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Abstract

Some new weakly singular integral inequalities of Gronwall–Bellman type are established, which generalized some known
weakly singular inequalities and can be used in the analysis of various problems in the theory of certain classes of differential
equations, integral equations and evolution equations. Some applications to fractional differential and integral equations are also
indicated.
© 2007 Elsevier Inc. All rights reserved.
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1. Introduction

It is well known that Gronwall type integral inequalities play a dominant role in the study quantitative properties of
solutions of differential and integral equations. The literature on such inequalities and their applications is vast; see [1–
4] and the references given therein. Usually, the integrals concerning this type inequalities have regular or continuous
kernels, but some problems of theory and practicality require us to solve integral inequalities with singular kernels. For
example, D. Henry [5] used this type integral inequalities to prove a global existence and an exponential decay result
for a parabolic Cauchy problem; Sano and Kunimatsu [6] gave a sufficient condition for stabilization of semilinear par-
abolic distributed systems by making use of a modification of Henry’s type inequality. Very recently, Ye, Gao and Ding
[7] also proved a generalized this type inequality and used it to study the dependence of the solution on the order and
the initial condition of a fractional differential equation. All this type inequalities are proved by an iteration argument
and the estimation formulas are expressed by a complicated power series which are sometimes not very convenient
for applications. To avoid the weakness, Medveď [8] presented an new method to solve Henry’s type inequalities and
got the explicit bounds with a quite simple formulas which are similar to the classic Gronwall–Bellman inequalities.
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In this paper, we use the modification of Medveď’s method to study a certain class of nonlinear inequalities of
Henry’s type, which generalizes some known results and can be used as handy and effective tools in the study of
differential equations and integral equations. To illustrate this, applications of our result to fractional differential and
integral equations are also indicated.

2. Main result

In what follows, R denotes the set of real numbers, R+ = [0,+∞); Ci(M,S) denotes the class of all i-times
continuously differentiable defined on set M with range in the set S (i = 1,2, . . .) and C0(M,S) = C(M,S).

For convenience, before giving our main results, we cite some useful lemmas and definitions in the discussion of
our proof as follows:

Lemma 2.1. (See [9].) Let a � 0, p � q � 0 and p �= 0, then

a
q
p � q

p
K

q−p
p a + p − q

p
K

q
p

for any K > 0.

Definition 2.2. (See [10].) Let [x, y, z] be an ordered parameter group of nonnegative real numbers. The group is called
belong to the first class distribution and denoted by [x, y, z] ∈ I if conditions x ∈ (0,1], y ∈ ( 1

2 ,1) and z � 3
2 − y

are satisfied; The group is called belong to the second class distribution and denoted by [x, y, z] ∈ II if conditions
x ∈ (0,1], y ∈ (0, 1

2 ] and z > (1 − 2y2)/(1 − y2) are satisfied.

Lemma 2.3. (See [11, p. 296].) Let α,β, γ and p be positive constants. Then
t∫

0

(
tα − sα

)p(β−1)
sp(γ−1) ds = tθ

α
B

[
p(γ − 1) + 1

α
,p(β − 1) + 1

]
, t ∈ R+,

where B[ξ, η] = ∫ 1
0 sξ−1(1 − s)η−1 ds (�ξ > 0, �η > 0) is the well-known B-function and θ = p[α(β − 1) +

γ − 1] + 1.

Lemma 2.4. (See [10].) Suppose that the positive constants α,β, γ,p1 and p2 satisfy conditions:

(a) if [α,β, γ ] ∈ I , p1 = 1
β
;

(b) if [α,β, γ ] ∈ II, p2 = 1+4β
1+3β

, then

B

[
pi(γ − 1) + 1

α
,pi(β − 1) + 1

]
∈ (0,+∞)

and

θi = pi

[
α(β − 1) + γ − 1

] + 1 � 0

are valid for i = 1,2.

Lemma 2.5. (See [12].) Let u(t), f (t), g(t) and h(t) be nonnegative continuous functions on R+, and let r � 1 be a
real number. If

u(t) � u0(t) + w(t)

[ t∫
0

v(s)ur(s) ds

]1/r

, t ∈ R+,

then
t∫
v(s)ur(s) ds �

[
1 − (

1 − W(t)
)1/r]−r

t∫
v(s)ur

0(s)W(s) ds, t ∈ R+,
0 0
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where

W(t) = exp

(
−

t∫
0

v(s)wr(s) ds

)
.

Theorem 2.6. Let u(t), a(t), b(t) and f (t) be nonnegative continuous functions for t ∈ R+. Let p and q be constants
with p � q � 0. If u(t) satisfies

up(t) � a(t) + b(t)

t∫
0

(
tα − sα

)β−1
sγ−1f (s)uq(s) ds, t ∈ R+, (2.1)

then for any K > 0 we have

(i) if [α,β, γ ] ∈ I ,

u(t) �
{

a(t) + M
β

1 t (α+1)(β−1)+γ b(t)

[
A1−β

1 (t) + K
q−p

p M
β

1

[
1 − (

1 − V1(t)
)1−β]−1

×
( t∫

0

s
(α+1)(β−1)+γ

1−β f
1

1−β (s)b
1

1−β (s)A1(s)V1(s) ds

)1−β]} 1
p

, (2.2)

where

M1 = 1

α
B

[
β + γ − 1

αβ
,

2β − 1

β

]
, A(t) = q

p
K

q−p
p a(t) + p − q

p
K

q
p ,

A1(t) =
t∫

0

f
1

1−β (s)A
1

1−β (s) ds

and

V1(t) = exp

(
−K

p−q
p(1−β) M

β
1−β

1

t∫
0

s
(α+1)(β−1)+γ

1−β f
1

1−β (s)b
1

1−β (s) ds

)
;

(ii) if [α,β, γ ] ∈ II,

u(t) �
{

a(t) + M

1+3β
1+4β

2 t
[α(β−1)+γ ](1+4β)−β

1+4β b(t)

[
A

β
1+4β

2 (t) + K
q−p

p M

1+3β
1+4β

2

[
1 − (

1 − V2(t)
) β

1+4β
]−1

×
( t∫

0

s
[α(β−1)+γ ](1+4β)−β

β f
1+4β

β (s)b
1+4β

β (s)A2(s)V2(s) ds

) β
1+4β

]} 1
p

, (2.3)

where

M2 = 1

α
B

[
γ (1 + 4β) − β

α(1 + 3β)
,

4β2

1 + 3β

]
, A2(t) =

t∫
0

f
1+4β

β (s)A
1+4β

β (s) ds

and

V2(t) = exp

(
−K

(q−p)(1+4β)
pβ M

1+3β
β

2

t∫
0

s
[α(β−1)+γ ](1+4β)−β

β f
1+4β

β (s)b
1+4β

β (s) ds

)
.
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Proof. Define a function v(t) by

v(t) = b(t)

t∫
0

(
tα − sα

)β−1
sγ−1f (s)uq(s) ds, t ∈ R+, (2.4)

then

up(t) � a(t) + v(t)

or

u(t) �
(
a(t) + v(t)

) 1
p . (2.5)

By Lemma 2.1 and (2.5), for any K > 0, we have

uq(t) �
(
a(t) + v(t)

) q
p � q

p
K

q−p
p

(
a(t) + v(t)

) + p − q

p
K

q
p .

Substituting the last relations into (2.4) we get

v(t) � b(t)

t∫
0

(
tα − sα

)β−1
sγ−1f (s)

[
q

p
K

q−p
p

(
a(s) + v(s)

) + p − q

p
K

q
p

]
ds

= b(t)

t∫
0

(
tα − sα

)β−1
sγ−1f (s)A(s) ds + q

p
K

q−p
p b(t)

t∫
0

(
tα − sα

)β−1
sγ−1f (s)v(s) ds, (2.6)

where A(t) = q
p
K

q−p
p a(t) + p−q

p
K

q
p .

If [α,β, γ ] ∈ I , let p1 = 1/β , q1 = 1/(1 −β); if [α,β, γ ] ∈ II, let p2 = (1 + 4β)/(1 + 3β), q2 = (1 + 4β)/β , then
1
pi

+ 1
qi

= 1 for i = 1,2, and then using Hölder’s inequality with indexes pi , qi to (2.6) we get

v(t) � b(t)

[ t∫
0

(
tα − sα

)pi(β−1)
spi(γ−1) ds

]1/pi
[ t∫

0

f qi (s)Aqi (s) ds

]1/qi

+ K
q−p

p b(t)

[ t∫
0

(
tα − sα

)pi(β−1)
spi(γ−1) ds

]1/pi
[ t∫

0

f qi (s)vqi (s) ds

]1/qi

.

By Lemmas 2.3 and 2.4, the last inequality can be rewritten as

v(t) �
(
Mit

θi
) 1

pi A
1
qi

i (t)b(t) + K
q−p

p
(
Mit

θi
) 1

pi b(t)

[ t∫
0

f qi (s)vqi (s) ds

]1/qi

(2.7)

for t ∈ R+, where

Mi = 1

α
B

[
pi(γ − 1) + 1

α
,pi(β − 1) + 1

]
, Ai (t) =

t∫
0

f qi (s)Aqi (s) ds

and θi is given as in Lemma 2.4 for i = 1,2.
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Using Lemma 2.5 to (2.7), we get

v(t) �
(
Mit

θi
) 1

pi A
1
qi

i (t)b(t) + K
q−p

p
(
Mit

θi
) 1

pi b(t)

[
1 − (

1 − Vi(t)
) 1

qi

]−1

×
( t∫

0

f qi (s)
(
Mis

θi
) qi

pi bqi (s)Ai (s)Vi(s) ds

) 1
qi

, (2.8)

where

Vi(t) = exp

(
−K

qi(q−p)

p

t∫
0

f qi (s)
(
Mis

θi
) qi

pi bqi (s) ds

)
.

Finally, substituting (2.8) into (2.5), considering two situations for i = 1,2 and using parameters α, β and γ to denote
pi, qi and θi in (2.8), we can get the desired estimations (2.2) and (2.3), respectively. �
Remark 2.1. (i) In (2.2) and (2.3), we not only have given some new bounds to a class of nonlinear weakly singular
integral inequalities, but also note that the functions a(t) and b(t) appearing in (2.2) and (2.3) are not required to
satisfy the nondecreasing condition as some known results [7,8,10].

(ii) Using the generalized Bernoulli inequality [13] to (2.2) and (2.3), we can obtain some simpler formulas to the
estimates of the solutions of (2.1) as follows.

Theorem 2.6′. Let u(t), a(t), b(t), f (t), p and q be defined as in Theorem 2.6, u(t) satisfy (2.1). Then for any K > 0
we have

(i) if [α,β, γ ] ∈ I ,

u(t) �
{

a(t) + M
β

1 t (α+1)(β−1)+γ b(t)

[
A1−β

1 (t) + K
q−p

p
M

β

1

1 − β
V −1

1 (t)

×
( t∫

0

s
(α+1)(β−1)+γ

1−β f
1

1−β (s)b
1

1−β (s)A1(s)V1(s) ds

)1−β]} 1
p

, (2.2)′

where M1, A1(t) and V1(t) are defined as in Theorem 2.6 for t ∈ R+;
(ii) if [α,β, γ ] ∈ II,

u(t) �
{

a(t) + M

1+3β
1+4β

2 t
[α(β−1)+γ ](1+4β)−β

β b(t)

[
A

β
1+4β

2 (t) + K
q−p

p M

1+3β
1+4β

2

×
(

1 + 4β

β

)
V −1

2 (t)

( t∫
0

s
[α(β−1)+γ ](1+4β)−β

β f
1+4β

β (s)b
1+4β

β (s)A2(s)V2(s) ds

) β
1+4β

]} 1
p

, (2.3)′

where M2, A2(t) and V2(t) are defined as in Theorem 2.6 for t ∈ R+.

Proof. By the generalized Bernoulli inequality [13], we have(
1 − Vi(t)

) 1
qi < 1 − 1

qi

Vi(t)

or [
1 − (

1 − Vi(t)
) 1

qi

]−1
< qiV

−1
i (t)

for i = 1,2, where Vi(t) is defined as in Theorem 2.6. Substituting the last inequalities into (2.2) and (2.3) we can
obtain (2.2)′ and (2.3)′, respectively. �
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Corollary 2.7. Let functions u(t), a(t), b(t) and f (t) be defined as in Theorem 2.6. Suppose that

u(t) � a(t) + b(t)

t∫
0

(t − s)β−1f (s)u(s) ds, t ∈ R+. (2.9)

Then we have

(i) if β ∈ ( 1
2 ,1),

u(t) � a(t) + M
β

11t
2β−1b(t)

[
A1−β

11 (t) + M
β

11

1 − β
V −1

11 (t)

t∫
0

s
2β−1
1−β f

1
1−β (s)b

1
1−β (s)A11(s)V11(s) ds

]
,

(2.10)

where

M11 = B

[
1,

2β − 1

β

]
, A11(t) =

t∫
0

f
1

1−β (s)a
1

1−β (s) ds

and

V11(t) = exp

(
−M

β
1−β

11

t∫
0

s
2β−1
1−β f

1
1−β (s)b

1
1−β (s) ds

)

for t ∈ R+;
(ii) if β ∈ (0, 1

2 ],

u(t) � a(t) + M

1+3β
1+4β

12 t4βb(t)

[
A

β
1+4β

12 (t) + 1 + 4β

β
M

1+3β
1+4β

12 V −1
12 (t)

×
t∫

0

s4βf
1+4β

β (s)b
1+4β

β (s)A12(s)V12(s) ds

]
, (2.11)

where

M12 = B

[
1,

4β2

1 + 3β

]
, A12(t) =

t∫
0

f
1+4β

β (s)a
1+4β

β (s) ds

and

V12(t) = exp

(
−M

1+3β
β

12

t∫
0

s4βf
1+4β

β (s)b
1+4β

β (s) ds

)

for t ∈ R+.

Proof. (2.10) and (2.11) follow by letting p = q = α = γ = 1 in Theorem 2.6′ and by simple computation, we omit
the details. �
Remark 2.2. Inequality (2.9) has been studied in [7], but here we not only have given some new estimates which are
not in complicated power series, but also eliminated the nondecreasing condition to function b(t).

Let p = 2, q = α = γ = 1, we can get the following interesting Henry–Ou-Iang type singular integral inequality.
About Ou-Iang type inequalities and their applications we refer to [4] and references cited therein.
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Corollary 2.8. Let functions u(t), a(t), b(t) and f (t) be defined as in Theorem 2.6. Suppose that

u2(t) � a(t) + b(t)

t∫
0

(t − s)β−1f (s)u(s) ds, t ∈ R+. (2.12)

Then for any K > 0 we have

(i) if β ∈ ( 1
2 ,1),

u(t) �
{

a(t) + M
β

11t
2β−1b(t)

[
Ã1−β

11 (t) + K− 1
2

M
β

11

1 − β
Ṽ −1

11 (t)

×
t∫

0

s
2β−1
1−β f

1
1−β (s)b

1
1−β (s)Ã11(s)Ṽ11(s) ds

]} 1
2

, (2.13)

where

Ã11(t) =
(

1

2
K

1
2

) 1
1−β

t∫
0

f
1

1−β (s)

(
a(s)

K
+ 1

) 1
1−β

ds,

Ṽ11(t) = exp

[
−

(
M

β

11

K
1
2

) 1
1−β

t∫
0

s
2β−1
1−β f

1
1−β (s)b

1
1−β (s) ds

]

and M11 is defined in Corollary 2.7 for t ∈ R+;
(ii) if β ∈ (0, 1

2 ],

u(t) �
{

a(t) + M

1+3β
1+4β

12 t
4β2

1+4β b(t)

[
Ã

β
1+4β

12 (t) + K− 1
2 M

1+3β
1+4β

12

(
1 + 4β

β

)
Ṽ −1

12 (t)

×
( t∫

0

s
4β2

1+4β f
1+4β

β (s)b
1+4β

β (s)Ã12(s)Ṽ12(s) ds

) β
1+4β

]} 1
2

, (2.14)

where

Ã12(t) =
(

1

2
K

1
2

) 1+4β
β

t∫
0

f
1+4β

β (s)

(
a(s)

K
+ 1

) 1+4β
β

(s) ds,

Ṽ12(t) = exp

[
−

(
M

1+3β

12

K
1+4β

2

) 1
β

t∫
0

s
4β2

1+β f
1+4β

β (s)b
1+4β

β (s) ds

]

and M12 is defined as in Corollary 2.7 for t ∈ R+.

Proof. Inequalities (2.13) and (2.14) follow by letting p = 2, q = α = γ = 1 in Theorem 2.6′ and by simple compu-
tation, we omit the details. �
3. Applications

In this section, we will indicate the usefulness of our main results in the study of the boundedness of certain
fractional differential equations with Riemann–Liouville (R–L) fractional operator and Erdélyi–Kober (E–K) operator.

Riemann–Liouville derivative and integral, and Erdélyi–Kober (E–K) operator are defined as below, respectively:
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Definition 3.1. (See [14].) The fractional derivative of order 0 < α < 1 of a function f (x) ∈ C(R+,R) is given by

Dαf (x) = 1

�(1 − α)

d

dx

x∫
0

(x − t)−αf (t) dt

provided that the right side is pointwise defined on R+.

Definition 3.2. (See [14].) The fractional primitive of order α > 0 of a function f : R+ → R is given by

Iαf (x) = 1

�(α)

x∫
0

(x − t)α−1f (t) dt

provided the right side is pointwise defined on R+.

Definition 3.3. (See [15,16].) The Erdélyi–Kober fractional integral of a continuous f : R+ → R is defined by

I
γ,δ
β f (x) = x−β(γ+δ)

�(δ)

x∫
0

(
xβ − tβ

)δ−1
tβγ f (t)d

(
tβ

)
with real δ, γ and β > 0, provided the right side is pointwise defined on R+.

(I) Consider the following initial value problem of Podlubny [14] in terms of the Riemann–Liouville fractional
derivatives:

Dαy(t) = f
(
t, y(t)

)
, (3.1)

Dα−1y(t)|t=0 = η, (3.2)

where 0 < α < 1,0 � t < T � +∞, f : [0, T ) × R → R; and Dα denotes R–L derivative operator.

From the problem (3.1)–(3.2) we can get a fractional integral equation

y(t) = η

�(α)
tα−1 + 1

�(α)

t∫
0

(t − τ)α−1f
(
τ, y(τ )

)
dτ, (3.3)

which is equivalent to the initial value problem (3.1)–(3.2) (cf. [14, pp. 127–128]).

Theorem 3.4. Let 0 < α � 1 and f be continuous and satisfy the condition∣∣f (t, y)
∣∣ � g(t)|y|q, (3.4)

where 0 < q � 1 is a constant, g(t) is nonnegative continuous function for 0 � t < T � +∞. Then for any solutions
y(t) of the initial value problem (3.1)–(3.2)

(i) if α ∈ ( 1
2 ,1),

∣∣y(t)
∣∣ � |η|

�(α)
tα−1 + M̃α

11t
2α−1

�(α)

[
A1−α

1q (t) + Kq−1M̃α
11

(1 − α)�(α)
Ṽ −1

1q (t)

×
t∫

0

s
2α−1
1−α g

1
1−α (s)A1q(s)Ṽ1q(s) ds

]
, 0 < t < T � +∞, (3.5)

where

Aq(t) = q|η|
1−q

tα−1 + (1 − q)Kq,

K �(α)
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M̃11 = B

[
1,

2α − 1

α

]
, A1q(t) =

t∫
0

g
1

1−α (s)A
1

1−α
q (s) ds

and

Ṽ1q(t) = exp

[
−

(
K1−qM̃α

11

�(α)

) 1
1−α

t∫
0

s
2α−1
1−α g

1
1−α (s) ds

]
;

(ii) if α ∈ (0, 1
2 ],

∣∣y(t)
∣∣ � |η|

�(α)
tα−1 + M̃

1+3α
1+4α

12 t4α

�(α)

[
A

α
1+4α

2q (t) + Kq−1M̃
1+3α
1+4α

12 (1 + 4α)

α�(α)
Ṽ −1

2q (t)

×
( t∫

0

s4αg
1+4α

α (s)A2q(s)Ṽ2q(s) ds

) α
1+4α

]
, 0 < t < T � +∞, (3.6)

where

M̃12 = B

[
1,

4α2

1 + 3α

]
, A2q(t) =

t∫
0

g
1+4α

α (s)A
1+4α

α
q (s) ds

and

Ṽ2q(t) = exp

[
−

(
Kq−1

�(α)

) 1+3α
α

M̃
1+3α

α

12

t∫
0

s4αg
1+4α

α (s) ds

]
.

Proof. From (3.3) and (3.4) we have

∣∣y(t)
∣∣ � |η|

�(α)
tα−1 + 1

�(α)

t∫
0

(t − τ)α−1
∣∣f (

τ, y(τ )
)∣∣dτ

� |η|
�(α)

tα−1 + 1

�(α)

t∫
0

(t − τ)α−1g(τ)
∣∣y(τ)

∣∣q dτ.

An application of Theorem 2.6′ (with a(t) = |η|
�(α)

tα−1, b(t) = 1
�(α)

, f (t) = g(t), p = 1, α = γ = 1 and β = α) to the
last inequality yields the desired estimations (3.5) and (3.6). �

(II) Consider the following Volterra type integral equations of second kind, involving an E–K fractional integral
with parameters δ, γ and β ,

yp(t) − λt−βγ

t∫
0

(tβ − τβ)δ−1

�(δ)
τβ(1+γ )−1yq(τ ) dτ = f (t), (3.7)

which arises very often in various problems, especial describing physical processes with aftereffects. When (3.7)
is a linear equation, i.e., p = q = 1, the other parameters satisfy some conditions and y(t) belong to a space of
weighted continuous functions, Al-Saqabi and Kiryakova [16] have found the solutions of (3.7) in the explicit form
with convolutional type integral involving Mittag–Leffler function. Here we give the explicit bound of the solutions
of nonlinear equation (3.7) under some suitable conditions.

Theorem 3.5. Let y(t), f (t) ∈ C[0,+∞), p � q > 0 be constants and y(t) satisfy (3.7). Then for any constant K > 0
we have
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(i) if [β, δ,β(1 + γ )] ∈ I ,

∣∣y(t)
∣∣ �

{∣∣f (t)
∣∣ + |λ|M̄δ

1

�(δ)
tδ(β+1)−1

[
Ā1−δ

1 (t) + K
q−p

p
|λ|M̄δ

1

(1 − δ)�(δ)
V̄ −1

1 (t)

×
( t∫

0

s
δ(β+1)−1

1−δ Ā1(s)V̄1(s) ds

)1−δ]} 1
p

, t > 0, (3.8)

where

M̄1 = 1

β
B

[
δ + β(1 + γ ) − 1

βδ
,
βδ − 1

δ

]
,

Ā(t) = q

p
K

q−p
p

∣∣f (t)
∣∣ + p − q

p
K

q
p , Ā1(t) =

t∫
0

Ā
1

1−δ (s) ds

and

V̄1(t) = exp

[
− (1 − δ)K

p−q
p(1−δ)

βδ

(
M̄δ

1 |λ|
�(δ)

) 1
1−δ

t
δβ

1−δ

]
;

(ii) if [β, δ,β(1 + γ )] ∈ II,

∣∣y(t)
∣∣ �

{∣∣f (t)
∣∣ + |λ|M̄

1+3δ
1+4δ

2

�(δ)
t

β(δ+γ+4δ2+3δγ )−δ
δ

[
Ā

δ
1+4δ

2 (t) + K
q−p

p M̄
1+3δ
1+4δ

2 (1 + 4δ)|λ|
δ�(δ)

× V̄ −1
2 (t)

( t∫
0

sβ(4δ+1)−1Ā2(s)V̄2(s) ds

) δ
1+4δ

]} 1
p

, t > 0, (3.9)

where

M̄2 = 1

β
B

[
β(1 + γ )(1 + 4δ) − δ

β(1 + 3δ)
,

4δ2

1 + 3δ2

]
, Ā2(t) =

t∫
0

Ā
1+4δ

δ (s) ds

and

V̄2(t) = exp

[
−K

(q−p)(1+4δ)
pδ M̄

1+3δ
δ

2

β(1 + 4δ)

( |λ|
�(δ)

) 1+4δ
δ

tβ(1+4δ)

]
.

Proof. From (3.7) we have

|y|p(t) �
∣∣f (t)

∣∣ + |λ|
�(δ)

t−βγ

t∫
0

(
tβ − τβ

)δ−1
τβ(1+γ )−1|y|q(τ ) dτ.

An application of Theorem 2.6′ (with a(t) = |f (t)|, b(t) = |λ|
�(δ)

t−βγ , α = β , β = δ and γ = β(1 + γ )) to the last
inequality yields the desired estimations (3.8) and (3.9). �
Remark 3.1. Obviously, the boundedness of the solutions of (3.1)–(3.2) and (3.7) cannot be derived by the known
results in [5–8,10].

Letting p = q = 1 in Theorem 3.5, we can obtain an interesting result as follows.
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Corollary 3.6. Let y(t), f (t) ∈ C[0,+∞) and y(t) satisfy the equation

y(t) − λt−βγ

t∫
0

(tβ − τβ)δ−1

�(δ)
τβ(1+γ )−1y(τ) dτ = f (t). (3.10)

Then we have

(i) if [β, δ,β(1 + γ )] ∈ I,

∣∣y(t)
∣∣ �

∣∣f (t)
∣∣ + |λ|M̄δ

1

�(δ)
tδ(β+1)−1

[
Ā∗1−δ

1 (t) + |λ|M̄δ
1

(1 − δ)�(δ)
V̄ ∗−1

1 (t)

×
( t∫

0

s
δ(β+1)−1

1−δ Ā∗
1(s)V̄

∗
1 (s) ds

)1−δ]
, t > 0, (3.11)

where

M̄1 = 1

β
B

[
δ + β(1 + γ ) − 1

βδ
,
βδ − 1

δ

]
, Ā∗

1(t) =
t∫

0

∣∣f (s)
∣∣ 1

1−δ ds

and

V̄ ∗
1 (t) = exp

[
−1 − δ

βδ

(
M̄δ

1 |λ|
�(δ)

) 1
1−δ

t
δβ

1−δ

]
;

(ii) if [β, δ,β(1 + γ )] ∈ II,

∣∣y(t)
∣∣ �

∣∣f (t)
∣∣ + |λ|M̄

1+3δ
1+4δ

2

�(δ)
t

β(δ+γ+4δ2+3δγ )−δ
δ

[
Ā∗ δ

1+4δ

2 (t) + M̄
1+3δ
1+4δ

2 (1 + 4δ)|λ|
δ�(δ)

× V̄ ∗−1
2 (t)

( t∫
0

sβ(4δ+1)−1Ā∗
2(s)V̄

∗
2 (s) ds

) δ
1+4δ

]
, t > 0, (3.12)

where

M̄2 = 1

β
B

[
β(1 + γ )(1 + 4δ) − δ

β(1 + 3δ)
,

4δ2

1 + 3δ2

]
, Ā∗

2(t) =
t∫

0

∣∣f (s)
∣∣ 1+4δ

δ ds

and

V̄ ∗
2 (t) = exp

[
− M̄

1+3δ
δ

2

β(1 + 4δ)

( |λ|
�(δ)

) 1+4δ
δ

tβ(1+4δ)

]
.
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