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Abstract

We discuss various “minimalist” schemes to derive the neutrino mixing matrix using the tetrahedral groupA4.
 2005 Elsevier B.V.

1. Neutrino mixing matrix

The neutrino mixing matrixV relates the neutrino current eigenstates (denoted byνα , α = e, µ, τ , and coupled
by theW bosons to the corresponding charged leptons) to the neutrino mass eigenstates (denoted byνi , i = 1,2,3,
and endowed with definite massesmi ) according to

(1)

(
νe

νµ

ντ

)
= V

(
ν1
ν2
ν3

)
.

Thanks to heroic experimental efforts, the neutrino mixing angles have now been determined[1] to be given by
sin2 θ12 ∼ 0.31, sin2 θ23 ∼ 0.50, and sin2 θ31 ∼ 0.01, with the mixing angles defined by the standard paramet
tion (with c23 ≡ cosθ23, s23 ≡ sinθ23, and so forth)

(2)Vangular= V23V31V12

(3)=
(1 0 0

0 c23 s23
0 s23 −c23

)(
c31 0 s31e

−iφ

0 1 0
−s31e

iφ 0 c31

)(−c12 s12 0
s12 c12 0
0 0 1

)

(4)=
( −c31c12 c31s12 s31e

−iφ

s12c23 + c12s23s31e
iφ c12c23 − s12s23s31e

iφ s23c31
s12s23 − c12c23s31e

iφ c12s23 + s12c23s31e
iφ −c23c31

)
.
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(This parametrization may differ slightly from others in that we take detV23 = detV12 = −1.) The error bars ar
such thatθ31 is consistent with 0, in which case theCP violating phaseeiφ does not enter.

We could suppose either that the entries inV represent a bunch of meaningless numbers possibly va
from village to village in the multiverse landscape as advocated by some theorists of great sophistication
they point to some deeper structure or symmetry as some theorists with a more traditional faith in the p
theoretical physics might dare to hope for. It is natural to imagine that there is a family symmetry[2] linking the
three lepton families. Starting with the standard model we assign (all fermionic fields are left handed) the
doubletsψa = (

νa

la

)
, the lepton singletslCa (a = 1,2,3), and the required Higgs fields to various representation

a family group[3] GF .
Indeed, if we guess thats12 = 1/

√
3, s23 = 1/

√
2, ands31 = 0, we obtain the attractive mixing matrix

(5)V =



− 2√
6

1√
3

0
1√
6

1√
3

1√
2

1√
6

1√
3

− 1√
2




first proposed by Harrison, Perkins and Scott[4]. Later, X.G. He and I independently arrived at the same an
[5]. Also, this mixing matrix (but curiously, with the first and second column interchanged) was first sug
by Wolfenstein more than 20 years ago[6] based on some considerations involving the permutation groupS3.
It has subsequently been studied extensively by Harrison, Perkins and Scott[7], and by Xing[8]. Attempts to
derive this mixing matrix have been discussed by Low and Volkas[9,10]. A parametrization of the experiment
data in terms of deviation fromV is given in[11]. Following Wolfenstein and definingνx ≡ (νµ + ντ )/

√
2 and

νy ≡ (νµ − ντ )/
√

2, we see that(5) says that the mass eigenstates are given by

(6)ν1 = −
√

2

3
νe + 1√

3
νx, ν2 = 1√

3
νe +

√
2

3
νx, ν3 = νy.

The basis{ν1, ν2} is rotated from{νe, νx} through arcsin(1/
√

3) ∼ 35◦.
In this Letter we will take the neutrinos to be Majorana[12] as seems likely, so that we have in the Lagrang

the mass termL = −ναMαβCνβ + h.c., whereC denotes the charge conjugation matrix. Thus, the neutrino m
matrixM is symmetric. Also, for the sake of simplicity we will assumeCP conservation so thatM is real. With this
simplification, the orthogonal transformationV TMV produces a diagonal matrix with diagonal elementsm1,m2
andm3. We are free to multiplyV on the right by some diagonal matrix whose diagonal entries are equal t±1.
This merely multiplies each of the columns inV by an arbitrary sign. Various possible phases have been disc
in detail in the literature[13,14].

At present, we have no understanding of the neutrino masses just as we have no understanding of th
lepton and quark masses. The well-known solar and atmospheric neutrino experiments have determined
tively, that�m2� = m2

2 − m2
1 ∼ 8 × 10−5 eV2 and�m2

atm = m2
3 − m2

2 ∼ ±2.4 × 10−3 eV2. The sign of�m2
atm

is currently unknown, while�m2� has to be positive in order for the Mikheyev–Smirnov–Wolfenstein reson
to occur inside the sun. We could have either the so-called normal hierarchy in which|m3| > |m2| ∼ |m1| or the
inverted hierarchy|m3| < |m2| ∼ |m1|.

2. Family symmetry and the tetrahedral group

For some years, Ma[15] has advocated choosing the discrete groupA4, namely, the symmetry group of th
tetrahedron, asGF . With various collaborators he has written a number of interesting papers[16–19]usingA4 to
study the lepton sector.

For the convenience of the reader and to set the notation, we give a concise review of the relevant grou
Evidently,A4 is a subgroup ofSO(3) (which was often used in the early literature on family symmetry but wh
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has proved to be too restrictive). Since the tetrahedron lives in 3-dimensional space,A4 has a natural 3-dimension
representation denoted by 3suggestive of the 3 families observed in nature. The tetrahedron has 4 vertic
thusA4 is also formed by the even permutations of 4 objects so thatA4 has 4!/2 = 12 elements which could b

represented as elements ofSO(3). Besides the identityI =
(

1 0 0
0 1 0
0 0 1

)
, we have the 3 rotations through 180◦:

r1 =
(1 0 0

0 −1 0
0 0 −1

)
, r2 =

(−1 0 0
0 1 0
0 0 −1

)
, r3 =

(−1 0 0
0 −1 0
0 0 1

)
.

Then we have the cyclic permutationc =
(

0 0 1
1 0 0
0 1 0

)
, which together withr1cr1, r2cr2 and r3cr3, form an equiv-

alence class with 4 members. Finally, we have the anticyclic permutationa =
(

0 1 0
0 0 1
1 0 0

)
, which together withr1ar1,

r2ar2 andr3ar3, form another equivalence class with 4 members. Thus, the 12 elements belong to 4 equ
classes with membership 1, 3, 4, and 4, which tells us that there are 4 irreducible representations with di
dj such that

∑
j d2

j = 12 which has the unique solutiond1 = d2 = d3 = 1 andd4 = 3. The natural 3-dimensiona
representation 3has just been displayed explicitly.

The multiplication of representations is easy to work out by using the following trick. Start with the fa
multiplication within SO(3): 3 × 3 = 1 + 3 + 5. Given two vectors�x and �y of SO(3), the 3is of course given
by the cross product�x × �y while the 5is composed of the symmetric combinationsx2y3 + x3y2, x3y1 + x1y3,
x1y2 + x2y1, together with the 2 diagonal traceless combinations 2x1y1 − x2y2 − x3y3 andx2y2 − x3y3. Upon
restriction ofSO(3) to A4 the 5evidently decompose into 5→ 3 + 1′ + 1′′ with the 3given by the 3 symmetric
combinations just displayed. The 1′ and 1′′ could be taken, respectively, as linear combinations of the 2 trac
combinations just given:

(7)1′ ∼ u′ = x1y1 + ωx2y2 + ω2x3y3,

(8)1′′ ∼ u′′ = x1y1 + ω2x2y2 + ωx3y3,

with ω ≡ ei2π/3 the cube root of unity so that

(9)1+ ω + ω2 = 0.

It is perhaps worth emphasizing the obvious, that while 1′ and 1′′ furnish 1-dimensional representations ofA4 they
are not invariant underA4. For example, under the cyclic permutationc, u′ → ωu′ andu′′ → ω2u′′. Evidently
1′ × 1′′ = 1, 1′ × 1′ = 1′′, and 1′′ × 1′′ = 1′, and also (1′)∗ = 1′′.

Thus, underA4 we have 3× 3 = 1 + 1′ + 1′′ + 3 + 3. It is perhaps also worth remarking that the two’s
on the right-hand side may be taken as(x2y3, x3y1, x1y2) and(x3y2, x1y3, x2y1). The existence of 3 inequivalen
1-dimensional representations also suggests the relevance ofA4 to the family problem. I cannot resist mentionin
here the possibly physically irrelevant fact that[20] alone among all the alternating groupsAn’s the groupA4 is
not simple.

3. A minimalist framework

Given these attractive features ofA4, there has been, perhaps not surprisingly, a number of recent attemp[15,
21,22]to deriveV usingA4. In our opinion, they all appear to involve a rather elaborate framework, for exam
supersymmetry, higher-dimensional spacetime, and so on. Within this recent literature Ma[27] has produced a pa
ticularly interesting and relatively economical scheme in which the neutrino mixing matrix depends on a pa
such that when that parameter takes on “reasonable” values the matrixV as given in(5) is recovered approximatel
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The guiding philosophy of this Letter is that we would like to have as minimal a theoretical framewo
possible.

Within a minimalist framework, charged lepton masses are generated by the dimension-4 operator

(10)O4 = ϕ†lCψ.

Here ϕ denotes generically the standard Higgs doublet, of which we may have more than one. Accor
a general low energy effective field theory analysis[23–25] neutrino masses are generated by the dimensi
operator

(11)O5 = (ξτ2ψ)C(ξ ′τ2ψ)

in the Lagrangian. Hereξ andξ ′ denote various Higgs doublets that may or may not be the same as theϕ’s. We
will suppress the charge conjugation matrixC and the Pauli matrixτ2 in what follows. It is important to emphasiz
that the analysis leading up to(11) is completely general and depends only onSU(2) × U(1), and not on which
dynamical model you believe in, be it the seesaw mechanism or some other mechanism (such as the mode[26]).

We suppose that the family symmetry remains unbroken down to the scale ofSU(2)×U(1) breaking, so that th
operatorsO4 andO5 have to be singlets underGF . As is completely standard, whenϕ, ξ , andξ ′ acquire vacuum
expectation values,SU(2) × U(1) andGF are broken and the neutrinos acquire masses given by the mass
Mν ∝ 〈ξ 〉〈ξ ′〉 as well as the charged leptons. (Henceforth, for a Higgs doubletξ we use〈ξ 〉 to denote the vacuum
expectation of the lower electrically neutral component ofξ .)

Let Mν be diagonalized byUT
ν MνUν = Dν so that the 3 neutrino fields that appear inψa are related to the

neutrino fieldsνm with definite masses byν = Uνν
m. Similarly, let the 3 charged left handed lepton fieldsl that

appear inψa be related to the physical charged lepton fieldslm by l = Ull
m. Thenψa =

(
(Uν)abν

m
b

(Ul)abl
m
b

)
so that the

neutrino mixing matrix as defined in(1) is given byV = U
†
l Uν . One difficulty in constructing a theory forV is

that it arises from the “mismatch” between two rotationsUl andUν .
As in turns out, in our model building efforts, we often have to forbid theϕ’s that appear inO4 from appearing

in O5. This could easily be implemented by imposing a discrete symmetry under whichϕ → ei
ϕ, lC → ei
 lC

(whereei
 
= −1 is some appropriate phase factor), with all other fields unaffected. We will leave this impl
what follows.

Within the minimalist framework outlined here we offer some possible schemes. None of these could
to be terribly compelling but at least we keep within the usual rules of the model building literature. The v
schemes, depending on what representations ofA4 we choose for the various fieldsψ , lC , andϕ, could be listed
systematically.

4. Model A

We first try the assignmentψ ∼ 3, lC ∼ 1, 1′, and 1′′, andϕ ∼ 3. The Lagrangian then contains the terms

(12)h1l
C
1

(
ϕ

†
1ψ1 + ϕ

†
2ψ2 + ϕ

†
3ψ3

) + h2l
C
2

(
ωϕ

†
1ψ1 + ϕ

†
2ψ2 + ω2ϕ

†
3ψ3

) + h3l
C
3

(
ω2ϕ

†
1ψ1 + ϕ

†
2ψ2 + ωϕ

†
3ψ3

)

(13)= (
lC1 lC2 lC3

)(
h1 0 0
0 h2 0
0 0 h3

)( 1 1 1
ω 1 ω2

ω2 1 ω

)
ϕ

†
1 0 0

0 ϕ
†
2 0

0 0 ϕ
†
3


(

ψ1
ψ2
ψ3

)
.

It is natural for the 3〈ϕα〉 = vα ’s to be equal sinceA4 requires that the coefficients ofϕ†
αϕα and of (ϕ†

αϕα)2 in the
potential be independent ofα = 1,2,3. (SeeAppendix Afor a more detailed analysis.) If so, then upon spontane
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(14)
(
lC1 lC2 lC3

)(
me 0 0
0 mµ 0
0 0 mτ

)( 1 1 1
ω 1 ω2

ω2 1 ω

)(
ψ1
ψ2
ψ3

)

with me = h1v and so on. It is useful to define the “magic” matrix1

(15)A =
( 1 1 1

ω 1 ω2

ω2 1 ω

)
.

Thenlm = 1√
3
Al or l = √

3A−1lm so thatU†
l = (

√
3A−1)† = 1√

3
A.

The crucial observation at this point is that the sum of the first and third columns inA gives

(
2

−1
−1

)
and that the

difference of the first and third columns inA gives
√

3i

(
0
1

−1

)
, which up to some overall factors are precisely

first and third column, respectively, in the desiredV in (5). In other words, if

(16)Uν = 1√
2

(1 0 −1
0

√
2 0

1 0 1

)
,

thenU
†
l Uν = V � with V the desired mixing matrix in(5) and the diagonal phase matrix� with the diagonal

elements−1,1, and−i. Thus, if we could obtainUν we would achieve our goal of derivingV .
We recognize thatUν is just a rotation through 45◦ in the (1–3) plane. Recalling thatUν is determined by

requiringUT
ν MνUν = Dν be diagonal we see that if we could obtain anMν of the form

(17)Mν =
(

α 0 β

0 γ 0
β 0 α

)

(note that the 2× 2 matrix in the (1–3) sector has equal diagonal elements) then we are done. Our discuss
overlaps with that given recently by Babu and He[22]; however, their discussion is given in the context of a m
more elaborate scheme involving supersymmetry.

Referring to(11)we see that by imposing a discrete symmetryK2 under whichψ2 → −ψ2, ϕ2 → −ϕ2, with all
other fields unaffected, or equivalently a discrete symmetryK13 under whichψ1 → −ψ1, ψ3 → −ψ3, ϕ1 → −ϕ1,
ϕ3 → −ϕ3, with all other fields unaffected, we can obtain the texture zeroes in(17), but unfortunately this doe
not imply that (Mν)11 = (Mν)33. Furthermore,K13 is just the elementr2 of A4 and so it does not commu
with A4. Note that upon theϕ’s acquiring equal vacuum expectation values,A4 is broken down to aZ3 generated
by {I, c, a} and unfortunatelyr2 does not belong inZ3. Perhaps, there is a more attractive scheme in whi
reflection symmetry likeK2 could emerge effectively.

In another attempt to obtain anMν of the form in(17) we introduce Higgs doubletsχ andξ transforming as
1 and 3, respectively. We then have three types ofO5 operators, namely,(χψ)2, (χψ)(ξψ), and(ξψ)2. As men-
tioned earlier, we impose a discrete symmetry to forbidϕ from participating inO5. As discussed inAppendix A,
we could naturally suppose that the vacuum expectation value ofξ points in the 2-direction, that is,〈ξ2〉 
= 0 with
〈ξ1〉 = 〈ξ3〉 = 0. Let us now list how the differentO5 operators contribute toMν uponχ andξ2 acquiring a vacuum
expectation value. The operator(χψ)2 contributes a term proportional to the identity matrix. Next,(χψ)(ξψ),
which is formed by 3× 3 × 3, consists of two terms, corresponding to the two ways of obtaining a 3upon mul-
tiplying 3 × 3. One term has the formχ(ψ1ξ2ψ3 + ψ2ξ3ψ1 + ψ3ξ1ψ2), with the other term having an analogo

1 Note thatA4 = 9ωI , so thatA is up to an overall factor the matrix 4th root of the identity.
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form. Thus, the operator(χψ)(ξψ) contributes the term denoted byβ in (17). Finally, the operator(ξψ)2 actually
denotes schematically 4 different operators since it is formed by(3× 3) × (3× 3) and this contains 1× 1, 1′ × 1′′,
3× 3, 3× 3, and 3× 3, corresponding, respectively, to the operators

(18)(ξ1ψ1 + ξ2ψ2 + ξ3ψ3)
2,

(19)
(
ξ1ψ1 + ωξ2ψ2 + ω2ξ3ψ3

)(
ξ1ψ1 + ω2ξ2ψ2 + ωξ3ψ3

)
,

(20)(ξ2ψ3, ξ3ψ1, ξ1ψ2) · (ξ3ψ2, ξ1ψ3, ξ2ψ1) = ξ1ψ2ξ2ψ1 + ξ2ψ3ξ3ψ2 + ξ3ψ1ξ1ψ3,

(21)(ξ3ψ2, ξ1ψ3, ξ2ψ1) · (ξ3ψ2, ξ1ψ3, ξ2ψ1) = (ξ3ψ2)
2 + (ξ1ψ3)

2 + (ξ2ψ1)
2,

(22)(ξ2ψ3, ξ3ψ1, ξ1ψ2) · (ξ2ψ3, ξ3ψ1, ξ1ψ2) = (ξ1ψ2)
2 + (ξ2ψ3)

2 + (ξ3ψ1)
2.

(This is essentially the same as the analysis of anA4 invariant Higgs potential given inAppendix A.) Upon ξ2
acquiring a vacuum expectation value, we obtain, respectively,ψ2ψ2, ψ2ψ2, 0, ψ1ψ1 andψ3ψ3. Unfortunately,
the effective coupling constants in front of the operator in(21) and (22)are in general not equal to each other a
thus we obtain anMν of the form

(23)Mν =
(

α − ε 0 β

0 γ 0
β 0 α + ε

)

rather than theMν in (17). To setε to 0 we would have impose a discrete interchange symmetryP13 which
interchanges the indices 1 and 3 but unfortunately, just as before forK13, P13 does not commute withA4.

At this point, we could only suppose thatε is small compared toβ, in which caseUν is perturbed from the
desiredUν in (16) to

(24)Uν = 1√
2

(1 0 −1
0

√
2 0

1 0 1

)( 1 0 − ε
2β

0 1 0
ε

2β
0 1

)
.

The resulting deviation from theV in (5) may be interesting phenomenologically. In particular,Ve3 � − ε√
6β

is no

longer identically 0. In[11] it was advocated that experimental data be parametrized as a deviation fromV in (5)
as discussed in Section III there.

In this scheme, the neutrino masses come out to beα−√
β2 + ε2, γ , andα+√

β2 + ε2 and thus both the norma
hierarchy and the inverse hierarchy could be accommodated by suitable tuning, but there is no true unde
of neutrino masses as remarked earlier.

5. Model B

Following Ma[27], we takeψ ∼ 3, lC ∼ 3, andϕ ∼ 1,1′, and 1′′. In other words, we have 3 Higgs doubletsϕ

each transforming as a singlet underA4. The Lagrangian then contains the terms

(25)h1ϕ
†
1

(
lC1 ψ1 + lC2 ψ2 + lC3 ψ3

) + h2ϕ
†
2

(
lC1 ψ1 + ω2lC2 ψ2 + ωlC3 ψ3

) + h3ϕ
†
3

(
lC1 ψ1 + ωlC2 ψ2 + ω2lC3 ψ3

)
.

Upon theϕ’s acquiring vacuum expectation valuesv we obtain a diagonal charged lepton mass matrix, with
charged lepton masses given by the absolute values ofh1v1 + h2v2 + h3v3, h1v1 + ω2h2v2 + ωh3v3, andh1v1 +
ωh2v2 + ω2h3v3. All that matters here for our purposes is that we have enough freedom to match the ob
massesme, mµ, andmτ . The salient point here is thatUl = I , so that we only have to worry about getting t
desiredUν .

As is obvious and as was discussed in[11] and in[5], in a basis in which the charged lepton mass matri
already diagonal, the neutrino mass matrixMν is of course determined in terms of the three neutrino masse
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the neutrino mixing matrixV . Call the three column vectors in the mixing matrix�vi . ThenMν is given by

(26)Mν =
3∑

i=1

mi �vi(�vi)
T.

In particular, if we believe in theV in (5) we have

(27)Mν = m1

6

( 4 −2 −2
−2 1 1
−2 1 1

)
+ m2

3

(1 1 1
1 1 1
1 1 1

)
+ m3

2

(0 0 0
0 1 −1
0 −1 1

)
.

With A4 it is natural to obtain the matrixMD ≡
(

1 1 1
1 1 1
1 1 1

)
and the identity matrix. In particular, if we introduce

Higgs doubletsξ transforming as 3underA4 and arrange the Higgs potential such that the 3 vacuum expec
values〈ξ1〉 = 〈ξ2〉 = 〈ξ3〉 are equal, we then see from the list of operators of the form(ξϕ)(ξϕ) given in(18)–(21)
at the end of the last section that we obtain forMν an arbitrary linear combination ofMD and the identity matrix
which is not what we want.

In [5], in discussing the neutrino mass matrix, we proposed a basis of 3 matrices other than those tha
in (27). First, the 3 column-vectors inV are the eigenvectors of the matrix

(28)M0 = a

(2 0 0
0 −1 3
0 3 −1

)

with eigenvaluesm1 = m2 = 2a, andm3 = −4a. (The parametera merely sets the overall scale.) Thus, withM0
as the mass matrix�m2

21 = 0 and this pattern reproduces the data|�m2
21|/|�m2

32| � 1 to first approximation
Because of the degeneracy in the eigenvalue spectrum,V is not uniquely determined. To determineV , and at the
same time to split the degeneracy betweenm1 andm2, we perturbM0 to M = M0 + εaMD . The matrixMD is
evidently a projection matrix that projects the first and third columns inV to zero. Thus, the eigenvalues are giv
by m1 = 2a,m2 = 2a(1+ 3ε/2), andm3 = −4a, where to the lowest orderε = �m2

21/�m2
32 anda2 = �m2

32/12.
Finally, to break the relation|m3| = 2|m1| � 2|m2| we can always add toM a term proportional to the identit
matrix. But it seems difficult to get the matrix in(28)usingA4 alone.

6. Other possibilities and conclusion

Given thatA4 has only 4 distinct representations we could, of course, systematically go through all possi
Thus, next we could takeϕ ∼ 3, lC ∼ 3, andψ ∼ 1,1′, and 1′′. The charged lepton mass term would have a fo
analogous to that given in(12). But clearly, if we now assume the〈ϕα〉’s to be equal, we once again get the mat
A but now acting onlC instead of onψ . Note that if we assignψ2 ∼ 1 andψ1, ψ3 to 1′ and 1′′, respectively, and
introduce a Higgs doubletsχ transforming as 1, we get via the operatorO5 a neutrino mass matrixMν of the form
in (17)but withα = 0.

Another possibility is to assignψ,ϕ, and lC all to the 3 in which case the charged lepton mass matrix
generated by two terms,h(ϕ

†
1lC2 ψ3 + ϕ

†
2lC3 ψ1 + ϕ

†
3lC1 ψ2) andh′(ϕ†

1lC3 ψ2 + ϕ
†
2lC1 ψ3 + ϕ

†
3lC2 ψ1). If we assume the

〈ϕα〉’s to be equal, then the three charged lepton masses are given in terms of only two parameters.
In conclusion, we have discussed various schemes to obtain a particularly attractive neutrino mixing ma

closely approximates the data. Instead of detailed models, we use a low energy effective field theory a
allowing only Higgs doublets to survive down to the electroweak scale. We have also explicitly made the re
assumption thatA4 survives down to theSU(2) × U(1) breaking scale. Of course, if Higgs triplets could a
be used, as, for example, in[16], or if A4 is broken at higher scale (for example, by the coupling of theϕ’s to
the singlet scalar fieldh in the model in[26]), then many more possibilities open up and one could go be
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the discussion given here. We have been intentionally restrictive here. Ultimately, of course, any discu
neutrino mixing should be given in a grand unified framework (for recent attempts, see, for example,[28,29] in
which neutrino masses, as well as quark masses and mixing, are also “explained”). We do not attempt t
ambitious program in this Letter.
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Appendix A

We need to study the Higgs potential for severalSU(2) × U(1) Higgs doubletϕ’s which transform according
to various representations underA4. For the sake of simplicity, here we restrict ourselves to the Higgs potenti
a singleSU(2) × U(1) Higgs doubletϕ which transform like a 3underA4. Hopefully, the conclusions reache
with this restricted analysis continue to hold when the couplings between different Higgs doublets are sm
multiplication 3×3= 1+1′ +1′′ +3+3 tells us that there is only one quadratic invariants = ϕ

†
1ϕ1+ϕ

†
2ϕ2+ϕ

†
3ϕ3.

Since (3× 3) × (3 × 3) contains 1four times, corresponding to 1× 1, 1′ × 1′′, 3 × 3, 3 × 3, and 3× 3, we
should have 5 quartic invariants. The obvious quartic invariant isq = s2 = (ϕ

†
1ϕ1 +ϕ

†
2ϕ2 +ϕ

†
3ϕ3)

2. Corresponding

to 1′ × 1′′, we have(ϕ†
1ϕ1 +ωϕ

†
2ϕ2 +ω2ϕ

†
3ϕ3)(ϕ

†
1ϕ1 +ω2ϕ

†
2ϕ2 +ωϕ

†
3ϕ3) giving rise toq and the quartic invarian

q ′ = ϕ
†
1ϕ1ϕ

†
2ϕ2+ϕ

†
2ϕ2ϕ

†
3ϕ3+ϕ

†
3ϕ3ϕ

†
1ϕ1. Next, corresponding to 3×3 and 3×3 we haveq ′′ = (ϕ

†
1ϕ2, ϕ

†
2ϕ3, ϕ

†
3ϕ1) ·

(ϕ
†
2ϕ1, ϕ

†
3ϕ2, ϕ

†
1ϕ3) = |ϕ†

1ϕ2|2+|ϕ†
2ϕ3|2+|ϕ†

3ϕ1|2 andq ′′′ = (ϕ
†
1ϕ2, ϕ

†
2ϕ3, ϕ

†
3ϕ1) ·(ϕ†

1ϕ2, ϕ
†
2ϕ3, ϕ

†
3ϕ1) = (ϕ

†
1ϕ2)

2+
(ϕ

†
2ϕ3)

2 + (ϕ
†
3ϕ1)

2. The 5th invariant is the complex conjugate ofq ′′′.
Thus, the most general Higgs potential is given byV = −µ2s +λq +λ′q ′ +λ′′q ′′ + 1

2(λ′′′q ′′′ +h.c.). Assuming
that the 3ϕ’s all point in the same direction withinSU(2), then we haveV = −µ2(v2

1 + v2
2 + v2

3) + λ(v4
1 + v4

2 +
v4

3) + λ̃(v2
1v2

2 + v2
2v2

3 + v2
3v2

1), whereλ̃ ≡ 2λ + λ′ + λ′′ + λ′′′. For the sake of simplicity, we will takeλ′′′ and the
variousv’s to be real, since our focus here is not onCP violation.

It is then straightforward though tedious to calculate the value ofV and the eigenvaluesΩ of the second

derivative matrix ∂2V
∂vα∂vβ

evaluated at the three mimina of interest:E: {v1 = v2 = v3 = v}, U : {v1 = v, v2 = v3 = 0},
andP : {v1 = v2 = v, v3 = 0}. We find

E : v2 = µ2

2(λ + λ̃)
, V

∣∣
E

= − 3µ4

4(λ + λ̃)
, Ω =

[
4µ2,

2µ2(2λ − λ̃)

λ + λ̃
,

2µ2(2λ − λ̃)

λ + λ̃

]
,

U : v2 = µ2

2λ
, V

∣∣
U

= −µ4

4λ
, Ω =

[
4µ2,

µ2(λ̃ − 2λ)

λ
,
µ2(λ̃ − 2λ)

λ

]
,

P : v2 = µ2

2λ + λ̃
, V

∣∣
P

= − µ4

2λ + λ̃
, Ω =

[
4µ2,

2µ2(λ̃ − 2λ)

2λ + λ̃
,

2µ2(λ̃ − 2λ)

2λ + λ̃

]
.

We note that by choosing̃λ < 0 and sufficiently close to−λ or by not doing this we could setV |E much lower
thanV |U or vice versa. On the other hand, forP to be a minimum, we need̃λ − 2λ > 0, which would makeV |U
lower thanV |P . It appears that in this simple one Higgs doublet case,P is never the true minimum. Of cours
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ly almost

2 (1979)

. Pakvasa,
Institute,
in all the models we discussed, we have to introduce more than one Higgs doublets and so presumab
anything is possible by coupling the various doublets together.
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