
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector
Computational Geometry 34 (2006) 35–48

www.elsevier.com/locate/comgeo

Moving coins

Manuel Abellanas a, Sergey Bereg b, Ferran Hurtado c, Alfredo García Olaverri d,
David Rappaport e,∗, Javier Tejel d

a Universidad Politécnica de Madrid, Spain
b University of Texas at Dallas, USA

c Universitat Politècnica de Catalunya, Spain
d Universidad de Zaragoza, Spain

e Queen’s University, Canada

Received 11 October 2004; received in revised form 13 June 2005; accepted 23 June 2005

Available online 5 October 2005

Communicated by J. Akiyama, M. Kano and X. Tan

Abstract

We consider combinatorial and computational issues that are related to the problem of moving coins from one configuration
to another. Coins are defined as non-overlapping discs, and moves are defined as collision free translations, all in the Euclidean
plane. We obtain combinatorial bounds on the number of moves that are necessary and/or sufficient to move coins from one
configuration to another. We also consider several decision problems related to coin moving, and obtain some results regarding
their computational complexity.
© 2005 Published by Elsevier B.V.

1. Introduction

Consider a collection of discs or coins. The coins are found resting on a plane surface so that no two overlap. We
explore issues involved in moving the coins from their initial positions to some desired final position.

To be more precise, we can move a coin centered at point a to a position centered at point b if the trajectory of
the coin along the line segment ab does not collide with another coin. We say that such a translation in one fixed
direction is one move. We are given as input a set of coins C = {c1, c2, . . . , cn} positioned at initial source locations
P = {p1,p2, . . . , pn} and a set of final destinations Q = {q1, q2, . . . , qn}, where P and Q are sets of points. Associated
with each coin ci is ai ⊆ Q, a set of possible destinations. As output we need to produce an itinerary, an ordered list
of moves so that each coin moves to one of its possible destinations. The objective is to produce an efficient itinerary.
The cost of an itinerary is simply the number of moves used.

* Corresponding author.
E-mail addresses: mabellanas@fi.upm.es (M. Abellanas), besp@utdallas.edu (S. Bereg), hurtado@ma2.upc.edu (F. Hurtado),

olaverri@unizar.es (A.G. Olaverri), daver@cs.queensu.ca (D. Rappaport), jtejel@unizar.es (J. Tejel).
0925-7721/$ – see front matter © 2005 Published by Elsevier B.V.
doi:10.1016/j.comgeo.2005.06.005

https://core.ac.uk/display/82097286?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

36 M. Abellanas et al. / Computational Geometry 34 (2006) 35–48
1.1. Motivation

This problem is motivated by measuring the difference between various configurations. For example one can mea-
sure the difference between two strings of text by their edit distance [10]. The edit distance is the minimum number
of text editor operations needed to go from one string to another. A distance with a more geometric flavor is the
earth movers distance [13]. The earth movers distance measures the minimum amount of work needed to go from one
configuration to another. The notion of work is flexible and conforms to the application. Thus our problem of moving
coins is in the same vein as the previous examples. We are interested in the minimum number of move operations
needed to go from one configuration of coins to another.

Our problem can also be viewed as a simplified model of multi-robot path planning. Consider a collection of robots,
whose footprints are discs, maneuvering in a common workspace. A robot’s tasks may take it from one destination
to another. Our notion of moving a coin to one of its possible destinations is a simplified way to model this type of
situation. A survey paper by Hwang and Ahuja [9] discusses the general robot path planning problem and multi-robot
path planning in particular.

Erik and Martin Demaine with Helena Verrill [4] examine coin moving puzzles, that is, moving coins from one
configuration to another subject to some given constraints. They consider a model where unlabeled unit coins are
located on a grid, and may be picked up (as opposed to sliding on the plane) and placed on an unoccupied grid position
adjacent to at least two other coins. They present theorems on the solvability of such puzzles, and algorithms to
produce worst case optimal solutions when they exist. They also include references to other similar puzzles, including
some sliding coin puzzles.

1.2. Variations

We consider several different versions of our coin moving problem. Some of our results are combinatorial and
relate to upper and lower bounds for the number of moves that are necessary or sufficient to go from one configuration
to another. In these cases our upper bound arguments imply polynomial time algorithms, however, we do not dwell
on the actual complexity of the algorithms. We also consider the computational complexity of some coin moving
problems.

For our combinatorial results we assume that we are given an image of both the initial and final configurations, so
that we know the size of the coin at its destination. For the case of congruent coins the set of possible destinations for
each coin is all destinations. For the case of coins with a variety of sizes, the set of possible destinations for a coin of
diameter d is the set of all destinations of diameter d .

In some of our upper bound arguments we need to use intermediate moves that are very far from both the initial
position and the final destination. This motivated us to examine cases where moves are confined to a smaller area. We
enumerate the different confining assumptions that are used.

Unbounded No bounds placed on moves.
Narrow All n coins are of unit diameter with the union of initial and target positions lying in an a × b bounding box,

where a � n and b � 1. We confine moves to the bounding box.
Wide Coins are of various diameter with value D representing the sum of the diameters. The union of the initial and

target positions lie on an a × b bounding box, where a � D and b � D. We confine moves to the bounding
box.

TooTight All n coins are of unit diameter with the union of the initial and target positions lying in an a × b bounding
box. The bounding box itself may be too tight to allow sufficient movement, so we confine the moves in a
small box of dimension �a� × (b + �n/a�).

Using the descriptors for confining moves Table 1 summarizes our combinatorial results.
We also explore some computational complexity issues related to coin moving. We consider the problem of decid-

ing whether we can move each coin directly to its destination in a single move. For the special case where we have n

coins of various sizes, there is a unique destination for every coin and the source and destination do not overlap we
have a O(n2) algorithm. Actually we develop an output sensitive algorithm that may be more efficient in certain cases,

M. Abellanas et al. / Computational Geometry 34 (2006) 35–48 37
Table 1
This table lists combinatorial results that we have obtained

Diameter Confining assumption Necessary Sufficient

Unit Unbounded �8n/5� 2n − 1
Various Unbounded 2n 2n

Unit Narrow �8n/5� 3n

Various Wide 2n 4n

Unit TooTight �8n/5� 6n

the details will be given in Section 3. At the other end of the spectrum if we allow the set of possible destinations to
be at least two per coin then we show that deciding whether there is an itinerary of cost n is NP-complete.

We also consider the coin placement problem, that is, we do not have an image of the final configuration, just the
coins centers and we need to determine whether the set of destinations can accommodate all of the coins without
overlap. We show that deciding a non-overlapping coin placement is NP-complete.

2. Upper and lower bounds

In this section we determine bounds on the number of necessary and sufficient moves needed to produce a valid
itinerary.

Consider a set of n coins with sources P and destinations Q. We assume we are given an image of both the initial
and final configurations, so that we know the size of the coin at its destination. By structuring the problem in this way
we avoid having to determine a feasible placement of the coins. As it is shown in Section 4, simply deciding whether
a set of coins of various sizes can be centered at a set of destination points is NP-complete.

Throughout this section, (xi, yi) and (x′
i , y

′
i) will be the coordinates of sources pi and destinations qi , respectively,

and, without loss of generality, all the coordinates will be positive. Notice that, if a valid itinerary is found for moving
the coins from P to the destinations Q, then reversing the process we have a valid itinerary for moving the coins from
Q to the destinations P . Using this reasoning, we move the destination coins, meaning that, in fact, we do the reverse
moves.

For two distinct sources pi and pj we say that pi precedes pj in a lexical ordering whenever xi = xj , and yi < yj ,
or xi < xj . We lexically sort the n sources. Without loss of generality, we assume a labeling that has the coins
c1, . . . , cn in lexical order. Then, the following lemma holds.

Lemma 1. There exists an ε > 0 such that for all σ , 0 � σ � ε, cn can be moved to infinity in the positive y-coordinate
half-plane following the line passing through the center of cn and that forms an angle σ with the x-axis.

Proof. Let rn denote a ray tangent to the top of cn and pointing to the right. Observe that rn does not intersect the
interior of any other coin because cn is lexicographically last. Now rotate the coin cn and the ray rn counterclockwise
about the center of cn until the rn meets another coin c. Let ε denote the angle of rotation, see Fig. 1. Observe that
ε > 0, because cn is lexically the last coin. Then, for all σ , 0 � σ � ε, cn can be moved to infinity on the ray emanating
from the center of cn that forms an angle σ with the x-axis. �

Obviously, as the coordinate axes can be rotated, once a moving direction is established, there always exists a coin
that can be moved to infinity in this direction. Notice that this property holds even if tangent coins are allowed.

Lemma 2. There is an itinerary of cost 2n for any configuration of coins.

Proof. Without loss of generality, we can assume that the largest diameter of any coin is 1. Let Y = max{y1, . . . , yn,

y′
1, . . . , y

′
n}.

By the previous lemma, cn can be moved to a point at infinity either horizontally or with an angle less than εn; then
cn−1 can be moved either horizontally or with an angle less than εn−1, and so on. Let us choose ε = min{ε1, . . . , εn}.

38 M. Abellanas et al. / Computational Geometry 34 (2006) 35–48
Fig. 1. Coin cn can be moved to infinity.

The key observation is that, for a sufficiently large value M , we can always move c1, . . . , cn, in such a way that the
coins can be placed at the positions (M,Y + 2), (M,Y + 4), . . . (M,Y + 2n) in any order, by first moving cn, then
cn−1 and so on.

In fact, we can choose any value M satisfying the following conditions:
• arctan Y+2n−yi

M−xi
< ε, for all i, (this assure that any coin can be moved to (M,Y + 2j), for all j , using an angle

less than ε).
• yi − (Y + 2n) >

√
3(xi −M), for all i. (Supposing that we have the biggest coin located at position (M,Y + 2n)

and a copy of it at position (M,Y + 2n − 2), the equation y − (Y + 2n − 1) = √
3(x − M) corresponds to the line

tangent to these two coins with positive slope. This condition assures that there are no collisions when we move the
coins to their aligned positions, because all the coins are completely on the upper half-plane defined by this line.)

The previous process can also be applied to the coins starting at their destinations, and suitable angles and M ′ exist
to move the coins from their destinations to positions (M ′, Y + 2), (M ′, Y + 4), . . . (M ′, Y + 2n) in any order, by first
moving c′

n, then c′
n−1 and so on.

By choosing M ′′ = max{M,M ′}, we can move c1 to (M ′′, Y + 2), c2 at (M ′′, Y + 4) and so on, by moving first cn,
then cn−1, and so on. Then, we can reverse the process to move the coins from the aligned positions to the destinations.

The number of moves that we use is 2n. �
Consider the case now where we have a set of congruent discs and every disc can move to any of the destinations,

that is, ai = Q, for all i. The following result follows from our previous lemma.

Corollary 1. There is an itinerary of cost 2n − 1 for any configuration of congruent coins.

Proof. We can use the almost same moving strategy as in the proof of Lemma 2. The only exception is that c1 can go
directly to the destination c′

1 in a single move. �
Note that we can implement the strategy of the previous lemma in O(n) time, after the coins are lexically ordered.

Moreover, 2n moves is a tight bound as is shown in the following lemma.

Lemma 3. There are configurations of n coins of various diameter that require 2n moves for a valid itinerary.

Proof. Fig. 2 shows two different coins c1 and c2 tangent to the same point of an horizontal line, L. The destinations
coins are also tangent in a common point on the same horizontal line, but in the reverse order. If there exists an
itinerary using less than 4 moves, then at least one of the coins goes to its destination in a single move. Without loss of
generality suppose it is the coin c1, since choosing c2 results in a similar symmetric argument. Observe that before c1

M. Abellanas et al. / Computational Geometry 34 (2006) 35–48 39
Fig. 2. A configuration of 2 coins that requires 4 moves.

Fig. 3. Configuration of 5 congruent coins that needs 8 moves for a valid itinerary.

can go directly to its destination, c2 must be moved out of the way. In doing this c2 can only be placed in the half-plane
below L. After moving c1 to its destination, any trajectory for moving c2 from below L directly to its destination is
blocked. Thus c2 must be moved to a position above L before it can be moved to its destination. Thus if c1 moves
directly to it destination in a single move c2 needs at least three moves: one move to the lower half-plane, another
move from the lower half-plane to the upper half-plane, and a third move to its destination. Hence we need at least
four moves even if c1 moves directly to its destination in a single move.

A configuration formed by n copies of the previous figure, each pair and its destinations tangent on an arbitrary
common line in opposite orders, needs 4n moves. �

We remark in passing that the previous result uses the fact that the source and destination positions come in tangent
pairs. If tangent coins are not allowed, then the best example we have shows that n coins need only 2n − 1 moves
for a valid itinerary. It would be interesting to settle the question of whether one can force 2n moves without using
tangencies.

For congruent coins and ai = Q, for all i, we have the following result.

Lemma 4. At least �8n/5� moves are needed to move a set of n coins to their destinations.

Proof. First we show that there exists a set of 5 coins so that at least 8 moves are needed to move them to their
destination. The sources P of the coins are given as follows. Let the p1 = (0,0) and p2 = (2 sinα,2 cosα). We
choose α small enough so that the centers of 5 destination coins can be located on the x-axis below the line passing
through p2 with angle −α. The centers p1,p4,p5 are the vertices of the regular triangle with side length 2 and p4p5
vertical, see Fig. 3.

A coin is good if it makes just one move, otherwise the coin is bad.
We prove that there are at least 3 bad coins. Clearly, either c1 or c2 (or both) is bad. Similarly, either c1 or c3 is

bad. Also, either c4 or c5 is bad.
If {c1, c2, c3} contains at least 2 bad coins then the claim holds. Suppose that {c1, c2, c3} contains only one bad coin

(no bad coins is impossible). It should be c1. At the time of the first move of c1 the coins c2 and c3 are at the initial

40 M. Abellanas et al. / Computational Geometry 34 (2006) 35–48
Fig. 4. Separating the coins horizontally with n moves.

positions. Therefore, c2 moves by (x, y) such that x < 0. Then c4 and c5 must have already been moved which means
that they are bad. Thus the total number of bad coins is 3.

We prove the claim when n is a multiple of 5 by repeating the construction for 5 coins as follows. We place n/5
groups of coins by shifting 5 coins horizontally so that they do not overlap. The shifting vector can be (−4,0) for
example. The destination positions are placed to the right of the source positions on the x-axis. The angle α is chosen
so that the centers of all destination coins are below the line with angle −α as defined by every group of 5 coins. This
can be verified by simply checking the leftmost group of coins with the rightmost destination positions. The argument
above generalizes for this construction.

Now consider the case when n ≡ m (mod 5) where 1 � m � 4. Starting with the construction for 5�n/5� place
�m/2� pairs of coins as the pair c1, c2 in Fig. 3. Every such pair requires 3 moves. If m is odd then place one coin
anywhere in the plane. We place all additional destinations to the right of the others on the x-axis. The total number
of bad moves is 3�n/5� + �m/2�. Thus, the total number of moves is n + 3�n/5� + �m/2� = �8n/5�. �
2.1. Confined workspaces

For the previous results we were able to move coins arbitrarily far to obtain our upper bounds. If the coins are
confined to a smaller workspace, we need to apply different strategies. Let us assume that we have n coins so that the
union of the sources and destinations lie in an a × b bounding box. Without loss of generality we assume that a � b.
Let d1, d2, . . . , dn denote the diameters of the coins and let D = ∑

di .
Now, let us assume that we have divided a box B of size D × b into n non-overlapping boxes from left to right,

in such a way that box b1 has size d1 × b, the second box b2 has size d2 × b, and so on. Then the following lemma
holds.

Lemma 5. We can translate each coin i to its corresponding box bi with a total of n horizontal moves.

Proof. Let (x′′
i , yi) be the center of coin i if it is moved horizontally to lie inside bi . We classify the coins into two

classes. A coin i will be type − if xi � x′′
i (the source is on the left of the box bi), and type + otherwise.

If we examine the coins from left to right, we obtain a sequence of minuses and pluses according to the types of
the coins. If the sequence starts with a plus, then we can move the first coin horizontally to the left until it reaches box
b1. Now recursively solve a problem with n − 1 coins and B ′ = b2 ∪ · · · ∪ bn.

If the sequence starts with a minus, then we follow the sequence until a plus appears. If this run of minuses has
size i, we move coin i horizontally to the right until it reaches box bi (there are no collisions because there is a
plus in position i + 1), then we move coin i − 1 to the right until it reaches bi−1, and so on. When the first i coins
are located in their corresponding boxes, we continue the process with a problem with fewer coins and a smaller
box. �

Fig. 4 shows an example of the lemma with a = D. The table given below illustrates how pluses and minuses are
used to obtain an ordered list of moves for the example of Fig. 4.

M. Abellanas et al. / Computational Geometry 34 (2006) 35–48 41
Coin c1 c2 c3 c4 c5 c6 c7 c8 c9 c10

Type + − − − + − + − − −
Order 1 4 3 2 5 6 7 10 9 8

In this example, first, c1 is moved to the left to put it inside b1, then c4, c3, c2 are moved to the right in this order to
put them inside b4, b3, b2, respectively, then c5 is moved to the left to put it inside b5, and so on.

If the coins are ordered then only O(n) time is used to implement the algorithm from the previous lemma.
In the following, we will only describe the processes to obtain the number of moves desired, and not the correct

order in which the coins must be moved (in most of the situations, this order is evident). In addition, we will use the
terms “source coin” and “destination coin” to mean that the coin is at the source and that the coin is at the destination,
respectively.

Corollary 2. Given n unit coins, with sources and destinations lying in the confines of an a ×b confining box, if a � n,
b � 1 and ai = Q, then we can always determine a valid itinerary of cost at most 3n.

Proof. We can apply the previous lemma to the source coins and to the destination coins. This leaves one source coin
and one destination coin in each box bi . The sequence of moves sources to their correct box, followed by a move
within each box of a source to its destination, and finally the reverse application of the lemma of the destination coin
inside its box to its actual destination location. �
Corollary 3. Given n coins of various diameters, with sources and destinations lying in the confines of an a × b

confining box, if a � D, b � D and ai = qi , then we can always determine a valid itinerary of cost at most 4n.

Proof. We use 2n horizontal moves and 2n vertical moves. Suppose that the coins c1, . . . , cn have been horizontally
separated to positions (x̄1, y1), . . . , (x̄n, yn) using Lemma 5, and in the same way the destination coins have been
vertically separated to the positions (x′

1, ȳ
′
1), . . . , (x

′
n, ȳ

′
n). If the destination of the coin ci is (x′

π(i), y
′
π(i)), then, first

move each coin (x̄i , yi) vertically to (x̄i , ȳ
′
π(i)) and then, move each coin (x̄i , ȳ

′
π(i)) horizontally to (x′

π(i), ȳ
′
π(i)). �

If the size of the box is too small, the coins may be blocked. Therefore, in order to move the coins, we have to
allow moves in a bigger box. For this situation, we have the following result.

Corollary 4. Given n unit coins, with sources and destinations lying in the confines of an a × b confining rectangle,
if we allow moves in an �a� × (b + �n/a�) confining box, then we can always determine a valid itinerary of cost 6n.

Proof. As the size of the confining box is �a� × (b + �n/a�), we have added at the top of the a × b rectangle �n/a�
empty rows of size �a� × 1.

Let us assume that we have sorted the coins in non-increasing order according to their y-coordinates. Then,
we process the first �a� coins by moving them vertically upwards, then horizontally separating them by applying
Lemma 5, and finally moving them vertically upwards until they reach the top row of the box. So, doing 3�a� moves,
the first �a� coins are placed in the top row.

We process the second �a� coins putting them into the second row of the box, and so on. At the end, we have
located all the coins into the �n/a� empty rows. We can ensure that there are no collisions when using this process by
applying an inductive argument.

As usual, the same process can be used to put the destination coins into the �n/a� empty rows. Hence, by reversing
this second process, we can move the n coins from the sources to the destinations using 6n moves. �
3. Decision problems

In this section we consider the problem of deciding whether there is an itinerary of cost at most n for n coins.
In the first instance consider the case where each coin has a single possible destination. Observe that unless each

coin has a distinct destination there is no valid itinerary. Thus without loss of generality, we can designate the desti-
nation for coin i di , that is, ai = {di}. Furthermore, a valid itinerary exists only when no two destinations overlap.

42 M. Abellanas et al. / Computational Geometry 34 (2006) 35–48
Fig. 5. The hippodromes corresponding to coin trajectories. The shaded discs represent destinations. We have labeled one hippodrome to illustrate
the areas h, σ , and δ.

Our algorithm begins by constructing an outline of the trajectory of each coin from its source location to its
destination. This outline takes the shape of a racetrack or hippodrome, thus we use hi to denote the area of the
hippodrome for the trajectory of coin i from si to di . Observe that the geometry of a hippodrome is the union of a
rectangle and two discs. Let σi and δi , respectively, denote the area of hi that contains ci when it is in it’s source and
destination position. See Fig. 5 for an illustrative example.

Our strategy will be to construct a directed graph G. Each vertex in G corresponds to a coin, and a directed edge
(i, j) will be used to specify that coin i must be moved before coin j . It remains to show how G is constructed.

For every ordered pair of coins ci, cj we assign directed edges as follows: (i, j) if σi intersects hj because ci must
move before cj , and (j, i) if δi intersects hj because cj must move before ci .

Theorem 1. There is an itinerary of cost at most n if and only if G does not contain a directed cycle.

Proof. Suppose there are no directed cycles in G. We can begin the itinerary with all coins that correspond to vertices
in G with no incoming edges. We can now remove these vertices from G and find a new set of vertices with no
incoming edges. This process can be repeated until all of the coins have been moved.

On the other hand, suppose that G does contain a directed cycle. Let vγ1 , vγ2, . . . , vγk
, vγ1 denote the shortest

directed cycle in G. The resulting conundrum is that vγ1 must before vγk
and vγk

must move before vγ1 , and that
clearly is impossible. �

We can compute all of the intersections and construct G in O(n2) time. We can use an output sensitive algorithm
to compute the intersections in O(n logn + k) time where k denotes the number of intersections [1,2]. This value k is
also proportional to the number of edges in G. We can traverse G and determine whether there are directed cycles also
in O(k) time. Thus the complexity of our algorithm is O(n logn + k). Note that this approach is similar to Buckley’s
results on coordinating the motion of multiple robots [3].

We now show that a similar problem is intractable. Our results are related to the general multi robot path planning
which is known to be intractable [7,8]. In this version of our problem we put no restriction on the size of ai , it may
contain an arbitrary number of destinations. Thus we have:

One Move per Coin (OMC)
Instance: A set of coins, sources, destinations and possible destinations for each coin.
Question: Can the coins be moved from their sources to destinations with an itinerary that uses at most one move

per coin?

Our reduction will be from the following problem which Plesník [12] proved to be NP-complete.

Hamilton Path in Directed Bipartite Graph (HPDBG)
Instance: A directed bipartite graph (V,E) where the vertices in V are labeled 1, . . . , n = 2k. Vertices with odd

labels and have out-degree 2 and in-degree 1, except for vertex 1 which has out-degree 2 and in-degree 0. Vertices
with even labels have out-degree 1, and in-degree 2, except for vertex 2 which has out-degree 0 and in-degree 2.

Question: Is there a directed Hamilton path in G starting at vertex 1 and ending at vertex 2.

M. Abellanas et al. / Computational Geometry 34 (2006) 35–48 43
Fig. 6. There are coins at every position except 2. Observe that we can move the coins with an itinerary: 3 → 2, 4 → 3, 5 → 4, 6 → 5, 7 → 6, 8
→ 7, and 1 → 8. This itinerary traces a Hamilton path from 1 to 2 in reverse.

Suppose we have an instance of HPDBG, then for every vertex i in G, except for vertex 2, we use a coin ci . The
coins are positioned in two rows, spaced out sufficiently, in a way one would normally draw a bipartite graph. The
possible destinations for the coin ci corresponds to the outgoing neighbours of vertex i, as is illustrated in Fig. 6.
More precisely, let G = (V ,E) with V = {1,2, . . . , n = 2k}. Now consider a set of points S = {(δi, l1), (δi, l2): i ∈
{1, . . . , k} and δ, l1 and l2 are three suitably defined constants}. Now we have n − 1 coins with sources at the points
in S excepting the point (δ, l2). The destinations also come from the set S except for the point (δ, l1). In this way
we construct an instance of OMC from HPDBG in time proportional to the size of G. It is routine to verify that a
Hamilton path in G corresponds to an itinerary using one move per coin. Observe that the first move, of any itinerary
that uses n − 1 moves, must move one of two coins to the destination at point (δ, l2). This observation leads to an
inductive argument showing that any itinerary consisting of n − 1 moves in the given instance of OMC corresponds
to a Hamilton path in the graph G.

The preceding discussion leads us to conclude with the following theorem:

Theorem 2. OMC is polynomial reducible from HPDBG, thus OMC is NP-complete.

This result shows the remarkable difference between the coin moving problem with one destination per coin com-
pared to the case where a fixed fraction of the coins have a choice between two destinations.

4. Placing coins

Consider a set, S, of n coins of various diameters and a set, P , of n destinations points in the plane. Is there a way
to place the coins so each coin is centered at a point of P and no two coins overlap? Let us call this decision problem
the Coin Placement Problem (CPP).

We show that CPP is NP-complete by reducing it from a variant of 3SAT. In this variant, named 1-in-3SAT, we
insist that each clause has exactly one variable set to true and two variables set to false. With this added constraint we
do not need to consider negations of variables [6]. Thus an instance of 1-in-3SAT consists of a set V of n boolean
variables, and a set C of clauses of the disjunction of three literals, each referring to a variable in V . We then ask, is
there an assignment of truth values to the variables such that the conjunction of the clauses is true, and no clause has
more than one variable set to true?

Given an instance of 1-in-3SAT we construct an instance of CPP. We will use some gadgets to make sure that there
is a valid placement if and only if there are assignments that satisfy the instance of 1-in-3SAT. There are two types
of gadgets. For each clause we have a clause gadget that ensures that each clause has exactly one true literal. For
each variable we have a consistency gadget to ensure that the truth assignments over all literals for that variable are
consistent.

At this point some readers may benefit by consulting the example shown in Fig. 9 to obtain an overview of the
completed construction.

44 M. Abellanas et al. / Computational Geometry 34 (2006) 35–48
Fig. 7. We see two ways to arrange the coins in a consistency enforcing gadget. In (a) the coins are arranged in a true sequence, that is they represent
setting two literals z and y of the same variable to true. In (b) the arrangement of coins represents setting the same literals to false.

Fig. 8. A clause gadget. In this clause the literal y is set to true, and both x and z are set to false. Note: The coins labeled F represent true and T

represent false when they are used in the clause gadget.

4.1. Construction details

For each literal we use four coins which we label T , F , T ′, and F ′. The basic strategy is to use T and T ′ in either
the clause gadget or the consistency gadget, and F and F ′ in the other gadget. These pairs of coins can be arranged in
one of two ways, representing an assignment of true or false.

The consistency gadget uses two of its own coins Et and Ef . The placement points of this gadget accommodate
the coins in exactly two ways, one representing setting the variable v = true and the other v = false. See Fig. 7.

The clause gadget has three pairs of coins of its own Ct , Dt , Cf , Df , and Cg and Dg . The first pair fits with coins
that represent a true assignment and the second two pairs fit with coins that represent false. See Fig. 8.

The placement points of the consistency enforcing gadget are collinear, and spaced using three distinct distances,
d1, d2 and d3. The truth enforcing gadget may also be laid out on a single line, however, in the interest of clarity, we
use a layout using three distinct lines in our example. Let r(Fi) (and similarly for other coins) denote the radius of a
coin that is used to represent variables vi . We set the radii so that the following equations hold.

r(Fi) + r(F ′
i) = r(Ti) + r(T ′

i) = d1. (1)

We also have:

r(Et) + r(Ti) = r(E
f
) + r(Fi) = d2, (2)
i i

M. Abellanas et al. / Computational Geometry 34 (2006) 35–48 45
r(Et
i) + r(F ′

i) = r(E
f
i) + r(T ′

i) = d3. (3)

For each literal within a clause j we place coins spaced using three distances as well. The distance d1 in Eq. (1) is
used, as well as:

r(Ct
j) + r(Fi) = r(C

f
j) + r(Ti) = r(C

g
j) + r(Ti) = d4, (4)

r(Dt
j) + r(F ′

i) = r(D
f
j) + r(T ′

i) = r(D
g
j) + r(T ′

i) = d5. (5)

The differences between true and false coins is a common value ε, that is: ε = r(F) − r(T) = r(T ′) − r(F ′) =
r(Et) − r(Ef) = r(Cf) − r(Ct) = r(Cg) − r(Ct) = (Dt) − r(Df) = r(Dt) − r(Dg).

Given an instance of 1-in-3SAT we can construct an instance of CPP that has a valid placement if the instance
of 1-in-3SAT is satisfiable. To show that every valid placement of an instance of CPP IC corresponds to a satisfiable
instance of 1-in-3SAT, we set the sizes of the coins so that the distances di for i = 1, . . . ,5 are unique for each variable
and clause. Let N = max(|C|, |V |) + 1. We will represent the radii of the coins using positive integers in base N . For
the variable vi we have:

r(Ti) = 0000i0N,

r(Fi) = 0000i1N,

r(T ′
i) = 000i01N,

r(F ′
i) = 000i00N,

r(Et
i) = 00i001N,

r(E
f
i) = 00i000N.

And for the clause cj :

r(Ct
j) = 0j0000N,

r(C
f
j) = 0j0001N,

r(C
g
j) = 0j0001N,

r(Dt
j) = j00001N,

r(D
f
j) = j00000N,

r(D
g
j) = j00000N.

Now to specify the points comprising the gadgets. We start with the consistency gadget. Suppose there are t

occurrences of the variable i in the given instance of 1-in-3SAT. We need a total of 2t + 2 points. Since the points are
collinear we only use a single number to specify the points. Specifying point one as the constant p(i,1), the second
point p(i,2) = p(i,1) + 00i0i1N. The next 2t − 1 are given by the expression p(i, k) = p(i, k − 1) + 000ii1N.
The final point is at p2t+2 = p2t+1 + 00ii01N. For each clause gadget we have three groups of four points, one
for each variable in the clause. Let q(j, l,1) now represent the first point used for the lth variable vi in a clause cj .
The subsequent three points are given by: q(j, l,2) = q(j, l,1) + 0j00i1N, q(j, l,3) = q(j, l,2) + 000ii1N and
q(j, l,4) = q(j, l,3) + j00i01N.

Lemma 6. Given an instance of IS , 1-in-3SAT we can construct an instance IC of CPP in polynomial time that has a
valid placement whenever IS is satisfiable.

Proof. It is a routine matter to place the coins once satisfiable truth assignments are given. �
In Fig. 9 we give an illustration of our construction given the 1-in-3SAT instance (x, y, z), (x, y,w), and the truth

assignment y = true and x = z = w = false. Note that for practical reasons the coins are not drawn to scale.
To show that every valid placement of IC corresponds to a satisfiable truth assignment of IS we make use of the

distinct sizes of coins and spaces between the coins.
We begin by showing that the coins C and D that we use in the clause gadgets are forced to go there.

46 M. Abellanas et al. / Computational Geometry 34 (2006) 35–48
Fig. 9. A placement of coins that corresponds to the 1-in-3SAT instance (x, y, z), (x, y,w), and the truth assignment y = true and
x = z = w = false. Note that this representation does not assign distinct sizes to the coins as specified by the construction. Using sizes as specified
would require a drawing that is too big to be practical. We also have altered our notation in the figure to better suit the example. The intended
meaning should be clear.

Lemma 7. In any valid placement of coins the coins Ct
j ,C

f
j ,C

g
j must be placed at one of the points q(j,1,1), q(j,2,1)

and q(j,3,1) and the coins Dt
j ,D

f
j and D

g
j must be placed at one of the points q(j,1,4), q(j,2,4) and q(j,3,4).

Proof. Let m denote the number of clauses. Due to their size, a radius of at least m00000N, the only placement of
the coins Dt

m,D
f
m and D

g
m is at one of the points q(m,1,4), q(m,2,4) and q(m,3,4). Otherwise these coins overlap

two or more placement points. Once these coins are placed the remaining available locations forces the placement of
Dt

m−1,D
f

m−1 and D
g

m−1 at one of the points q(m− 1,1,4), q(m− 1,2,4) and q(m− 1,3,4). Continuing in the same

way, we must place the coins Dt
j ,D

f
j and D

g
j at one of the points q(j,1,4), q(j,2,4) and q(j,3,4). Similarly the

coins Ct
j ,C

f
j ,C

g
j must be placed at one of the points q(j,1,1), q(j,2,1) and q(j,3,1). �

The consistency gadget coins Et and Ef are also forced into place by a similar argument. Thus:

Lemma 8. In any valid placement of coins the coins Et
i and E

f
i must be placed at the points p(i,1) and p(i,2t + 2)

where the variable vi appears t times in the instance of IS .

Proof. Again due to the sizes once the coins D and C are placed we force the placement of the coins Et
n and E

f
n

where n denotes the number of variables in IS . The subsequent coins are forced in a similar manner. �
We are left with the coins representing the variables themselves that is Ti , Fi , T ′

i and F ′
i . We call a placement of

the coins, Ti , Fi , T ′ and F ′, tight if each of these coins are incident to exactly two others. Observe that the placement
i i

M. Abellanas et al. / Computational Geometry 34 (2006) 35–48 47
we obtain from a satisfiable truth assignment is tight. Once the coins C, D Et and Ef are placed we see that all valid
placements must be tight. This remark is formalized by the next lemma.

Lemma 9. Every valid placement uses a tight placement of Ti , Fi , T ′
i and F ′

i , in either the true position or the false
position. Thus every valid placement of IC corresponds to a satisfiable assignment of IS .

Proof. The placement corresponding to a satisfiable truth assignment is tight. Thus the linear measure of the coins
and the spaces remaining are exactly equal. We show that this implies that every placement must be tight.

Consider the consistency gadget for the variable vi , where vi appears t times.
First consider placing Et

i at p(i,1) then the gap between the edge of Et
i and p(i,2) is of length 0000i0N which is

exactly the radius r(Ti). This forces a placement of the coins in a true sequence with E
f
i at p(i,2t + 2). Now we have

t copies of the coins Fi and F ′
i that need to be placed. Without loss of generality assume that there is an occurrence of

the variable vi as the first literal in clause cj . A tight placement forces Ct
j at q(j, i,1), Dt

j at q(j, i,4) and the coins
Fi and F ′

i at q(j, i,2) and q(j, i,3), respectively.

On the other hand, assume that E
f
i is placed at p(i,1). This forces the coins in a false sequence. Furthermore the

t copies of Ti and T ′
i must be placed in their appropriate places within their clause gadgets.

Therefore we conclude that if we have a valid placement of the coins IC then we can assign truth values satisfy-
ing IS . �

We conclude with the main theorem of this section.

Theorem 3. CPP is NP-complete.

Proof. Observe that it is possible to determine whether a placement of coins is valid, in polynomial time, thus the
problem CPP is in NP. By the arguments in Lemmas 6 and 9 we can conclude that the NP-complete problem 1-in-3SAT
is polynomial reducible from CPP. Therefore CPP is NP-complete. �

Note: our construction can be laid out so that all coin centers lie on a common line.
Alberto Márquez [11] has proposed an alternate proof to show that CPP is NP-complete. The reduction is to planar

3-SAT and uses coins with only two different sizes. The construction is closely related to that of Forman and Wagner
in their paper on map labeling [5].

5. Discussion

We have presented some combinatorial and algorithmic results on moving coins in the plane. There are several
issues that remain unresolved, and we conclude by briefly summarizing them.

The number of moves required to satisfy an itinerary of n unit coins in an unrestricted work space has a lower
bound of �8n/5� and an upper bound of 2n − 1. It would be interesting to close this gap.

In terms of complexity we have shown that some decision problems related to moving coins are hard. The com-
plexity of determining the optimum number of moves to satisfy the itinerary of a set of unit coins remains open.

Acknowledgements

Ferran Hurtado is partially supported by projects DURSI 2001SGR00224 and MCYT BFM2003-0368. Alfredo
García Olaverri and Javier Tejel are partially supported by project DGA 228-61. David Rappaport is partially sup-
ported by NSERC of Canada Discovery Grant 9204.

References

[1] I. Balaban, An optimal algorithm for finding segment intersections, in: Proc. 11 Annu. ACM Sympos. Comput. Geom., 1995, pp. 211–219.
[2] J.-D. Boissonnat, J. Snoeyink, Efficient algorithms for line and curve segment intersection using restricted predicates, Computational Geom-

etry 16 (1) (2000) 35–52.

48 M. Abellanas et al. / Computational Geometry 34 (2006) 35–48
[3] S.J. Buckley, Fast motion planning for multiple moving robots, in: Proc. of IEEE Int. Conf. on Robot’s and Automation, 1989, pp. 322–326.
[4] E. Demaine, M. Demaine, H. Verrill, Sliding coin puzzles, in: R.J. Nowakowski (Ed.), More Games of No Chance, Cambridge University

Press, Cambridge, 2002, pp. 405–431. Collection of papers from the MSRI Combinatorial Game Theory Research Workshop, Berkeley, CA,
2002.

[5] M. Formann, F. Wagner, A packing problem with applications to lettering of maps, in: SCG’91: Proceedings of the Seventh Annual Symposium
on Computational Geometry, ACM Press, New York, 1991, pp. 281–288.

[6] M.R. Garey, D.S. Johnson, Computers and Intractability, W.H. Freeman and Company, New York, 1979.
[7] J. Hopcroft, J. Schwartz, M. Sharir, On the complexity of motion planning for multiple independent objects pspace hardness of the warehouse-

man’s problem, Int. J. Robotics Res. 3 (4) (1984) 76–88.
[8] J. Hopcroft, G.T. Wilfong, Reducing multiple object motion planning to graph searching, SIAM J. Comput. 15 (3) (1986) 768–785.
[9] Y. Hwang, N. Ahuja, Gross motion planning—a survey, ACM Comput. Surv. 24 (3) (1992) 219–291.

[10] V.I. Levenshtein, Binary codes capable of correcting deletions, insertions and reversals, Soviet Phys. Dokl. 10 (1966) 707–710.
[11] A. Márquez, Lettering and covering, in: Abstracts from JCDCG 2004, the Japan Conference on Discrete and Computational Geometry, 2004,

pp. 116–119.
[12] J. Plesník, The NP-completeness of the Hamiltonian cycle problem in planar digraphs with degree bound two, Inform. Process. Lett. 8 (4)

(1979) 199–201.
[13] Y. Rubner, C. Tomasi, L.J. Guibas, The earth movers distance as a metric for image retrieval, Internat. J. Computer Vision 40 (2) (2000)

99–121.

