is analytically tractable. For arbitrary square integrable

functions, we propose a numerical algorithm to compute their truncation dimension. We also

consider some realistic problems from finance: the pricing of options. We study the special

structure of the corresponding integrands by determining their effective dimension and show

how large the effective dimension can be reduced and how much the accuracy of QMC

estimates can be improved by using the Brownian bridge and the principal component analysis

techniques. A critical discussion of the influence of these techniques on the QMC error is

presented. The connection between the effective dimension and the performance of QMC

methods is demonstrated by examples.
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1. Introduction

There has been an increasing interest in studying high-dimensional integration due
to its numerous applications in physics, statistics and finance (see [1–4,23,25]).
Consider the problem of approximating the integral

Iðf Þ ¼
Z

Cd

f ðxÞ dx; x ¼ ðx1;y; xdÞ;

where Cd ¼ ½0; 1Þd is the d-dimensional unit cube. It has long been known that
multivariate integration is subject to the curse of dimensionality, making the classical
quadratures infeasible for use in dimensions beyond say 5 or 6. Monte Carlo (MC)
methods are useful tools to break the curse of dimensionality. MC methods use the
sample mean

Qðf Þ ¼ 1

n

Xn

i¼1
f ðxiÞ

to approximate Iðf Þ; where the points x1;y; xn are independent and identical

distributed random draws from the uniform distribution on Cd : The MC error is of

order Oðn�1=2Þ for square integrable functions independently of the dimension.
Quasi-Monte Carlo (QMC) methods are deterministic versions of MC methods.

There are two important classes of point sets that are well suited to multivariate
integration: digital nets (or sequences) and lattice rules [15,27]. The Koksma–
Hlawka inequality yields the QMC error bound

jIðf Þ � Qðf ÞjpVHKðf ÞD�ðPÞ;

where D�ðPÞ is the star discrepancy of P ¼ fxig and VHKðf Þ is the variation in the
sense of Hardy and Krause. Several digital sequences are known to have star

discrepancy Oðn�1ðlog nÞdÞ:Hence, QMC integration based on a digital sequence has

a deterministic error bound in the order Oðn�1ðlog nÞdÞ; which is asymptotically

better than that of MC. Thus for fixed d and sufficiently large n; QMC is superior to

MC. But when d is large, the factor n�1ðlog nÞd is substantially larger than n�1=2

unless n is huge. Similar situation occurs for lattice rules. Therefore, it was widely
believed that QMC methods should not be used for high-dimensional integration,
say, for dX15:
However, Paskov and Traub [25] found empirically that QMC methods are

superior to MC for high-dimensional integrals arising in finance (up to d ¼ 360 in
their examples). Many other numerical experiments also showed that the order of

convergence of QMC in these problems is roughly n�1 independently of the
dimension (see, for example, [16,24]). See [36] for a survey of the state of the art. It is
a challenging problem to understand the apparent success of QMC for high-
dimensional integrals. There are several ways to explain this. Paskov and Traub [25],
Caflisch et al. [3] and Paskov [24] used the concept of effective dimension and argued
that the performance of QMC integration is intimately related to the effective
dimension of the problems. Sloan and Woźniakowski [31,32] used the notions of
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tractability and strong tractability and showed that there exists QMC algorithm for
which the curse of dimensionality is not present in some weighted function classes.
Papageorgiou [20] and Owen [19] investigated some isotropic integrals and showed
the superiority of QMC methods.
As can be seen from the Koksma–Hlawka inequality (and its various general-

izations [5]), the efficiency of an algorithm for computing Iðf Þ depends on both the
algorithm and on the integrand. In this paper, we focus on the aspect of integrand.
Currently, little is known about the effective dimension of various problems. A clear
understanding of how QMC error depends on the effective dimension is important.
It would be interesting to know exactly the effective dimension of the problems at
hand (such as these in empirical and theoretical studies of QMC methods and these
in computational finance). Some attempts have been made in [6,19].
The main objectives of this paper are threefold: (1) to provide ways to analyse the

effective dimension for some functions; (2) to develop numerical algorithms for
determining the effective dimension of an arbitrary square integrable function; (3) to
compare the performance of dimension reduction techniques, such as the Brownian

bridge (BB) and the principal component analysis (PCA) techniques.
This paper is organized as follows. In Section 2, after introducing the notion of

effective dimension and discussing its relationships to the integration errors and
approximation errors, we propose a numerical algorithm to compute the effective
dimension for arbitrary square integrable function. In Section 3, function classes
commonly used in QMC methods for empirical and theoretical investigations are
analysed. It is shown that the problem of determining the effective dimension for
such functions is analytically tractable. In particular, it is shown that for the
weighted Korobov spaces with the weights satisfying the strong tractability
conditions, the corresponding effective dimension is small relative to the nominal
dimension. In Section 4, we consider some realistic problems from finance: the
pricing of Asian options and multi-asset options. We study the special features of
these problems and compare the BB and PCA techniques from the point of view
of effective dimension. The connections of effective dimension with the performance
of QMC algorithms is demonstrated by examples. A critical discussion of the
influence of the dimension reduction techniques on the QMC error is presented.

2. Effective dimension and its determination

2.1. The ANOVA decomposition

ANOVA decomposition is a way of decomposing a function into a sum of simpler
functions and has been studied by many authors in statistics (see references in [19])
and in QMC methods [6,11,18,19,35].
Let S ¼ f1;y; dg: For any subset uDS; let juj denote its cardinality and S� u

denote its complementary set in S: Let xu be the juj-dimensional vector containing
the coordinates of x with indices in u: Furthermore, let Cu denote the juj-dimensional
unit cube involving the coordinates in u (so CS is the same as Cd ¼ ½0; 1Þd).
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Assume that f ðxÞ is a square integrable function. We can write f ðxÞ as the sum of

its 2d ANOVA terms:

f ðxÞ ¼
X
uDS

fuðxÞ: ð1Þ

The ANOVA terms fuðxÞ are defined recursively by

fuðxÞ ¼
Z

CS�u

f ðxÞ dxS�u �
X
vCu

fvðxÞ; ð2Þ

with f| ¼
R

Cd f ðxÞ dx ¼ Iðf Þ: The sum in (2) is over strict subsets vau (we use the

convention
R

C| f ðxÞ dx| ¼ f ðxÞ). The ANOVA term fuðxÞ is the part of the function
depending only on the variables xj with jAu: The ANOVA terms enjoy some

interesting properties:

(1)
R 1
0 fuðxÞ dxj ¼ 0 for jAu:

(2) The ANOVA decomposition (1) is orthogonal in that
R

Cd fuðxÞfvðxÞ dx ¼ 0

whenever uav:
(3) Let s2ðf Þ ¼

R
Cd f 2ðxÞ dx� ½Iðf Þ
2 be the variance of f ; then s2ðf Þ ¼P

uDS s2uðf Þ; where s2uðf Þ ¼
R

Cd ½fuðxÞ
2 dx for juj40 is the variance of fu and

s2|ðf Þ ¼ 0:

2.2. The definitions of effective dimension

Let u be a subset of S; the variance corresponding to u is defined as

Du :¼
X
vDu

s2vðf Þ:

The total-effect variance corresponding to u is defined by

Dtot
u :¼

X
v-ua|

s2vðf Þ ¼ s2ðf Þ � DS�u:

The total-effect variance Dtot
u characterizes the total contribution of the variable xu

to the variance of f : it includes the pure effect Du; as well as all the effects due to its
interactions with others.

The relative size of Du or Dtot
u with respect to s2ðf Þ indicates the relative

importance of xu: If Du is close to s2ðf Þ; then xu affects the function singularly, its

interactions with other variables are negligible. If Du is small, while Dtot
u is large, then

xu influences the function mainly through interactions. If Dtot
u is small, then xu has a

negligible effect on the function and can be fixed at some values (in this case xS�u

affects the function singularly). The relative size of
P

jujpm s2uðf Þ indicates the impact
of all interactions of order no larger than m: The following two notions of effective
dimension are introduced in [3].
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Definition 1. The effective dimension of f in the superposition sense (or ‘super-
position dimension’ in short) is the smallest integer ds; such thatX

0ojujpds

s2uðf ÞXps2ðf Þ;

where p is the proportion with 0opo1 (p is taken to be close to 1).

Definition 2. The effective dimension of f in the truncation sense (or ‘truncation
dimension’) is the smallest integer dt such that

Df1;y;dtgXps2ðf Þ:

The idea of effective dimension appears in [25]. These notions are closely related to
sensitivity indices (see [35]). The truncation dimension and superposition dimension
are appropriate for different kind of functions. The truncation dimension is roughly
the number of ‘‘important’’ variables. It indicates on how many variables we should
pay our main attention. Truncation dimension is especially appropriate for the
characterization of the ‘‘weighted’’ functions, where some variables are more
important than others. On the other hand, superposition dimension is an indicator of
whether low-order ANOVA terms dominate the function. It is especially useful in the
case that all variables are equally important or almost equally important (in such
cases the information about the truncation dimension is less useful). For example,
for the isotropic function (see [19,20])

f ðxÞ ¼ g

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXd

j¼1½F
�1ðxjÞ
2

r !
;

where Fð�Þ is the standard normal distribution function and g : R-R (in [23] the
function gð�Þ ¼ cosð�Þ), all the variables are equally important, it may be not
interesting to discuss its truncation dimension, but it is useful to know its
superposition dimension [19].
The effective dimension depends on p: For the same p; we always have dspdt: But

the converse is not true. For example, the function f ðxÞ ¼ x1 þ?þ xd has
superposition dimension 1; but may have much larger truncation dimension. Many
functions in practice have large truncation dimension, but have small superposition
dimension. Especially, such a feature is typical for a number of financial problems
(see [29]). In general, it is hard to compute the effective dimension for an arbitrary
function. To overcome this difficulty, some interesting variants (such as effective

dimension of a function space and dimension distribution) are introduced in [6,19].

2.3. QMC integration error and effective dimension

It is important to know how QMC error depends on the effective dimension.
Under suitable definitions of discrepancy and variation (see [3,5,6,19]), we have

jQðf Þ � Iðf Þjp
X
uDS

DuðPuÞjjfujj; ð3Þ
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where Pu is the projection of the point set P on Cu; DuðPuÞ is the discrepancy of Pu

and jjfujj is the variation of fu: Thus, the QMC error depends on the uniformity of all
the projections Pu and all the low-dimensional parts fu:
The basic properties of low discrepancy point sets are their ‘‘better’’ uniformity

than that of random points. But the ‘‘better’’ uniformity is not preserved for all
dimensions and for all projections. The following facts are useful to understand the
possible advantage and potential problem of QMC.
First, at least the first coordinates of low discrepancy point sets have better

distribution properties than random points do. More precisely, for small l (say
lp10), the term DuðPuÞ with uDf1;y; lg for a low discrepancy point set is much
smaller than that for random points. But for other subset u (e.g., when juj is large or
u contains large indices), the results for a low discrepancy point set could be worse
than that for random points, unless n is extremely large.
Second, the low-order projections (i.e., juj is small) of low discrepancy point sets

have better distribution property ‘‘on the average’’ than random points do. Many
low discrepancy sequences have some poor projections even for small juj: In fact,
two-dimensional projections with bad distribution properties have been observed for
several common low discrepancy sequences (see, for example, [14]). The non-
uniformity in the higher order projections is a more serious problem. This is an
indication of potential problem in using QMC. However, for small juj; most
juj-dimensional projections of low discrepancy point sets are good ones. In general, it
is shown in [30] that for d in the range of 10–100, if l is small (say lp3), then the
superposition discrepancy

DðlÞðPÞ :¼
X
juj¼l

½DuðPuÞ
2
0
@

1
A

1=2

of a low discrepancy point set is smaller than that of random points. But this
superiority decreases as l and d increase. For large l (say l43 and d430), the
superposition discrepancies of low discrepancy point sets and random points are
almost the same, unless n is huge.
Suppose that f has truncation dimension dt: Rewrite (3) as

jQðf Þ � Iðf Þjp
X

uDf1;y;dtg
DuðPuÞjjfujj þ

X
u-ðS�f1;y;dtgÞa|

DuðPuÞjjfujj: ð4Þ

If dt is small (say dtp10), then the quantities DuðPuÞ involved in the first sum on the
right-hand side of (4) are much smaller for QMC than for MC. For the subset u

involved in the second term of (4), jjfujj is often small. Although it may happen that
DuðPuÞ is larger for QMC than for MC, but it is multiplied by a small jjfujj: So all
terms in (4) can be expected to be small for QMC. Therefore, if f has low truncation
dimension, we have good reason to expect an improvement of QMC over MC. Note
that if the second sum in (4) is smaller for MC than for QMC, then a ‘‘mixed’’ point
set (with the first dt coordinates being the leading coordinates of a low discrepancy
point set and the remaining dimensions being the random numbers) has the potential
to improve pure QMC.
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Now suppose that f has superposition dimension ds; then we have

jQðf Þ � Iðf Þjp
X
jujpds

DuðPuÞjjfujj þ
X
juj4ds

DuðPuÞjjfujj

p
Xds

l¼1
DðlÞðPÞ

X
juj¼l

jjfujj2
0
@

1
A

1=2

þ
X
juj4ds

DuðPuÞjjfujj:

Clearly, the QMC error has a strong dependence on the superposition dimension ds:
If ds is small (say dsp3), then the superposition discrepancy DðlÞðPÞ (with lpds) of a

low discrepancy point set is smaller than that of random points. Similar arguments
as above lead to similar conclusion. Thus if f has small superposition dimension ds

(even if the truncation dimension is large), we still have good reason to expect that
QMC will be more efficient than MC.
Note that effective dimension only provide partial information about the difficulty

in approximating integrals. Small effective dimension does not suffice to guarantee
the effectiveness of QMC. For example, since bad two-dimensional projections are
not rare for several common low discrepancy sequences (especially for relative small
n and large d), so integrating functions with strong dependence on just the two
dimensions may lead to bad result (such functions could have superposition
dimension only 2 or 1). We could also have function f ðxÞ with small superposition
dimension and the points fxig with good low dimensional projections, but still get a
poor QMC result. Effective dimension has a strong influence on QMC error.
However, other factors, such as the regularity of the integrand (and the regularity of
its low-dimensional part), the dimension d; the point set and the sample size, may
play a very important role in the QMC error.
The arguments in this subsection are based on the error bound (3). In some cases

an entirely different approach is possible. For example, it is shown in [20] that the
QMC error for some isotropic problems depends on the uniformity of the norms of
the sample points (this is referred to as radial discrepancy in [19]) and a fast QMC

convergence order Oð
ffiffiffiffiffiffiffiffiffiffi
log n

p
=nÞ is proved. These ideas have been extended in [22].

2.4. Effective dimension and the approximation errors

Effective dimension has close relation to the approximation error. Let hðxÞ be an
approximation to f ðxÞ: The normalized approximation error is defined by

Errðf ; hÞ ¼ 1

s2ðf Þ

Z
Cd

½f ðxÞ � hðxÞ
2 dx:

Two simple ways for approximating f ðxÞ are:
(1) Freezing the nonessential variables (see [34]): f ðxÞEf ðxu; z0Þ; where z0 is some

fixed point in CS�u:
(2) Deleting the high-order ANOVA terms in the decomposition (1):

f ðxÞE
X
jvjpl

fv; for some 0plpd:
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The theorems below indicate that the effective dimension of a function is related to
the ability of approximating the function by a low-dimensional function or a sum of
low-dimensional functions. If f has truncation dimension dt; then Df1;y;dtg is close to

s2ðf Þ and Dtot
fdtþ1;y;dg is close to zero. In this case f ðxÞ can be well approximated by a

dt-dimensional function by freezing the variables xdtþ1;y; xd to some value within

their range. The next theorem is a direct consequence of the result of Sobol [34].

Theorem 1. Assume that the function f ðxÞ has truncation dimension dt in proportion p

and let u0 ¼ f1;y; dtg: Let hðxÞ ¼ f ðxu0 ; zÞ with the freezing variable z uniformly

distributed in the ðd � dtÞ-dimensional unit cube Cfdtþ1;y;dg: Then for arbitrary e40;
with probability X1� e we have

Errðf ; hÞoð1þ e�1Þð1� pÞ:

If f ðxÞ has superposition dimension ds; then f ðxÞ can be well approximated by a
sum of ds-dimensional functions as shown below.

Theorem 2. Assume that f ðxÞ has superposition dimension ds in proportion p: Let

hðxÞ ¼
P

jujpds
fuðxÞ: Then

Errðf ; hÞpð1� pÞ:

Proof. First, since f ðxÞ has superposition dimension ds in proportion p; thenX
jujpds

s2uðf ÞXps2ðf Þ: ð5Þ

Second, from the ANOVA decomposition (1), we have

f ðxÞ � hðxÞ ¼
X
juj4ds

fuðxÞ:

By squaring and integrating over Cd ; using the orthogonality of the ANOVA terms,
we obtainZ

Cd

½f ðxÞ � hðxÞ
2 dx ¼
X
juj4ds

s2uðf Þ ¼ s2ðf Þ �
X
jujpds

s2uðf Þpð1� pÞs2ðf Þ;

where the inequality follows from (5). &

2.5. The algorithm for determining effective dimension

The calculation of effective dimension is related to the computation of sensitivity
indices [34,35]. The key is to compute the variance Du corresponding to any subset u

of S: For any fixed uDS; let x ¼ ðxu; xS�uÞ and y ¼ ðyu; yS�uÞ: The result of
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Sobol [34,35] leads to the following relation

Du ¼
Z

f ðxÞf ðxu; yS�uÞ dx dyS�u � ½Iðf Þ
2; ð6Þ

where the integration is over the ð2d � jujÞ-dimensional unit cube (integrals below
without an explicit domain is considered to be over appropriate unit cube). To gain
some insight and for completeness, the proof is given here briefly. In fact,Z

f ðxÞf ðxu; yS�uÞ dx dyS�u

¼
Z

dxu

Z
f ðxu; xS�uÞ dxS�u

Z
f ðxu; yS�uÞ dyS�u

¼
Z

dxu

Z
f ðxu; yS�uÞ dyS�u

� �2
:

From the ANOVA decomposition (1) and the property that
R 1
0 fuðxÞ dxj ¼ 0 for jAu;

we haveZ
f ðxu; yS�uÞ dyS�u ¼

X
vDu

fvðxÞ:

By squaring and integrating over dxu; we haveZ
f ðxÞf ðxu; yS�uÞ dx dyS�u ¼ f 2| þ

X
vDu

s2v ¼ f 2| þ Du;

which is equivalent to (6).

Thus for computing Du and the variance s2ðf Þ one needs to estimate the following
three types of integrals:Z

f ðxÞ dx;

Z
f 2ðxÞ dx;

Z
f ðxÞf ðxu; yS�uÞ dx dyS�u:

All these integrals can be computed by QMC (or MC). Let ðxi; yiÞ; i ¼ 1; 2;y; be a

low discrepancy sequence of points in the 2d-dimensional unit cube C2d : For uDS;
write

xi ¼ ððxiÞu; ðxiÞS�uÞ and yi ¼ ððyiÞu; ðyiÞS�uÞ:
We have the following approximations based on the QMC method:

#f| ¼
1

n

Xn

i¼1
f ðxiÞ; #s2 ¼ 1

n

Xn

i¼1
f 2ðxiÞ � #f|

2;

D̂u ¼ 1

n

Xn

i¼1
f ððxiÞu; ðxiÞS�uÞf ððxiÞu; ðyiÞS�uÞ � #f|

2:

Thus the truncation dimension can be determined by computing Du with u ¼
f1;y; lg for l ¼ 1; 2;y; until the inequality in Definition 2 is satisfied. We need to
compute one integral for the mean, one for the variance, plus at most ðd � 1Þ
integrals for D̂u:
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The numerical computation of the superposition dimension for an arbitrary
function is more complicated. In this case, we have to compute the variance term

s2uðf Þ for every subset u under consideration. Moreover, direct use of (6) often lead to

a loss of accuracy in computing s2uðf Þ when juj is large (say juj43). The variance

fraction of two-dimensional structure in some problems from finance is estimated by
quasi-regression [11]. Some other attempts have been made in [29].

3. Effective dimension of multiplicative functions

The purpose of this section is threefold: to analyse the effective dimension for
functions with multiplicative structure; to test the numerical algorithm given above
and to analyse the effective dimension of the weighted Korobov spaces.

3.1. Test functions: analytical and numerical results

Consider a class of test functions:

f ðxÞ ¼
Yd

k¼1

j4xk � 2j þ ak

1þ ak

; ð7Þ

where ak are parameters. Such functions allow an automatic tuning of the relative
importance of the variables, as well as of their interactions, by appropriate choices of
ak: QMC algorithms for such functions have quite different performance [26,39]. The
reason will be clear soon.
The value of the integral and the variance of f can be computed analytically:

Iðf Þ ¼ 1; s2ðf Þ ¼
Qd

k¼1½1þ 1

3ð1þakÞ2

 � 1: The ANOVA terms and the corresponding

variances are:

f| ¼ 1; fu ¼
Y
kAu

j4xk � 2j � 1

1þ ak

; juj40;

s|ðf Þ ¼ 0; s2uðf Þ ¼
Y
kAu

1

3ð1þ akÞ2
; juj40: ð8Þ

The quantities involved in the definitions of effective dimension can be computed
analytically. First, based on (6), we have

Du ¼
Z

f ðxÞf ðxu; yS�uÞ dx dyS�u � f 2| ¼
Y
kAu

1þ 1

3ð1þ akÞ2

" #
� 1:

Second, for l ¼ 1; 2;y; d; from (8) it follows that

X
0ojujpl

s2uðf Þ ¼
X

0ojujpl

Y
kAu

1

3ð1þ akÞ2
¼
Xl

m¼1

X
juj¼m

Y
kAu

1

3ð1þ akÞ2
: ð9Þ

X. Wang, K.-T. Fang / Journal of Complexity 19 (2003) 101–124110



Such quantities can be computed recursively. To show this, consider a sequence of
numbers c1; c2;y : Define

Tði;mÞ ¼
X

uDf1;y;ig;juj¼m

Y
jAu

cj ; for i ¼ 1; 2;y; d and m ¼ 1; 2;y; i:

We view T as a d 
 d lower triangular matrix. Obviously, Tði; 1Þ ¼
Pi

j¼1 cj and

Tði; iÞ ¼
Qi

j¼1 cj for i ¼ 1; 2;y; d: It is easy to prove the following recursive relation:

Tði;mÞ ¼ Tði � 1;mÞ þ ciTði � 1;m � 1Þ; for iX3;mX2: ð10Þ

Using this recursive relation and the initial values of Tði; 1Þ and Tði; iÞ; we can easily
compute the elements of the last row of the matrix T : Tðd; 1Þ;Tðd; 2Þ;y;Tðd; dÞ; as
well as the sums

Pl
m¼1 Tðd;mÞ for l ¼ 1; 2;y; d: The sums in (9) can be computed in

this way.
Three choices of the parameters will be considered:

ðaÞ a1 ¼ ? ¼ ad ¼ 1; ðbÞ ak ¼ k; 1pkpd; ðcÞ ak ¼ k2; 1pkpd:

The effective dimension is computed by using the analytical formulas and the
numerical algorithm in the previous section (the purpose of using numerical
algorithm is to test its accuracy). In the latter case, we use the Sobol sequence [33] (or

mixed sequence, if the dimension is larger than 100) with n ¼ 210 for the
computations of the integrals involved. The results are given in Table 1. We see
that the numerical algorithm is quite accurate.
Observe that for (a), all variables are equally important, the truncation dimension

is approximately the same as the nominal dimension, this is the most difficult case for
numerical integration. QMC works badly for such integrands in dimension d420;
see [39]. For (b), the importance of the successive variables is decreasing. The
truncation dimension is smaller than the nominal dimension and the superposition
dimension is only 2. QMC works better than MC (note that the truncation
dimension is not small). For (c), the importance of the successive variables is
decreasing quickly. The effective dimension in both senses is very small. One can
expect that QMC will be much more efficient than MC. The computational

Table 1

The effective dimension (with p ¼ 0:99) for the test function (7). Values in the parentheses are the results

obtained by numerical algorithm

Dimension ak ¼ 1 ak ¼ k ak ¼ k2

d dt ds dt ds dt ds

10 10 (10) 3 10 (10) 2 5 (5) 2

20 20 (20) 5 18 (19) 2 5 (5) 2

40 40 (39) 8 33 (34) 2 5 (5) 2

80 80 (79) 12 55 (56) 2 5 (5) 2

100 100 (100) 14 64 (66) 2 5 (5) 2

200 200 (198) 25 93 (95) 2 5 (5) 2
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experiments in [39] confirm this. See also [26]. Thus the efficiency of QMC strongly
depends on the effective dimension.

3.2. General multiplicative functions

The method presented above can be extended to more general functions with
multiplicative structure. Suppose that

f ðxÞ ¼
Yd

k¼1
gkðxkÞ;

and

mk :¼
Z

gkðxÞ dx; l2k :¼
Z

ðgkðxÞ � mkÞ2 dxoN:

It is obvious that Iðf Þ ¼
Qd

k¼1 mk and

s2ðf Þ ¼ ½Iðf Þ
2
Yd

k¼1
1þ l2k

m2k

� �
� 1

" #
:

As shown in [19], the ANOVA terms and the corresponding variances are (for ua|)

fu ¼
Y
kAu

ðgkðxkÞ � mkÞ �
Y
keu

mk;

s2uðf Þ ¼
Y
kAu

l2k
Y
keu

m2k ¼ ½Iðf Þ
2
Y
kAu

l2k
m2k
:

Therefore, the quantities involved in the definitions of effective dimension can be
computed by the formulas:

Du ¼
X
vDu

s2vðf Þ ¼ ½Iðf Þ
2
Y
kAu

1þ l2k
m2k

� �
� 1

" #
;

X
jujpl

s2uðf Þ ¼ ½Iðf Þ
2
Xl

m¼1

X
juj¼m

Y
kAu

l2k
m2k
; l ¼ 1;y; d:

The latter one can be computed recursively. Many test functions used in QMC for
empirical studies have the multiplicative structure (see [19]). Some functions from
finance also have multiplicative structure [29].

3.3. The effective dimension of weighted Korobov spaces

To understand the success of QMC methods for high-dimensional integration,
Sloan and Woźniakowski [31,32] used the notions of tractability and strong
tractability. They introduced the weighted Sobolev spaces and the weighted
Korobov spaces, in which the importance of the successive variables is increasingly
limited. This dependence is controlled by a sequences of weights. They showed that
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there exist QMC algorithms for which the curse of dimensionality is not present
under certain conditions on the weights. More precisely, they established the
necessary and sufficient conditions of tractability and strong tractability. In [7,37] it
is shown that QMC algorithms based on some low discrepancy sequences achieve the

optimal convergence order Oðn�1þdÞ for any d40 in weighted Sobolev spaces
independently of the dimension under appropriate conditions. We are interested in
the question of how large the effective dimension of the weighted spaces of function
is, especially in the case when the weights satisfy the tractability or strong tractability
conditions.
Consider the d-dimensional weighted Korobov spaces, which are reproducing

kernel Hilbert spaces having the reproducing kernels given by

Kd;aðx; yÞ ¼
Yd

k¼1
bk þ gk

XN
h¼�N

ha0

e2pihðxk�ykÞ

jhja

2
64

3
75; a41; i ¼

ffiffiffiffiffiffiffi
�1

p
; ð11Þ

where fbkg and fgkg are two sequences of positive numbers. The smoothness
parameter a characterizes the rate of decay of the Fourier coefficients.
Consider the case of a ¼ 2: This case is important, since the weighted Sobolev

spaces studied in [28,31,37] are related to the weighted Korobov spaces with a ¼ 2 by
using the tool of the shift-invariant kernels (see [6,8]). The complexity of integration
over the weighted Sobolev spaces is related to that over certain weighted Korobov

spaces with a ¼ 2: Since the Fourier expansion of the Bernoulli polynomial B2ðxÞ ¼
x2 � x þ 1=6 is given by

B2ðxÞ ¼
1

2p2
X
ha0

e2pihx

h2
; xA½0; 1
;

the kernel Kd;aðx; yÞ in (11) with a ¼ 2 can be written as

Kd;2ðx; yÞ ¼
Yd

k¼1
½bk þ 2p2gkB2ðfxk � ykgÞ
;

where the notation fxg means the fractional part of x:
Now consider the ‘‘typical functions’’ in the weighted Korobov space associated to

the kernel Kd;2ðx; yÞ: For any fixed y� ¼ ðy�
1;y; y�

dÞACd ; define a function of x

fy� ðxÞ :¼
Yd

k¼1
½bk þ 2p2gkB2ðfxk � y�

kgÞ
:

Such functions have multiplicative structure. By direct computation we find thatZ 1

0

B2ðfxk � y�
kgÞ dxk ¼ 0 and

Z 1

0

B2
2ðfxk � y�

kgÞ dxk ¼ 1

180
;
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for all y�
kA½0; 1Þ: Thus the corresponding parameters mk; lk defined in the previous

subsection are

mk ¼
Z 1

0

½bk þ 2p2gkB2ðfxk � y�
kgÞ
 dxk ¼ bk

and

l2k ¼
Z 1

0

4p4g2kB2
2ðfxk � y�

kgÞ dxk ¼ p4

45
g2k:

Therefore, the effective dimension in both senses of the function fy� ðxÞ is independent
of y� and can be computed using the analytical method given in the previous
subsection. In our computations, we put

ðAÞ gj ¼ 1; ðBÞ gj ¼
1

j
; ðCÞ gj ¼

1

j2
; ðDÞ gj ¼

1

2j�1

and bj ¼ 1 for all j ¼ 1; 2;y; d: Based on the theoretical results in [32], case (A)

corresponds to the intractability of the problem, while (B) corresponds to tractability
but not strong tractability of the problem. Both (C) and (D) correspond to the strong
tractability of the problem. The effective dimension is given in Table 2 (again
p ¼ 0:99).
Choice (A) corresponds to the classical Korobov space, in which the multivariate

integration is subject to the curse of dimensionality. We cannot expect that QMC
works better than MC if d is large. In this case, both the truncation dimension and
the superposition dimension are large.
The situation for case (B) is better than for (A). The truncation dimension is still

large, but the superposition dimension is ‘‘moderate’’. This indicates that the high-
order interactions are negligible. In this case the efficiency of QMC algorithms
depends mainly on the uniformity of the lower-order projections (with order no
larger than 5).
In cases (C) and (D), the effective dimension in both senses is very small and is

independent of the nominal dimension. Thus, the faster convergence rate of QMC
than MC should be expected. Note that case (D) has higher superposition dimension
than case (C), also the truncation dimension for case (D) is never smaller than for (C)

Table 2

The effective dimension of the weighted Korobov space with a ¼ 2

d gj ¼ 1 gj ¼ 1=j gj ¼ 1=j2 gj ¼ 1=2ðj�1Þ

dt ds dt ds dt ds dt ds

10 10 10 10 4 4 2 5 3

20 20 18 19 4 5 2 5 3

50 50 42 42 5 5 2 5 3

100 100 79 71 5 5 2 5 3

200 200 152 109 5 5 2 5 3

500 500 366 161 5 5 2 5 3
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and in one case is larger. This may seem surprising, since the weights in case (D)
decrease more quickly than case (C). The explanation is the following. Note that the
weights in these cases decay very fast, thus the effective dimension is mainly
determined by the initial weights. The leading weights in case (C) are 1, 1/4, 1/9, 1/16,
1/25, 1/36, 1/49, y; while in case (D) are 1, 1/2, 1/4, 1/8, 1/16, 1/32, 1/64, y : Only
from the 7-th weight, the weights in (D) are smaller than these in case (C).

4. Option pricing: the effective dimension

In this section we study the option pricing problems from the point of view of
effective dimension. We try to answer the question of how large the effective
dimension of the option pricing problems is and in what extent the BB and PCA
techniques can reduce the effective dimension and improve QMC estimates. A
critical discussion of the dimension reduction techniques is presented.

4.1. The pricing of Asian options

Consider the problem of pricing an Asian option on the discrete arithmetic
average. The terminal payoff of a European-style Asian call option is

maxðSave � K ; 0Þ;

where K is the strike price at the expiration date T and Save ¼ 1
d

Pd
j¼1 Stj

is the

arithmetic average of the underlying asset at equally spaced times t0 ¼ 0;
tj ¼ tj�1 þ Dt; j ¼ 1;y; d;Dt ¼ T=d: We assume the Black-Scholes model for the

evolution of the underlying:

dSt ¼ mSt dt þ sSt dBt; ð12Þ

where m is the expected rate of return of the underlying, s is the volatility and Bt is
the standard Brownian motion. Based on the risk-neutral valuation principle (see
[9]), the value of the option at time 0 is given by

CA ¼ EQ½e�rTmaxðSave � K ; 0Þ
;

where EQ½�
 is the expectation under the risk-neutral measure Q: Since we are

interested in the expectations under the risk-neutral measure, we take m ¼ r (r is the
risk-free interest rate). With m ¼ r; the analytical solution to (12) is

St ¼ S0 expððr � 1
2
s2Þt þ sBtÞ:

Thus to price Asian options by simulation, it suffices to simulate the path of
Brownian motion. The standard approach generate the Brownian motion
sequentially in time: given B0 ¼ 0;

Btj
¼ Btj�1 þ

ffiffiffiffiffi
Dt

p
Zj; j ¼ 1;y; d; ð13Þ

where Z1;y;Zd are independent standard normal random variates. Note that under
the standard construction (13), the price of the Asian option can be written as a
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d-dimensional integral (see also [10])

CA ¼
Z

Cd

e�rT max 0;
1

d

Xd

j¼1
S0 exp r � s2

2

� �
tj þ s

ffiffiffiffiffi
Dt

p Xj

i¼1
F�1ðxiÞ

" #
� K

 !
dx;

ð14Þ

where Fð�Þ is the standard normal distribution.
To reduce the effective dimension, we use the BB technique (see [3,12,13]). Let the

number of time steps d ¼ 2m (m is a nonnegative integer). Given B0 ¼ 0; the
Brownian motion is generated at times in order T ;T=2;T=4; 3T=4;y

BT ¼
ffiffiffiffi
T

p
F�1ðxi;1Þ;

BT=2 ¼ 1
2
ðB0 þ BTÞ þ

ffiffiffiffiffiffiffiffiffi
T=4

p
F�1ðxi;2Þ;

^

Bðd�1ÞT=d ¼ 1
2
ðBðd�2ÞT=d þ BTÞ þ

ffiffiffiffiffiffiffiffiffiffiffiffi
T=2d

p
F�1ðxi;dÞ;

where ðxi;1; xi;2;y; xi;dÞ is the ith point of certain low discrepancy sequence. In MC,

it is a random vector.
Another way to reduce the effective dimension is to use PCA (see [1]). Let V be the

covariance matrix of Bt1 ;y;Btd
; the ij-element of V is Vi;j ¼ minðti; tjÞ; i; j ¼

1;y; d: To introduce the construction by PCA, we first write the standard
construction of Brownian motion (13) as

Bt1

^

Btd

0
B@

1
CA ¼ L

Z1

^

Zd

0
B@

1
CA; ð15Þ

where L is a d 
 d lower triangular matrix with nonzero entries
ffiffiffiffiffi
Dt

p
: The matrix L is

the Cholesky matrix of the covariance matrix V : LL0 ¼ V : Note that the BB
construction corresponds to replacing the L by a certain matrix B with BB0 ¼ V :
In the PCA construction, we replace the matrix L in (15) by another one:

M :¼ ð
ffiffiffiffiffi
l1

p
v1;

ffiffiffiffiffi
l2

p
v2;y;

ffiffiffiffiffi
ld

p
vdÞ; ð16Þ

where l1X?Xld are the eigenvalues of V in decreasing order and v1;y; vd are the
corresponding unit-length column eigenvectors of V :
In our calculations, we use the following parameters: S0 ¼ 100; s ¼ 0:2; r ¼ 0:1;

T ¼ 1 year, K ¼ 100: Table 3 shows the effective dimension (with p ¼ 0:99) of the
corresponding functions under the standard, BB and PCA constructions. In all cases
the truncation dimension is smaller than the nominal dimension, but the functions
are not determined by just a small number of leading variables (the truncation
dimension is approximately 0.8 times the nominal dimension d). So judged by
truncation dimension, the option pricing problems are still high dimensional. The BB
and PCA constructions reduce the effective dimension remarkably, especially the
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PCA construction. The truncation dimensions in these cases is only 7–8 or 2;
respectively, and is insensitive to the nominal dimension d:
For more clear comparison, we include in Table 3 the cumulative variance captured

by the first two variables for the Asian option pricing problem under these three
constructions. For example, on the column under ‘‘Standard’’, the first number is the

variance (in percentage) captured by the first variable x1 (i.e., 100s2f1gðf Þ=s2ðf Þ with
f being the integrand in (14)), the second number is the cumulative variance captured
by the first two variables x1; x2: It is clear that under the standard construction the
variance captured by the first two variables decreases rapidly as d increases, but it
remains almost the same under BB and PCA constructions. Note that the
‘cumulative variance’ is different from the variability explained by the first k normals
used in [1] (the latter is defined as the sum of the squared norms of the first k columns
of the matrix L in Brownian motion construction (15) with LL0 ¼ V ).
The BB and PCA constructions change the structure of the integrand. The total

variance remains the same as in standard construction, but much of the variance is
allocated to the first few dimensions. Thus BB and PCA can reduce the effective
dimension of the problem and would seem to make a better use of the leading
components of a low discrepancy sequence.
Tables 4 and 5 show the relative efficiency of using BB and PCA in MC and QMC

(for 16, 64 time intervals, respectively). Note that the relative efficiency ratio of two
estimates is computed as the inverse ratio of their sample variance. In QMC, we use
the digit-scrambling Sobol sequence. See [39] for such a technique. It is a version of
Owen’s scrambling [17]. We observe the following:

* The relative efficiency ratios of the standard QMC (with respect to crude MC) are
about 15 for d ¼ 16 and about 10 for d ¼ 64 (decreases slightly as d increases).
The dimension effect is not very serious.

* QMC combining with BB or PCA improve QMC with efficiency ratio
approximately 10 or 20, respectively. The efficiency ratio is rather insensitive to
the dimension d; but has a clear increasing trend with the increase of n: QMC
combining with PCA is more efficient than with BB, this is consistent with the fact
that PCA reduces the effective dimension more remarkably than BB does.

Table 3

The truncation dimension and the cumulative variance (in percent) from the first two variables for the

problem of pricing Asian option: under the standard, BB and PCA constructions, respectively

d Effective dimension Cumulative variance (in percent)

Standard BB PCA Standard BB PCA

8 7 5 2 26.59 49.31 77.64 94.57 98.73 99.81

16 14 7 2 13.06 25.91 75.15 93.49 98.74 99.79

32 27 7 2 3.56 10.70 73.10 92.76 98.62 99.75

64 53 8 2 0.10 4.05 72.43 92.66 98.56 99.78

128 105 8 2 0.03 1.41 72.78 92.66 98.68 99.76

256 205 8 2 0.01 0.05 72.06 92.61 98.65 99.81

X. Wang, K.-T. Fang / Journal of Complexity 19 (2003) 101–124 117



* BB and PCA are useless to improve MC (the reason is that the MC error depends
on the variance of the integrand and the variance remains the same under the BB
or PCA construction).

Although the results are not included here, a further large efficiency improvement in
QMC can be achieved by combining BB or PCA with variance reduction techniques
(such as the antithetic variables and control variates). Note that BB and PCA have
strong impact on the use of variance reduction techniques in QMC. In fact, without
the use of BB or PCA, variance reduction techniques may not lead to efficiency
improvement or the efficiency improvement is small in QMC (see [38]).

Table 5

The same as Table 4 (Asian option), but with d ¼ 64

n MC methods QMC methods

MC MC+BB MC+PCA QMC QMC+BB QMC+PCA

26 1.53e-1 1.54e-1 1.54e-1 6.69e-2 3.33e-2 2.90e-2

(1.00) (0.99) (0.99) (5) (21) (28)

28 7.77e-2 7.73e-2 7.73e-2 2.87e-2 1.01e-2 9.01e-3

(1.00) (1.01) (1.01) (7) (59) (74)

210 3.81e-2 3.83e-2 3.84e-2 1.14e-2 3.36e-3 2.55e-3

(1.00) (0.99) (0.99) (11) (129) (223)

212 1.91e-2 1.92e-2 1.92e-2 6.02e-3 1.12e-3 7.27e-4

(1.00) (0.99) (0.99) (10) (293) (689)

Table 4

The estimated standard deviation and relative efficiency to crude MC (in parentheses) with 50 repetitions

n MC methods QMC methods

MC MC+BB MC+PCA QMC QMC+BB QMC+PCA

26 1.60e-1 1.63e-1 1.61e-1 5.48e-2 3.76e-2 3.09e-2

(1.00) (0.97) (0.99) (9) (18) (27)

28 7.91e-2 7.88e-2 7.87e-2 1.91e-2 1.05e-2 9.74e-3

(1.00) (1.01) (1.01) (17) (57) (66)

210 3.96e-2 3.97e-2 3.98e-2 1.02e-2 3.96e-3 2.83e-3

(1.00) (1.00) (0.99) (15) (100) (196)

212 1.98e-2 1.98e-2 1.99e-2 5.21e-3 9.50e-4 7.50e-4

(1.00) (1.00) (0.99) (14) (433) (694)

Asian option: the number of time step is d ¼ 16:
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4.2. The pricing of multi-asset option

Consider a European-style multi-asset call option on the arithmetic average over d

assets. Its terminal payoff at time T is

fðS1
T ;y;Sd

TÞ ¼ max 0;
1

d

Xd

j¼1
S

j
T � K

 !
;

where S
j
T is the jth asset price at T : Assume that the prices of the assets satisfy

dS
j
t ¼ mjS

j
t dt þ sjS

j
t dB

j
t;

for some mean return parameters m1;y; md and volatility parameters s1;y; sd ; and

dB1
t ;y; dBd

t are correlated Brownian motion with correlations rij : With each mj ¼ r;

the solutions to the stochastic differential equation are

S
j
t ¼ S

j
0 expððr � 1

2
s2j Þt þ sjB

j
tÞ: ð17Þ

Denote the covariance matrix of B1
T ;y;Bd

T by S: Then the ij-element of S is

Sij ¼ rijT : The standard method to generate the Brownian motions is

B1
T

^

Bd
T

0
B@

1
CA ¼ A

Z1

^

Zd

0
B@

1
CA;

where A is the Cholesky matrix obtained from S; i.e., a lower triangular matrix
satisfying AA0 ¼ S; and Z1;y;Zd are the same as in (13).
To construct the Brownian motion by PCA, it suffices to replace the matrix A in

the standard construction by a matrix M of the form (16), but now the l1X?Xld

are the eigenvalues of S and v1;y; vd are the corresponding unit-length column
eigenvectors.

Let x
j
t ¼ log S

j
t; then ðx1

T ;y; xd
TÞ is normally distributed with mean

m :¼ ðn1;y; ndÞ ¼ ðlog S1
0 þ ðm1 � 1

2
s21ÞT ;y; log Sd

0 þ ðmd � 1
2
s2dÞTÞ

and covariance matrix G :¼ ðrijsisjTÞd
i;j¼1: The price of the option is given by

CM ¼ e�rT

ð2pÞd=2
ffiffiffiffiffiffiffiffiffiffiffi
det G

p
Z

Rd

fðex1 ;y; exd Þ exp �1
2
ðx� nÞ0G�1ðx� nÞ

� �
dx;

which can be transformed into integral on Cd :

In our numerical experiments, we set the following parameters: S
j
0 ¼ 100; sj ¼ 0:2;

rij ¼ 0:3; r ¼ 0:1; T ¼ 1 year, K ¼ 100: The effective dimension and the cumulative

variance from the first two variables are given in Table 6. The PCA construction
reduce the truncation dimension significantly. In fact, the truncation dimension in
the PCA construction is only 1 (thus the superposition is also 1), and is rather
insensitive to d: We observe that in the standard construction the variance captured
by the first variable decreases as d increases, but in PCA construction, it increases
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slightly. Thus the corresponding function in PCA construction is getting even more
one dimensional as d increases.
The comparison of the accuracy and the relative efficiency ratios are given in

Tables 7 and 8 (again the digit-scrambling Sobol sequence is used in QMC). The
conclusions are similar with the case of Asian options.

Remark. We have shown that the BB and PCA constructions achieve a huge
dimension reduction (from 256 to 2 or 1 for PCA). But in terms of standard
deviation they do not seem to have a corresponding huge advantage over the
standard construction (the efficiency ratio over standard QMC is 10–20). To explain

this, take an extreme example. Consider the d-dimensional integral
R

Cd ½x1 þ?þ
xd 
 dx (suppose d is large). It can be transformed into one-dimensional integral

d �
R 1
0 x dx: By doing this, a huge dimension reduction is achieved! But, it can be

easily verified that if one takes the first-component of a d-dimensional QMC rule for
approximating the one-dimensional integral, the error reduction will be small or even

Table 6

The truncation dimension and the cumulative variance (in percentage) from the first two variables for the

problem of pricing multi-asset option: under standard and PCA

d Effective dimension Cumulative variance (in percent)

Standard PCA Standard PCA

8 8 1 36.69 57.20 99.6627 99.6933

16 15 1 31.22 48.88 99.7625 99.7796

32 29 1 27.17 44.06 99.8324 99.8333

64 52 1 25.97 42.32 99.9194 99.9212

128 87 1 26.44 41.89 99.9664 99.9665

256 136 1 25.67 41.35 99.9856 99.9859

Table 7

The same as Table 4, but for the pricing of multi-asset option with the number of assets d ¼ 16

n MC methods QMC methods

MC MC+PCA QMC QMC+PCA

26 1.81e-1 1.81e-1 5.62e-2 3.15e-2

(1.00) (1.00) (10) (33)

28 8.90e-2 8.89e-2 1.56e-2 1.01e-2

(1.00) (1.00) (32) (78)

210 4.46e-2 4.49e-2 7.19e-3 2.74e-3

(1.00) (0.99) (38) (265)

212 2.23e-2 2.24e-2 3.20e-3 8.36e-4

(1.00) (0.99) (49) (710)
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there will be no error reduction. For example, take a d-dimensional rank-1 good
lattice rule with prime n; then there will be no error reduction. The important reason
here is that the function f ðxÞ ¼ x1 þ?þ xd has superposition dimension 1 and a
QMC algorithm (with all perfect one-dimensional projections) is already very

efficient for such a function due to its low superposition dimension.

The answer to the question above will be clear, if the original function

corresponding to the standard construction has low superposition dimension. A recent
research shows that it is exactly the case: the superposition dimension in the standard
construction is very small (only about 2), even the truncation dimension is not much
smaller than d (see [29]). Therefore, for the option pricing problems it seems that we
have a similar situation as for the extreme example. The QMC algorithm is already
very efficient under the standard construction because QMC has already taken the
advantage of the special feature of the original function, e.g., low superposition
dimension. Moreover, since the superposition dimension in the standard construc-
tion is already very small, there is no much room to reduce it further by BB and PCA
(though BB and PCA reduce the truncation dimension significantly). This is why
when reducing the truncation dimension considerably will probably result in a
moderate QMC error reduction.
The error reduction by using BB or PCA depends both on the algorithm and on

the problem. There is no guarantee that dimension reduction will result in error
reduction. As shown in [21], BB and PCA do not offer any improvement in QMC
applications for some problems. The relationship of QMC error to effective
dimension is not so simple. It is hard to draw general conclusions just based on
several examples.
Note that for some problems in computational finance, the ideas in [20] have been

extended in [22] to show the superiority of QMC.

Table 8

The same as Table 7, but for the number of assets d ¼ 64

n MC methods QMC methods

MC MC+PCA QMC QMC+PCA

26 1.73e-1 1.73e-1 5.22e-2 3.04e-2

(1.00) (1.00) (11) (32)

28 8.72e-2 8.68e-2 1.69e-2 9.09e-3

(1.00) (1.01) (26) (92)

210 4.29e-2 4.31e-2 8.20e-3 2.47e-3

(1.00) (0.99) (27) (302)

212 2.15e-2 2.15e-2 4.29e-3 7.17e-4

(1.00) (1.00) (25) (899)
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5. Conclusion

Effective dimension characterizes in some degree the complexity of multivariate
integration. Knowing the effective dimension helps us to understand the difficulty of
the problems and to predict the performance of QMC algorithms. Such knowledge
can be useful in gaining insight into the design of more efficient QMC algorithms.
The superiority of QMC over MC has been reported mainly for two classes of

functions. One is the class of functions with small truncation dimension (the
superposition dimension is also small); another is the class of functions with large
truncation dimension, but with very small superposition dimension. The functions of
weighted Sobolev and weighted Korobov spaces with fast decayed weights are in the
first class. Some specific isotropic functions on which QMC was seen to work well
(for example, the one considered in [23]) are shown to belong to the second class [19]
(but this does not mean that all isotropic functions have small superposition
dimension). Many financial-related functions also belong to the second class [3,29].
We do not know the result about the superiority of QMC algorithms for functions of
large truncation dimension and large superposition dimension (say ds410 and
dt4100Þ for practical n: On the other hand, it is important to be aware of the fact
that small effective dimension does not suffice to guarantee the effectiveness of QMC
and dimension reduction does not necessary lead to error reduction. Further
research is worth doing to a clear understanding of the dependence of QMC error on
effective dimension.
We analyse and numerically compute the effective dimension for product

functions, functions of weighted Korobov spaces and some financial-related
functions. The effective dimension of some other problems can also be analysed or
computed in the similar ways. For example, the effective dimension of the Mortgage-
Based Securities problem can be estimated.
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