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1. INTRODUCTION

The purpose of this paper is to establish the existence of periodic
solutions to the nonlinear differential equation

x™ +a, x4+ tax + gt x, X, xM™) = f(1), (L.1)

where aj,a,,...,a, _, are constants, g:R X R™** > R is continuous
and T-periodic (T > 0) in its first variable, and f(z) is a continuous
T-periodic function.

This and similar types of problems have recently received considerable
attention. (See [2, 4, 6, 7, 9-12, 14-18], etc.) In most known existence
results, the nonlinearity g depends at most on the lower order derivatives
x',x",..., and x"~V and, hence, defines a compact nonlinear operator
between some appropriate Banach spaces. Therefore, the abstract results
used there are not applicable to (1.1). We extend the result of [17] and
allow the nonlinearity g to depend on the highest derivative x™. In our
case, the nonlinearity g defines a k-set contractive operator between some
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Banach spaces. Our method is based on the continuation theory for k-set
contractions [7].

As in [17], the interest of our conditions lies in the possibility of proving
an existence theorem for the problem (1.1) without needing an assumption
on the growth of g for x > 0 or else for x < 0. In [14] and [16], the authors
studied the similar nonlinear periodic boundary value problems and al-
lowed the nonlinearity ¢ to depend on the highest derivative of x(z).
However, our conditions on g in this paper are different from theirs.

To show the existence of solutions to the considered problems we will
use the continuation theory for k-set contractions [7, 10]. Our method in
this direction relies on an abstract theorem developed in [16] and a priori
bounds on solutions. We will state this abstract theorem in Section 2.

2. ABSTRACT EXISTENCE THEOREMS

In this section we will briefly state the part of the abstract continuation
theory for k-set contractions that will be used in our study of Eqg. (1.1).

Let Z be a Banach space. For a bounded subset A c Z, let T,(A)
denote the (Kuratovski) measure of non-compactness defined by

I',(A) = inf{8 > 0:3 a finite number of subsets A, c A4,
A = U, A;, diam(4,) < 8}. (2.1)
Here, diam(A;) denotes the maximum distance between the points in the
set 4,. Let X and Y be Banach spaces and () a bounded open subset of

X. A continuous and bounded map N : Q — Y is called k-set-contractive if
for any bounded 4 < Q) we have

[y (N(A)) <kI'y(A). (2.2)
Also, for a continuous and bounded map 7': X — Y we define
I(T) = sup{r > 0:V bounded subset 4 C X, rTy(A) <T,(T(A))}.
(2.3)

Now, let L : X — Y be a Fredholm operator of index zero,and N: Q — Y
be k-set-contractive with k < I(L). Using the approach of Mawhin’s, it was
shown by Hetzer [10] that if Lx # Nx for all x € ¢Q, then one can
associate with the pair (L, N) a topological degree D[(L, N), Q] which has
most of the important properties of the so-called Leray-Schauder degree.
In particular, it has a homotopy invariance property that allows one to
prove the following

THEOREM 2.1 [16]. LetL:X — Ybea Fredholm operator of index zero,
andy € Y be a fixed point. Suppose that N : Q) — Y is k-set-contractive with
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k <I(L) where Q C X is bounded, open, and symmetric about 0 € Q).
Suppose further that:

(A) Lx # ANx + Ay, forx € 0Q, A € (0,1), and

(B) [ON(x) + Qy, x] - [ON(—=x) + Qy, x] < 0, for x € Ker(L) N
aqQ,

where [ , ] is some bilinear form on Y X X and Q is the projection of Y
onto coker(L). Then there exists x € Q such that Lx — Nx = y.

3. MAIN RESULTS

Let C? denote the linear space of real valued continuous T-periodic
functions on R. The linear space C2 is a Banach space with the usual
norm for x € CY given by |x|o = max,_glx(¢)l. Let C2* (m > 1) denote
the linear space of T-periodic functions with m continuous derivatives. C}'
is a Banach space with norm |x|,, = max{|x®"|:0 < i < m}.

Let X =CJ and Y= C? and let L: X — Y be given by

L(x)=x" +aqa, x" D4 .. +q,x.

It is obvious that L is a bounded linear map. Next define a (nonlinear)
map N: X —> Y by

N(x)(t) = —g(t, x(2), x' (1), x"(1),..., x"™(1)).

Now, the problem (1.1) has a solution x(¢) if and only if Lx — Nx = f for
some x € X.

We put the following conditions on g and f. They are similar to the
ones contained in [17].

(H3.1) g:RxR™"!— R is continuous and T-periodic (7 > 0) in
its first variable.

(H3.2) There exist measurable functions w,,u_ R = R U {4}
such that

pe(t) < lim infg(e, x,x,x,,...,%,), teR,
xX— +
pmo(t) = lim supg(t,x,x0, %p,...,%,), treR
x> —x®
uniformly for (x, x,,...,x,) € R".

(H3.3) There exist constants ¢;, ¢, € R, such that

g(t,x,xy,%xy,...,X,) >¢; forx >0, (t,x,%,,...,%,) €ERXR"
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and

g(t, x,x,%5,...,%,) <cy forx <0, (t,xy,x,,...,%,) €RXR"™.

THeOREM 3.1.  Let (H3.1)—(H3.3) be satisfied and assume

(@) The only T-periodic solutions to the equation Lx =0 are the
constants.

(b) There exists a k € [0, 1), such that
lg(t, x, %1, . X1, p) —8(t,x, %1, X1, q)| < klp — ¢
forany (t, x, x4, ..., X _1, P, X, X1, X, _1,q) € R X R™HL
(c) There exist positive constants py, Py, Pa, - -+ Pm» P Such that
lg(t,x,x1, x,)| < g(t,x, %1, x,) + polxl + pylxyl

+p2|x2| + +pm|xm| +p7

Y(t, x, xq, X5, ..., X,) € R X R™ L or

|g(t,x,x1,x2)| < —g(t,x,xq,x;) + polxl + pylx,|
+p2|x2| + o +pm|xm| +p

Y(t, x, xq, X5, ..., x,) €R X R™L
(d) There exists

T T T
[Tro(yde< [fryde< ["p. (1) dr.
0 0 0
Then there exists an 8 > 0 such that when max{pg, pi, P2+ P} < O, the
problem (1.1) has a solution.

Notice that if g is non-negative or nonpositive then our key condition
(c) in the above theorem is automatically satisfied.
Before proving Theorem 3.1, we need the following lemmas.

LeEmMmA 3.2. L is a Fredholm map of index 0 and satisfies
I(L) = 1.

Proof. It is easy to verify that L is a Fredholm map of index O due to
the condition (a) of Theorem 3.1. In fact, for y € Y we define

1 .7
0(y) = ;fo y(t)dt.
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Then Im(L) < ker(Q). Applying the L? theory of Fourier series to the
equation Lx =y, we also can see that Im(L) > Ker(Q). Therefore, Im(L)
is closed and dimker(L) = codimIm(L) = 1. Let A € X be a bounded
subset and let n = I',(L(A)) > 0. Given € > 0, according to the defini-
tion, there is a finite number of subsets A; of A such that diam,(L(A4,) <
+ €. Since X is compactly embedded into C7'~ ! and since A4, are bounded
in X, it follows that there is a finite number of subsets A4,; of A; such that
diam,,_,(A4,,) <€, and hence, diam,(A4;) < n + € + mae, where a =
max, _, -, qtla,[} and diam (-) are defined with respect to the norms |-|,,,
0 < k < m. This proves

I'y(A) <n=Ty(L(A)),
thatis, (L) > 1. 1

LEmmA 3.3. N: X — Yis a k-set-contractive map with k < 1 as given in
condition (b) of Theorem 3.1.

Proof. Let A C X be a bounded subset and let n = I'y(A4). Then for
any e > 0, there is a finite family of subsets {A4,} with 4 = U, A; and
diam,(A,) < n + e. Now it follows from the fact that g is uniformly
continuous on any compact subset of R X R™**, and from the fact that 4
and A, are precompact in C*~* with norm |-|,,_,, that there is a finite
family of subsets {A4,;} of A4, such that 4, = U, 4,; with

lg(t, x(2), X' (1), ..., x" = D(t), ul™(1))

—g(t,u(t), u(t),...,u V(1) u™(1))| < e
for any x,u € A Therefore, for x, u € A;; we have

INx — Nullp = sup |g(t,x,x’,...,x(’"*l),x(’”))
0<r<1
—g(t,u,u’,...,u(’"*l),u(”’))|
< sup |g(t,x,x’,...,x(’"_l),x‘”‘))
0<t<1
—g(t,x,x’,...,x(’"_l),u(m))|
+ sup |g(t,x,x/,...,x(’”_l),u(”’))
O<r<1
—g(t,u, ', .. u =D, )|

< kllx™ —u™l|lo + € < kn + (k + 1)e.
That is,
[y (N(A)) < kTyx(A). |
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The next lemma is from [17].

LEMMA 3.4.  Under the assumption () of Theorem 3.1, there is a constant
w > 0 such that

m-1
Y 1xDly + /T|x(m)(l)|dt = “/Tle(l)ld[
i=1 0 °

forallx € CI.
Proof. See [17]. 1

LEMMA 3.5. There is a number r,, such that for each solution x(t) to
Lx + ANx = Af, 0 < A <1, there is a z € [0, T], with |x(2)| < r,. Here z
may depend on x(t) and \.

Proof. The proof may be found in [17] but for the sake of completeness
we give the proof here. Suppose that for each positive integer n there is a
A, €(0,1) and a solution x, of Lx 4+ A,Nx = A,f with x,(t) >n for
t € [0, T]. Then we would have

jTan(t) dt = fo(t) dr.

In other words,

[OTg(z,xn(t),x;(t),...,x;m>(t))dt - fOTf(t) dr.

On the other hand, we also have lim, _, .infg(z, x,(¢), x,(¢), ..., x{("()) >
w, (#). Now, using this and Fatou’s lemma, we get

[r@ydi= [Mu (o)

contradicting condition (d)._Thus there is a number r, such that if x is a
solution of Lx + ANx = Af, A € (0,1) then there is a number s, [0, 1]
with x(s;) < r;.

Similarly, by using w_ and Fatou’s lemma we can show that there must
be a number r, > 0 such that for any solution x there is a corresponding
value s, € [0, 1] with x(s,) > —r,. By continuity we conclude that for any
solution x there is some z, € [0, 1] with [x(z )| < ry, ry = max{r;, r,}. |

LEMMA 3.6. There exist numbers M, > 0 such that if conditions of
Theorem 3.1 hold and max{pg, py, Py, ---, P} < 8 then every solution x(t)
of the problem

Lx — ANx = Af, A€ (0,1)

satisfies |x|,, < M.
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Proof of Lemma 3.6. Let Lx — ANx = Af for x(1) € X, i.e,,

L(x)(t) +Ag(t, x(1), x'(1),....,x" (1)) = Af. (3.1)

Integrating this identity we have

Lg@ngyoy“JWQ»m=Aﬂoﬁ (3.2)

Using the condition (c) of Theorem 3.1, (3.1), and (3.2) we have
T T , (m) T
JIIL() () lde < [lg(t,x(6),x'(1), . x(0) | de + [T £(0)] e
0 0 0
T
= 2/ |f(t)|dt +P0T|x|o +P1T|x|o + o
0

+ P TIx" +pme|x('")(t)|dt +pT
0

m-—1
_ T ~
<T Y. pilx'lo+ poTlxly + +pm/ [x™(t)|dt + P,

i=1 0
where p =pT + 2[{|f] is a constant. Combining Lemma 3.4 and the
above inequality, we get

m-—1

. T ~
Y (1= Tup)lx'lo + (1 - upm)fo |x™(2)|dt < poTulxlo + pp. (3.3)
i=1

On the other hand, according to Lemma 3.5, there exist z, € [0, T'] such
that |x(z,)| < r,. Therefore,

sup_|x(1)]

0<t<T

|x|0

sup
0<t<T

<ry+ TIx'o. (34)

x(z,) + /:x’(t) dt

Combining (3.3) and (3.4), we have

-1

m
Y (L= Tup)lx'lo + (1 = Tupy — Tupo)lx'lo
i=2

T ~
+(1 - upm)/o |x™(¢)|dt < pp + roTup,.



488 LIU AND MAO

Therefore, there exist constants 6 > 0 and M, > 0 such that, if
p; <9, foralli =0,1,...,m,

then
lx@Dly < M, fori=01,....m—1.
Moreover, given such a solution of L(x)(#) + Ag(t, x, x', ..., x"™) = Af(2)
we have
m—1 '
(O] <lg(tox o 2™ [+ (D] + Tl 1xlo
i=1

s|g(t,x,x’,...,x(’”)) —g(t,x,x',...,0)]

+lg(t,x,x',...,0) | +|f()|+ (m —1) max la]IM,
l<ism—1

< k| x| +|g(t, x,x',...,0)| +|f(1)]
+(m—1) max |a]M,

l<i<sm-—-1
< k|x"(1)| + M,.

Here, M, is some constant. From this we see that |x"™], < M, /(1 — k) so
that if we let M = max{M, M, /(1 — k)} then

X[, < M
for some sufficiently small § > 0 and py, py,..., p,, <8. |1

Proof of Theorem 3.1. Let r > M, where M is in the Lemma 3.6. We
apply Theorem 2.1 for Q) = {x € X :|x|o < r}. It is easy to see now that all
of the necessary conditions in Theorem 2.2 hold except for condition (B).
We will now show that condition (B) also holds. Define a bounded bilinear
form [--]1 on Y XX by [y, x]= [{y(®)x(t)dt. Also, define Q:Y —
coker(L) by y — [{y(¢)dt. Notice that for x € ker(L) N 9Q we must
have x = r or x = —r so that for such an x

[ON(x) + Oy, %] - [ON(~x) + O, %]
=r2f0T(g(t’r’0""’0) — /() ar
.fo (g(t,—r,0,...,0) — f(¢)) dt.

By condition (d), there is a number A > 0 such that if » > M then

[ (8(t.r,0,...,0) = f(1)) di- ["(g(t,=r,0,....0) = f(1)) di < 0.
0 0
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Thus if we pick > max{M, M} then all of the conditions required in
Theorem 2.1 hold. It now follows by Theorem 2.1 that there is a function
x(t) € X, such that

Lx — Nx =f.

This finishes the proof of Theorem 3.1. |

ExAampLE 3.7. Let g(¢, x, xq,...,x,,) = h(t, xq,..., xm)e_)‘2 + h,(t, x;,
., Xx,,_pe*, here h; > 0and h, > 0 are bounded continuous T-periodic
functions in their first variable and /4, satisfies

d
sup|—hy(t, x, x1,...,x,,)| <1.
p Ix (%, x4 Xp)

m

(For example, h,(t, x, x;,..., x,) = +sin’(x,)e ") By Theorem 3.1, the
differential equation

x + hy(t, X, x(’”))e"‘2 + hy(t, x', .., x"mD)et = f(1)

has solutions provided [/ f(¢) dt > 0.
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