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Abstract

We discuss various “minimalist” schemes to derive the neutrino mixing matrix using the tetrahedralAgroup
0 2005 Elsevier B.VOpen access under CC BY license.

1. Neutrino mixing matrix

The neutrino mixing matri¥’ relates the neutrino current eigenstates (denoteg by = ¢, «, t, and coupled
by theW bosons to the corresponding charged leptons) to the neutrino mass eigenstates (demoted by?2, 3,
and endowed with definite masseg) according to

Ve V1
)-()
Vr V3

Thanks to heroic experimental efforts, the neutrino mixing angles have now been detefhjitete given by
sinf 612 ~ 0.31, sirf 623 ~ 0.50, and siR631 ~ 0.01, with the mixing angles defined by the standard parametriza-
tion (with c23 = coshy3, 523 = Sinba3, and so forth)

Vangular= V23V31V12 2)
1 0 0 c31 0 s31e”i? —c12 s12 O
= (0 €23 523 ) ( 0 1 0 ) ( s12 €12 0) 3
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(This parametrization may differ slightly from others in that we takeVdet= detV12 = —1.) The error bars are
such tha#z, is consistent with 0, in which case tiigP violating phase? does not enter.

We could suppose either that the entriesVinrepresent a bunch of meaningless numbers possibly varying
from village to village in the multiverse landscape as advocated by some theorists of great sophistication or that
they point to some deeper structure or symmetry as some theorists with a more traditional faith in the power of
theoretical physics might dare to hope for. It is natural to imagine that there is a family synj&jdinking the
three lepton families. Starting with the standard model we assign (all fermionic fields are left handed) the lepton
doubletsyr, = (‘l’“) the lepton singlet (a = 1, 2, 3), and the required Higgs fields to various representations of
a family group[3] G .

Indeed, if we guess thai, = 1/\/§, §23 = 1/«/2 andsz; = 0, we obtain the attractive mixing matrix

-2 1 0
A
V=l % B ©)
1 1 1
NN V2

first proposed by Harrison, Perkins and S¢éit Later, X.G. He and | independently arrived at the same ansatz
[5]. Also, this mixing matrix (but curiously, with the first and second column interchanged) was first suggested
by Wolfenstein more than 20 years afff) based on some considerations involving the permutation gsgup

It has subsequently been studied extensively by Harrison, Perkins and[Bc¢a@hd by Xing[8]. Attempts to
derive this mixing matrix have been discussed by Low and VoJRd0]. A parametrization of the experimental
data in terms of deviation froni is given in[11]. Following Wolfenstein and defining, = (v, + v)/+/2 and

vy = (v, — v:)/+/2, we see that5) says that the mass eigenstates are given by

\/E LA 1 +/§ ©)
= 74/ 3Ve T —=Vx, = —=Ve = Vxs = Vy.
V1 3 ﬁv V2 ﬁv 3 V3 =V,

The basigv1, v} is rotated from{v,, v, } through arcsitil/+/3) ~ 35°.

In this Letter we will take the neutrinos to be Majorgdi@] as seems likely, so that we have in the Lagrangian
the mass ternf = —v, M,gCvg + h.c., whereC denotes the charge conjugation matrix. Thus, the neutrino mass
matrix M is symmetric. Also, for the sake of simplicity we will assuf® conservation so tha is real. With this
simplification, the orthogonal transformatioif MV produces a diagonal matrix with diagonal elemenism.
andmg3. We are free to multiplyy’ on the right by some diagonal matrix whose diagonal entries are eqddl.to
This merely multiplies each of the columns¥nby an arbitrary sign. Various possible phases have been discussed
in detail in the literatur¢13,14]

At present, we have no understanding of the neutrino masses just as we have no understanding of the charged
lepton and quark masses. The well-known solar and atmospheric neutrino experiments have determined, respec-
tively, that Am2 = m3 — m2 ~ 8 x 107° eV2 and Am2,, = m3 — m5 ~ £2.4 x 10-3 eV2. The sign ofAm2,
is currently unknown, WhilesmzQ has to be positive in order for the Mikheyev—Smirnov—Wolfenstein resonance
to occur inside the sun. We could have either the so-called normal hierarchy in whjck [m2| ~ |m1| or the
inverted hierarchyms| < |m2| ~ |m1].

2. Family symmetry and the tetrahedral group

For some years, MfL5] has advocated choosing the discrete grdup namely, the symmetry group of the
tetrahedron, a& . With various collaborators he has written a number of interesting pgp@r& 9]using A4 to
study the lepton sector.

For the convenience of the reader and to set the notation, we give a concise review of the relevant group theory.
Evidently, A4 is a subgroup 080(3) (which was often used in the early literature on family symmetry but which
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has proved to be too restrictive). Since the tetrahedron lives in 3-dimensional 2pdiaes a natural 3-dimensional
representation denoted bysBggestive of the 3 families observed in nature. The tetrahedron has 4 vertices and
thus A4 is also formed by the even permutations of 4 objects soAhdtas 4/2 = 12 elements which could be

100
represented as elements3id(3). Besides the identity = (o 1 0), we have the 3 rotations through 80

001
1 0 0 -1 0 O -1 0 O
rlz(o -1 0), rzz(o 1 0), r3:(0 -1 0).
0O 0 -1 0O 0 -1 0 0 1
) ] 001 ) ) )
Then we have the cyclic permutatien={ 100}, which together withricry, racrp andrzcers, form an equiv-
010 010

alence class with 4 members. Finally, we have the anticyclic permutatiof o 0 1 ), which together withrary,
0

roarp andrzars, form another equivalence class with 4 members. Thus, tﬁe 22 elements belong to 4 equivalence
classes with membership 1, 3, 4, and 4, which tells us that there are 4 irreducible representations with dimensior
d; such thatzj d? = 12 which has the unique solutieh = d» = d3 = 1 andds = 3. The natural 3-dimensional
representation Bas just been displayed explicitly.

The multiplication of representations is easy to work out by using the following trick. Start with the familiar
multiplication within SO(3): 3 x 3= 1+ 3+ 5. Given two vectorsc andy of SO(3), the 3is of course given
by the cross product x y while the 5is composed of the symmetric combinationss + x3y2, x3y1 + x1y3,
x1y2 + x2y1, together with the 2 diagonal traceless combinatiangy2— x2y2> — x3y3 andxzy, — x3y3. Upon
restriction ofSO(3) to A4 the Sevidently decompose into5 3+ 1' + 1”7 with the 3given by the 3 symmetric
combinations just displayed. Thédnd 1’ could be taken, respectively, as linear combinations of the 2 traceless
combinations just given:

1 ~u' = x1y1 + wx2y2 + w?x3y3, (7

1" ~u" = x1y1 + @?x2y2 + wx3y3, (8)

with w = ¢/27/3 the cube root of unity so that
1+ w+ w?>=0. (9)

It is perhaps worth emphasizing the obvious, that whilarid 1’ furnish 1-dimensional representationsffthey
are not invariant undef4. For example, under the cyclic permutationu’ — wu’ andu” — w?u”. Evidently
1'x1"=11x1=1,andl x1"=1,andalso ()* =1".

Thus, underd4 we have 3x 3=1+1 + 1" + 3+ 3. It is perhaps also worth remarking that the twe 3
on the right-hand side may be taken(asys, x3y1, x1y2) and(xsy2, x1y3, x2y1). The existence of 3 inequivalent
1-dimensional representations also suggests the relevantetofthe family problem. | cannot resist mentioning
here the possibly physically irrelevant fact thia0] alone among all the alternating groups’s the groupAy is
not simple.

3. A minimalist framework

Given these attractive features 4f, there has been, perhaps not surprisingly, a number of recent atfdbpts
21,22]to deriveV usingA4. In our opinion, they all appear to involve a rather elaborate framework, for example,
supersymmetry, higher-dimensional spacetime, and so on. Within this recent literat[#&]Mas produced a par-
ticularly interesting and relatively economical scheme in which the neutrino mixing matrix depends on a parameter
such that when that parameter takes on “reasonable” values the Matsigiven in5) is recovered approximately.
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The guiding philosophy of this Letter is that we would like to have as minimal a theoretical framework as
possible.
Within a minimalist framework, charged lepton masses are generated by the dimension-4 operator

04=¢'1Cy. (10)

Here ¢ denotes generically the standard Higgs doublet, of which we may have more than one. According to
a general low energy effective field theory analyj@8—25] neutrino masses are generated by the dimension-5
operator

Os = (§2y)C(E'129) (11)

in the Lagrangian. Heré and&’ denote various Higgs doublets that may or may not be the same assth&le
will suppress the charge conjugation maitiand the Pauli matrix, in what follows. It is important to emphasize
that the analysis leading up t&1) is completely general and depends only&#(2) x U (1), and not on which
dynamical model you believe in, be it the seesaw mechanism or some other mechanism (such as thg26f)del in
We suppose that the family symmetry remains unbroken down to the scl&2)fx U (1) breaking, so that the
operators04 and Os have to be singlets undérr. As is completely standard, when &, and&’ acquire vacuum
expectation valuesU(2) x U(1) andG r are broken and the neutrinos acquire masses given by the mass matrix
M, « (£)(&’) as well as the charged leptons. (Henceforth, for a Higgs doablet use(¢) to denote the vacuum
expectation of the lower electrically neutral componerg §f
Let M, be diagonalized b)UUTM,,UU = D, so that the 3 neutrino fields that appeanjin are related to the
neutrino fieldsv™ with definite masses by = U, v™. Similarly, let the 3 charged left handed lepton fieldbat

appear imy, be related to the physical charged lepton figllioy I = U;/™. Theny, = (%g:l‘iﬁ) so that the
ab’p

neutrino mixing matrix as defined ifi) is given byV = U,TUU. One difficulty in constructing a theory fdr is
that it arises from the “mismatch” between two rotatiédhsandU,,.

As in turns out, in our model building efforts, we often have to forbidghethat appear ir04 from appearing
in Os. This could easily be implemented by imposing a discrete symmetry under whishe!*p, € — ¢*]€
(wheree'” # —1 is some appropriate phase factor), with all other fields unaffected. We will leave this implicit in
what follows.

Within the minimalist framework outlined here we offer some possible schemes. None of these could be said
to be terribly compelling but at least we keep within the usual rules of the model building literature. The various
schemes, depending on what representations,ofie choose for the various fields, /€, andg, could be listed
systematically.

4. Modd A
We first try the assignment ~ 3, /¢ ~ 1, 1, and 1, andy ~ 3. The Lagrangian then contains the terms
c(,t T T c t T 2t c(, 2 7 t T
haly (‘Pll/fl + @2 + ‘031,03) + hol; (w‘/’ﬂ”l + @2+ o (031//3) + h3lg (0) P11+ @2 + w¢3‘/f3) (12)
hy 0 O 1 1 1\ /91 0 0O v
=5 i 13C)<o hy O)(a) 1 wZ) 0 ¢ O <¢2>. (13)
0O 0 nhs3 o 1 o 0 O <P§ Y3

It is natural for the 3¢, ) = v,'s to be equal since 4 requires that the coefficients qz)ﬂ(pa and of ép];(pa)z in the
potential be independent ef= 1, 2, 3. (SeeAppendix Afor a more detailed analysis.) If so, then upon spontaneous
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gauge symmetry breaking we obtain

me 0 0\ /1 1 1\ /y1
(5 1§ lg)(o my, 0)(0) 1 w2><1[/2> (14)

2

0 0 my/ \? 1 w Y3
with m, = h1v and so on. It is useful to define the “magic” matrix
1 1 1
A= ( w 1 a)z) ) (15)
0?1 o

Theni = J- Al orl = v/3A74" so that] = (v3A™)T = Fa.
2
The crucial observation at this point is that the sum of the first and third cqumﬂgives( —1) and that the
-1
0
difference of the first and third columns igives+/3i [ 1 ), which up to some overall factors are precisely the

first and third column, respectively, in the desifédn (5)._In other words, if

(2 9)
u,=—[0 v2 0], (16)
v2\1 o 1

then UITUU = V& with V the desired mixing matrix iif5) and the diagonal phase matrix with the diagonal
elements-1, 1, and—i. Thus, if we could obtai@/, we would achieve our goal of derivirng.

We recognize that, is just a rotation through 45in the (1-3) plane. Recalling thdf, is determined by
requiringUVTMU U, = D, be diagonal we see that if we could obtainMp of the form

a 0 B
M, = (O y 0) a7
B 0 «

(note that the 2 2 matrix in the (1-3) sector has equal diagonal elements) then we are done. Our discussion here
overlaps with that given recently by Babu and [2&]; however, their discussion is given in the context of a much
more elaborate scheme involving supersymmetry.

Referring to(11) we see that by imposing a discrete symmepyunder whichy, — —r2, 2 — —¢2, with all
other fields unaffected, or equivalently a discrete symmgtryunder whichyy — —vr1, 3 —> —¥3, 01 > —¢1,
@3 — —¢3, with all other fields unaffected, we can obtain the texture zero€s7) but unfortunately this does
not imply that (M,)11 = (M,)33. Furthermore,K13 is just the element, of A4 and so it does not commute
with A4. Note that upon the’s acquiring equal vacuum expectation valuég,is broken down to &3 generated
by {1, c,a} and unfortunately, does not belong ir¥3. Perhaps, there is a more attractive scheme in which a
reflection symmetry lik&k, could emerge effectively.

In another attempt to obtain avf,, of the form in(17) we introduce Higgs doubletg and& transforming as
1 and 3 respectively. We then have three typesafoperators, namelyx )2, (x¥)(€y), and(Evy)2. As men-
tioned earlier, we impose a discrete symmetry to fogbilom participating inOs. As discussed il\ppendix A
we could naturally suppose that the vacuum expectation val&éegofnts in the 2-direction, that ig¢>) # 0 with
(&€1) = (£3) = 0. Let us now list how the differer®s operators contribute tdf,, upony andé&z acquiring a vacuum
expectation value. The operattyy)? contributes a term proportional to the identity matrix. Nedty ) (&),
which is formed by 3x 3 x 3, consists of two terms, corresponding to the two ways of obtainingipo® mul-
tiplying 3 x 3. One term has the form (Y1&2%3 + ¥2€3yr1 + Y¥3€12), with the other term having an analogous

1 Note thatA* = 9w1, so thatA is up to an overall factor the matrix 4th root of the identity.
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form. Thus, the operataty ¥)(£y) contributes the term denoted Byin (17). Finally, the operatott )2 actually
denotes schematically 4 different operators since it is forme@Iy3) x (3 x 3) and this contains ¥ 1, 1’ x 1”,
3 x 3, 3x 3, and 3x 3, corresponding, respectively, to the operators

(11 + E2v2 + E3y3)?, (18)
(E191 + wE2Y2 + wZE3Yr3) (E1v1 + w62y + wEaY3), (19)
(E23, E3Yr1, E12) - (E3vr2, E1r3, E2r1) = E1vhoéavrn + E2r3€avrn + E3vné13, (20)
(E3vr2, E1V13. E201) - (E3vr2, E1V3, E2¥1) = (E392)? + (E1¥73)2 + (B291), (21)
(E2Vr3, E3v1, E1V02) - (E2V13, Eavn, £1Vr2) = (E1v2)” + (B2r3)® + (E3v1). (22)

(This is essentially the same as the analysis ofAarinvariant Higgs potential given idppendix A) Upon &>
acquiring a vacuum expectation value, we obtain, respectively,, ¥y, 0, ¥1y1 andy¥s3ys. Unfortunately,
the effective coupling constants in front of the operato2ih) and (22)are in general not equal to each other and
thus we obtain aiM,, of the form

a—e O B
Muz( 0 y 0 ) (23)
B 0 a+e

rather than theM,, in (17). To sete to 0 we would have impose a discrete interchange symmesywhich
interchanges the indices 1 and 3 but unfortunately, just as befoé; fprP13 does not commute witi 4.

At this point, we could only suppose thatis small compared t@, in which caselU, is perturbed from the
desiredU, in (16)to

1 /1 0 -1 1 0 —ﬁ
UU=—<O NZ o)(o 1 o). (24)
V2 1 0 1 % 0 1
The resulting deviation from th& in (5) may be interesting phenomenologically. In particulag >~ ——% is no

V6p
longer identically 0. If11] it was advocated that experimental data be parametrized as a deviatiol fioii®)

as discussed in Section Il there.

In this scheme, the neutrino masses come out to-b§/ 82 + ¢2, ¥, anda ++/ B2 + &2 and thus both the normal
hierarchy and the inverse hierarchy could be accommodated by suitable tuning, but there is no true understanding
of neutrino masses as remarked earlier.

5. Model B

Following Ma[27], we takey ~ 3, 1€ ~ 3, andg ~ 1, 1’, and 1'. In other words, we have 3 Higgs doublets
each transforming as a singlet undey. The Lagrangian then contains the terms

hlwi(lft/fl + 1§ Y2+ 1§ Y3) + hztpg(llclﬁl + @215 Yo + wI§ Yr3) + hgga;(llct/fl + oIS Y2+ 0?I§ Y3).  (25)

Upon theg’s acquiring vacuum expectation valuesve obtain a diagonal charged lepton mass matrix, with the
charged lepton masses given by the absolute valugswaf+ hovy + hzvs, h1vy + @?hovy + whavs, andhivy +
whovy + w?h3vs. All that matters here for our purposes is that we have enough freedom to match the observed
massesn,, m,, andm.. The salient point here is tha; = I, so that we only have to worry about getting the
desiredl,.

As is obvious and as was discussediifi] and in[5], in a basis in which the charged lepton mass matrix is
already diagonal, the neutrino mass maivy is of course determined in terms of the three neutrino masses and
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the neutrino mixing matri¥/ . Call the three column vectors in the mixing matix ThenM,, is given by

3
M, = Zmiﬁi(ﬁi)T- (26)
i=1
In particular, if we believe in th& in (5) we have
my 4 -2 -2 o 111 ma 0 0 O
M,,=?<—2 1 1>+?<1 1 1>+7<0 1 —1). (27)
-2 1 1 111 0 -1 1

111
With A4 it is natural to obtain the matri#p = ( 11 1) and the identity matrix. In particular, if we introduce a

Higgs doubletg transforming as 3inderA4 and ar%alnlge the Higgs potential such that the 3 vacuum expectation
values(&1) = (&2) = (&3) are equal, we then see from the list of operators of the i@ (& ¢) given in(18)—(21)
at the end of the last section that we obtain #6y an arbitrary linear combination @, and the identity matrix,
which is not what we want.

In [5], in discussing the neutrino mass matrix, we proposed a basis of 3 matrices other than those that appeal
in (27). First, the 3 column-vectors i are the eigenvectors of the matrix

2 0 O
Mo=a<0 -1 3) (28)
0 3 -1
with eigenvaluesny = m» = 2a, andms = —4a. (The parametea merely sets the overall scale.) Thus, withy
as the mass matriam3, = 0 and this pattern reproduces the dfan3,|/|Am2,| < 1 to first approximation.
Because of the degeneracy in the eigenvalue spectuisinot uniquely determined. To determife and at the
same time to split the degeneracy betweegnandmy, we perturbMg to M = Mg + eaMp. The matrixMp is
evidently a projection matrix that projects the first and third columnig o zero. Thus, the eigenvalues are given
by m1 = 2a, mp = 2a(1+ 3¢/2), andmz = —4a, where to the lowest order= Am3,/Am3, anda? = Am3,/12.
Finally, to break the relatiofms| = 2|m1| >~ 2|m>| we can always add td/ a term proportional to the identity
matrix. But it seems difficult to get the matrix {8) using A4 alone.

6. Other possibilities and conclusion

Given thatA4 has only 4 distinct representations we could, of course, systematically go through all possibilities.
Thus, next we could takg ~ 3, /€ ~ 3, andy ~ 1, 1’, and I'. The charged lepton mass term would have a form
analogous to that given ifi2). But clearly, if we now assume the,)’s to be equal, we once again get the matrix
A but now acting ori€ instead of ony. Note that if we assigny» ~ 1 and/1, 3 to I’ and 1', respectively, and
introduce a Higgs doublets transforming as lwe get via the operataps a neutrino mass matrix, of the form
in (17) but witha = 0.

Another possibility is to assigm, ¢, and/€ all to the 3in which case the charged lepton mass matrix is

generated by two terma ] 1S vi3 + p31S v + LI W) andh! (@S o + @31 ya + @lIS ). If we assume the

{(pa)'s to be equal, then the three charged lepton masses are given in terms of only two parameters.

In conclusion, we have discussed various schemes to obtain a particularly attractive neutrino mixing matrix that
closely approximates the data. Instead of detailed models, we use a low energy effective field theory approach,
allowing only Higgs doublets to survive down to the electroweak scale. We have also explicitly made the restrictive
assumption thati4 survives down to th&U(2) x U (1) breaking scale. Of course, if Higgs triplets could also
be used, as, for example, jh6], or if A4 is broken at higher scale (for example, by the coupling ofglseto
the singlet scalar field in the model in[26]), then many more possibilities open up and one could go beyond
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the discussion given here. We have been intentionally restrictive here. Ultimately, of course, any discussion of
neutrino mixing should be given in a grand unified framework (for recent attempts, see, for exg@828] in

which neutrino masses, as well as quark masses and mixing, are also “explained”). We do not attempt this more
ambitious program in this Letter.
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Appendix A

We need to study the Higgs potential for seve®d(2) x U (1) Higgs doublety’s which transform according
to various representations undgy. For the sake of simplicity, here we restrict ourselves to the Higgs potential for
a singleSU(2) x U (1) Higgs doublety which transform like a 3inder A4. Hopefully, the conclusions reached
with this restricted analysis continue to hold when the couplings between different Higgs doublets are small. The
multiplication 3x 3=1+1"+1"+ 3+ 3tells us that there is only one quadratic invariaat <pI<p1 + <p;r<p2 +<p;r<p3.

Since (3x 3) x (3 x 3) contains_Ifour times, corresponding to s 1, 1/ 17, 3 x 3, 3x 3, and 3x 3, we
should have 5 quartlc mvarrants The obvious quartlc mvarlaqltzrs2 (golrpl + gazgoz + <p3<p3)2 Corresponding
tol x 1”7, we have(<p1<p1 + a)(p2<p2 ) (p3(p3)((p1(p1 + w? (p2g02 + w<p3g03) giving rise tog and the quartic invariant
q' = 01010302+ 02020303+ @3wap; p1. Next, corresponding to:33 and 3x 3we havey” = (912, ¢3¢3. p3¢1)-
(@301, 0302, 9103) = |0l 022+ lodwal2+ lose112 andg” = (9102, eIws, waw1) - (0102, P393, Pa01) = (9102)% +
(¢393)? + (9he1)2. The 5th invariant is the complex conjugateydf.

Thus, the most general Higgs potential is giveriby: —us +iq +1'q" + A”q” + %(A’”q”’ +h.c). Assuming
that the 3y’s all point in the same direction withiBU (2), then we have/ = —p2(v2 + v3 + v3) + A (v] + v5 +

) + A(vlv2 + v2v3 + U3U1) wherei = 21 + A/ 4+ 1” + 1. For the sake of simplicity, we will tak&”” and the
variousuv'’s to be real, since our focus here is not@® violation.

It is then straightforward though tedious to calculate the valu& aind the eigenvalue® of the second
derivative matnx ﬂ evaluated at the three mimina of interelst:{vy = vo = v3=v}, U: {v1 = v, v2 = v3 =0},
andP: {vi=vo = v, v3 = 0}. We find

E ) u? Vi 3ut 4 2 2u2(2n — 1) 2ul(2n — ,\)}
: v = ~ - - ~ = ) )
200 + 1) EZ a0+ 7) L A+ A A+ A
2 4 r 2

u u 2 HEO—20) PP —21)
U: 2=_, V =7 Q: 4 ’ ’ ’
YT v="% R py y
, P nt 2 220 —21) 2uP(h—2))
Ve = = V]p=———=., 2= 4 , , :
20+ A 2%+ A | 2%+ A 2%+ A

We note that by choosini < 0 and sufficiently close te- or by not doing this we could sét|z much lower
thanV |y or vice versa. On the other hand, fBrto be a minimum, we neexd— 2 > 0, which would makée/ |y
lower thanV|p. It appears that in this simple one Higgs doublet casés never the true minimum. Of course,
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in all the models we discussed, we have to introduce more than one Higgs doublets and so presumably almos
anything is possible by coupling the various doublets together.
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