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Abstract 

We solve the Union-Find Problem (UF) efficiently for the case the input is restricted to several 
graph classes, namely partial k-trees for any fixed k, d-dimensional grids for any fixed dimension 

d and for planar graphs. The result on grids allows us to perform region growing techniques 
that are used for image segmentation in linear time. For planar graphs we develop a technique 

of decomposing such a graph into small subgraphs, patching, that might be useful for other 
algorithmic problems on planar graphs, too. 

By efficiency we do not only mean linear time in a theoretical setting but also a practical 
reorganization of memory such that a dynamic data structures for UF is allocated consecutively. 
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K,, we are back to the usual UF problem with no restrictions at all; 

at least if we ignore complexity issues for a moment. In general, we will have some 

family $9 of graphs and we will call the problem that the graph G might be arbitrarily 

chosen from 27 the 4e-graphical Union-Find Problem, YUF. To avoid the lower bounds 

for the complexity of UF, see [8, 131, we have to assume that such an instance G is 

given explicitly: 
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General Assumption. The input is at least as large as the number of edges of G. 

The method we use (and develop in Sections 2 and 3) is an extension of the one 

given by Gabow and Tarjan [6], namely by 

(i) solving the problem for “small” sets in a preprocessing, 

(ii) then dividing the instance by a “neglectable” portion of the graph, a skeleton, 

into such small sets, the clusters, and 

(iii) giving a technique how to perform UF as a combination of local information in 

a cluster and global information in the skeleton. 

This technique can also be seen as a method of reorganizing memory in order to 

reduce memory faults or delay and thus improve the real time behavior of UF data 

structures. 

The real world bottleneck for Union-Find is the use of a dynamic data structure. 

The usual path compression data structure makes no guarantee at all where in memory 

the next item to fetch might be located. So if we are doing Unions more or less 

arbitrary the real processing time of the algorithm is dominated by loading data, either 

from memory into cache or - even worse - from disk into memory. A discussion of 

this reorganization aspect is given at the end in Section 7. 

Since for such practical considerations the distinction between random access ma- 

chines (RAM) and pointer machines (PM) is rather academic we restrict ourselves to 

the RAM. 

The progress made here in this work for this class of problems is summarized by 

the following theorem. 

Main Theorem. 9UF is solvable on a RAM in time proportional to the number of 

Finds for 99 any of the following classes of graphs: 

(i) Trees and partial k-trees, for any jixed parameter k. 

(ii) d-dimensional grids for jixed d and &neighborhood graphs of two-dimensional 

grids. 

(iii) Planar graphs. 

Just to give an example of an application of this theorem consider the problem 

of computing minimum spanning trees. Suppose we are in a situation that we have 

graph with given edge weights such that in addition the sort order of the edges is 

known (or easy to compute). With Kruskal’s algorithm our Main Theorem then im- 

mediately gives linear time bounds if we restrict ourselves to the graph classes in 

question. 

For the proof of the Main Theorem the three parts are handled in Sections 4, 5 and 

6. For the scope of this introduction we briefly describe the parts of the Main Theorem 

in the following three paragraphs. 

Partial k-trees: Graphs of treewidth at most k, the so-called partial k-trees, are a 

quite popular generalization of trees, see Bodlaender [2]. These are graphs that have 

a tree-decomposition of width k, i.e. such a graph can be separated by sets of size at 
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most k + 1 in a “tree-like” fashion. For partial k-trees the result obtained as well as 

the methods used are straight generalizations of Gabow and Tarjan [6]. It is primarily 

chosen as a first illustration of the power of this approach. 

Grids and UF for image segmentation: An important application will be that the 

underlying graph G is, e.g. a grid as it appears in image segmentation. In image seg- 

mentation the goal is to group a digital image into homogeneous connected regions, the 

so-called segments. An important technique to do this is region growing: starting from 

one-point segments and gluing together neighboring segments if appropriate. Clearly, 

such a technique involves UF as a data structure: segments are subsets of the set of 

pixels and gluing them together involves a Union of two such sets. But the Union’s 

that are permissible are strongly restricted by the requirement that segments always 

should be connected. 

Until now there are only two special cases where the complexity of this approach is 

known to be linear, see [4,5]. These special cases strongly restrict the order in which 

Unions may be performed, the so-called scanning order, see [4], and the neighborhood 

definition that is used for the connectivity property. One of our goals here is to extend 

this to arbitrary scanning orders, to other neighborhood dejnitions on digital images 

and even to three-dimensional images. 

Planar graphs: For planar graphs we develop a technique, called patching, of de- 

composing such a graph into small subgraphs that might be useful for other algorithmic 

problems on planar graphs, too. A patching is a separator of the graph of negligible 

size, i.e. smaller than n/slow(n) for some growing function slow, that separates the 

graph into small components. 

2. Basic definitions and facts 

2.1. Notations 

Graphs are simple and without loops or isolated vertices. For a graph G, V(G) and 

E(G) denote the vertex and edge sets. The degree of a vertex v is denoted by deg,(v), 

deg, is the maximum degree over all vertices. dG(u,w) denotes the distance between 

two vertices u and w, i.e. the number of edges on a shortest path between u and w. 

The notation dc(U, W) is the obvious extension to arbitrary vertex sets U and W. For 

some vertex set U and some value p we define the p-neighborhood of U as 

N;(u) = {u E v 1 dc(k u><p}. (1) 

We will always assume that graphs that are given as instances are given explicitly as 

lists of edges, say. So in particular we always have an input size that is proportional 

to the number of edges. 

The following problem certainly is one of the most important (and famous) in the 

theory of data structures and algorithms and already appeared very early as a real-world 

subproblem in algorithms dealing with any kind of set operations: 
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Problem 2.1 (Union-Find Problem, UF). 

Instance: A set V und VI,. . u partition of V. 

Task: Perform a sequence of n < 1 VI Unions und m 3 1 V 1 Finds on V. 

Here Union operations are considered to unify two existing subsets of the partition 

and creating thus a new partition of V. Find operations are used to identify for each 

element v E V the subset of the partition it currently belongs to. Usually, this iden- 

tification in a Find is thought to output some designated element of that subset, its 

representative. 

A commonly used restriction of the UF problem is the case that the partition that 

is given in the instance are just the singleton subsets of V. Indeed, this restriction 

is not too severe since we may simply assume that we perform the necessary Union 

operations to obtain the partition VI,. . . in a preprocessing. 

The problem we are dealing with is a restriction of the general UF problem and 

given by the following specification. 

Problem 2.2 (Graphical Union-Find Problem, GUF). 

Instance: A graph G. 

Task: Perform a sequence of n < I V(G)1 U nions and m 3 / V(G)1 Finds on V(G) 

that respect G. 

Here a sequence of Unions and Finds respects a graph G if after each Union every 

subset created induces a connected subgraph of G. This is equivalent of saying that 

every Union can be realized as an edge contraction in G. 

A graph H is said to be a minor of another graph G if H (or its isomorphic image) 

can be obtained by a sequence of edge or vertex deletions and edge contractions. Thus, 

the actual state of a UF process is always represented by a minor H of G. So we easily 

obtain the following remark. 

Remark 2.3. Let G- be a minor of G+ such that a sequence of edge contractions and 

deletions that lead from G+ to GP is explicitly given. Suppose GUF is solvable for 

G+ in time t(n,m), then any sequence of n- < IV(G-)I Unions and m- 2 IV(G-)I 

Finds on V(G-) that respects G- is solvable in time t(n- + I V(G+)l, m-). 

Observe that this means in particular that if the size of G+ is linear in the size of 

G-, GUF may be solved on G- in the same complexity as on G+. 

We will investigate the GUF problem restricted to certain graph classes. If 9 is a 

class of graphs YUF refers to GUF restricted to 9. To warm up, let us consider the 

problem g3UF, where 9’ is the class of graphs of degree bounded by 3. 

Remark 2.4. GUF is solvable in linear time iff ?J3UF is solvable in linear time, 

Proof. “===+-” is trivial. For “t” replace in instance G any vertex of degree higher 

than 3 by an appropriate binary tree: 
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Let V be such a vertex and d = deg(u) its degree. Let T, be (newly created) binary 

tree on [d/21 leaves. Delete u from G and connect the leaves of T, to the former 

neighbors of v in an appropriate way. 

By that we easily obtain a graph G’ that fulfills the requirements of Remark 2.3 and 

is at most twice as large as G. 0 

To simplify the discussion in the rest of the paper a bit we will always assume that 

n = ( V(G)1 - 1. We will also assume that the demand for a Union is presented by 

pointing out an edge of G for which the components/subsets of the endpoints should 

be glued into one; the question whether or not two current subsets may be united or 

not is not part of the problem specijcation. 

2.2. Slowly growing functions 

We will reduce the problem so that the number of edges in the underlying graph 

must not be too large compared to the number of vertices. Therefore, throughout the 

following we use the notation of slow(n) for a slowly growing function. By that we 

mean a monotone function that at least fulfills 

and 

that 

one 

slow(n) d & log log(n) (2) 

is dominating CC, the inverse of the Ackerman function. We use a definition for 

function c( that turns out to be basically (in O-notation) the same as the traditional 

but is a bit simpler to handle: 

a(m,n) = min{x 1 A(x, [m/nl) > n}, (3) 

where A is the Ackermann function given by the usual recursion 

A(i,O) = 1, (4) 

A(O,x) = 2x, (5) 

A(i + 1,x + 1) =A(i,A(i + 1,x)). (6) 

Observe that x is increasing in the second argument but decreasing in the first: 

~(m,n + 1) > cc(m, n), (7) 

x(m + 1,n) < cx(m,n). (8) 

We require for slow that there is a constant c such that A(c, [slow(n)]) > n for 

all n. In particular, this means that 

a(slow(n)n,n)<c. (9) 

Observe that there are many commonly used functions that fulfill requirements (2) and 

(9), e.g. (almost* ) any iterated log-function or log*. For these functions choosing c 

* Almost for the magic constant & in (2) that is needed for an estimation later on. 
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to be 2 can be easily seen to do the job. In the rest of the paper we will assume that 

such a function slow with corresponding constant c is chosen and jixed. 

2.3. Known bounds for the Union-Find Problem 

UF is one of the few problems for which a lower bound (i.e. ~~(m,n)m) on the com- 

plexity is known. This lower bound has been given by Tarjan [13] for some restricted 

version of a pointer machine and by La Poutre [8] for unrestricted pointer machines. 

Whether or not this bound also applies to the RAM is an open problem. 

By the work of Tarjan [12] and Banachowski [l] we also know that this bound is 

sharp: 

Theorem 2.5. Any UF problem can be solved in time O(z(m,n)m). 

This is mainly achieved by two ideas: 

(1) The elements of V are maintained in a rooted forest such that each component 

corresponds to a actual subset and is represented by the root of that component. 

Find operations are done by following the path from an element upward to its 

root. Union operations are done by linking one of the two roots of the components 

in question to the other one. 

(2) During each Find operation the corresponding tree is updated to optimally use the 

information collected when following a path upward. This is done by linking each 

intermediate element on the path directly to the root, so-called path compression. 

For an overview over UF problems see the article [ 111. For more details and legible 

proofs see the book of Melhorn [lo]. 

As a corollary from that we easily obtain: 

Corollary 2.6. Let G be an instance of GUF thut is given explicitly as input and 

n = 1 V(G)/ with jE(G)I > cc(n,n)n. Then any sequence of Unions and Finds thut 

respects G can be performed in linear time. 

Together with Remark 2.4 this shows in particular that it makes sense to restrict our 

discussion to classes of sparse graphs. 

Until now there are several approaches known to solve restricted version of the UF 

problem in linear time. All are in fact specializations of GUF. The most commonly 

know work in that direction is the one of Gabow and Tarjan (1984). It solves the 

problem if the class of graphs is restricted to trees. 

Less commonly known are two papers that are motivated by UF as it appears in 

image processing, Dillencourt et al. [4] and Fiorio and Gustedt [5]. They restrict the 

permissible graphs to two-dimensional grids (and also to planar graphs in [5]) but in 

addition pose severe restrictions on the order in which Unions between sets may be 

performed to achieve their linear-time bounds. 

Our goal here is to merge these two types of results to widen the classes of graphs 

that are tractable and to eliminate all other restrictions on the order of Union operations. 



J. Gustedt I Theoretical Computer Science 203 (1998) 123-141 129 

2.4. Micro-encoding of small sets 

A basic method will be to encode UF problems on small subsets of the ground 

set by bit-vectors, so called micro-encoding. Here by “small” we mean sets that are 

smaller than a function L with3 

e(n)#GgYL (10) 

Such micro-encodings will then be used to do UF on small subsets of the groundset. 

Therefore, let V with IV( = n be a set and Vi, Vz,. . . a partition of V. We say that 

a sequence of Unions and Finds on V respects the partition if for any subset U 

produced by those Unions there is an i such that U 2 Vi. Our aim is the following 

lemma. 

Lemma Let V IV( = be a and V,, . a of V such that 
1 Vj 1 d e(no) for all i. Th en any sequence of n Unions and m Finds on V that respects 

the partition can be done in time O(no + n + m). 

Proof. To have all operations in constant time we maintain tables for the Union and the 

Find operation on sets smaller than [(no). We generate these tables in a preprocessing 

that runs in time O(no). 
We assume that we always know a part Vito, of V to which v belongs and the unique 

“name” O<j(v) < /K::(u)I f o v in Vi(,). Now operation Find(v) identifies the state s of 

Vito, and Find’s the current identifier of the subset of v by means of s and j(v). 

Operation Union(v, w) does its job in a similar way and in addition updates the state 

of Vi(o) to the new value representing the new family of subsets of Vi(u) that results. 

So a state has to represent all information needed for such problems of sets of size 

less than [(no). This can be done by representing each state by /(no) numbers of size 

t(no). Thus, each such state may then be encoded in slogs bits which can be 

bounded as follows: 

/(no > log /(no > d f log log(n0 >+GGJ < i log(n0 1, 

if n is large enough. 

(11) 

It is then easy to encode such a UF tree in a bit vector. Since /(no)logd(no) is 

sufficiently small we may represent each such tree (=state) by an integer and thus we 

achieve constant time per Union and Find . 

To obtain the right complexity we have to show that the tables are not too large. 

Therefore, observe that the number of possible states is less than 

21!3M~) < 3 \Jno. (12) 

So clearly the size of such tables for Union and Find can be bounded by 

$6 log2 @0 > (13) 

’ / stands for large, since it will be much larger than slow 
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which in turn is dominated by no if no is suitable large. The preprocessing to build up 

all tables consistently is also easily seen to lay in that bound. 0 

Observe that a concrete choice of / has not been necessary for the proof, we only 

needed the upper bound (10). In the following it will only be important that / is 

a function that is unbounded. So if the reader feels uncomfortable by assuming a 

logarithmic word size of our RAM she or he may choose her or his growth function 

for the word size and easily work out an appropriate choice of /. Any growth function 

for the word size that dominates z(n,n) would do the trick. 

3. Union-Find by clustering 

For a graph G = (V,E) and 12 = IV(G)1 a skeleton, skel =skel(G), is a vertex 

set with cardinality bounded by n/slow(n). A cluster C of G with respect to skel is 

then a component of G\ skel. The boundary a(C) of C are those 2: E skel that have 

an edge to a vertex in C. The closure d(C) of C is d(C) = C U a(C) = N;(C). 

Denote by qskel the clustering w.r.t. skel, i.e. the family of components of G\skel. 

A clustering % is valid if in addition Id(C)/ <e(n) for all C E %?. Clearly skel can 

be reconstructed from gskel, and we will omit the subscript whenever possible. On 

the other hand it will be sometimes necessary to denote the skeleton of a clustering ‘65 

explicitly by skelw. 

Because every edge either joins two elements of skel or is inside exactly one d(C) 

for some cluster C and every such A(C) is connected we have that 

C IA( d IQG)I (14) 
CE% 

and thus we may encode any clustering with an additional overhead that is linear in 

IE(G)I. 
We are now able to formulate a UF data structure for that context, see the procedures 

Find above and Union on the next page. We assume that for each A(C) we maintain 

a local (micro-encoded) UF data structure and a global (path compression) one on 

skel. For the later we assume that if v # w are the representatives of their sets and 

we perform Union(v,w) the representative of the newly created set will be v, i.e. the 

first argument to Union. 

Find 

Input: Vertex v E V(G). 

Output: Root Y E V(G) a unique identifier for the current subset of u. 

1 if u 6 skel then v := Findd(ccr))v; 

2 else return Findskel u; 

3 if v E skel then return Findsk,l u; 

4 else return v; 



J. Gustedti Theoretical Computer Science 203 (1998) 123-141 131 

Union 

Input: Edge {u, w} E E(G). 
1 if u $F’ skel then v := Findd(gg(“))u; 

2 if w $ skel then w := Findd(a(,,,))w; 

3 if v E skel then v := Find,k,lo; 

4 if w E skel then w := Findskelw; 

5 if u # w then 

6 

I 

if w $ skel then Uniond(~(,))(u,w); 

7 else 

8 

1 

if u # skel then Uniond(o(,))(w, u); 

9 else Union,k,l(u, w) 

First observe that Find for some subset S indeed gives a unique identifier Y = 

r(S) E S. Because of the interchange of t’ and w in line 8 of Union it is also easy to 

see that the identifier of a subset is an element of skel whenever this is possible. 

Remark 3.1. For any subset S created by Unions with S n skel # 0 we have that 

r(S) E skel. 

Lemma 3.2. Let G = (V,E) be an instance of GUF such that a valid clustering 92 of 

G is given. Then the above data structure solves this problem for any valid sequence 

qf n < JVJ Unions and ma JVJ Finds in time O(n + m) on a RAM. 

Proof. Correctness follows directly from Remark 3.1. It remains to show the complex- 

ity. We have O(n + m) calls to the operations of the local UF data structure and an 

over all O(n) preprocessing time, so the local data structures poses no problems. 

In addition, we have m + 2n Finds on the global data structure. This global data 

structure has at most n’ = n/slow(n) elements and in particular we cannot perform 

more than n’ Unions here. We find that 

m>n > n’ = n/slow(n) (15) 

and 

m/n’ 3 n/n’ = slow(n) > slow(n’) (lo) 

which amounts to 

m 2 slow(n’)n’. (17) 

So the complexity of the global Unions and Finds is bounded by 

x(m + 24 n’)m < a(m, n’)m <a (slow(n’)n’, n’) m. (18) 

Since slow(n’) is suitably growing, by (9) we have that the right-hand 

side is bounded by c.m, and we are done. 0 
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Tree Partition 

Input: A binary rooted tree G, with root r and n = V(G). 

Output: skel, a valid skeleton for G. 

1 skel := 8; 

2 foreach o E V(G) do c, = 0; 

3 foreach v E V(G) from leaves up to r do 

4 foreach child w of v do c, + = c,; 

5 

6 

7 
I 

if c, >2slow(n) then 

1 

skel := skel U {v}; 

C” = 0; 

4. Partial k-trees 

Let us now prove part (i) of the Main Theorem. Since the ideas are just straight 

forward extensions of the ideas of Gabow and Tajan [6], we give the proof in an 

informal way. 

Let us first concentrate on the case that is settled by Gabow and Tarjan, namely 

trees. The key observation is to restrict ourselves to binary trees. This can easily be 

achieved as described for Remark 2.4 since the local replacements that were done for 

vertices of high degree are indeed binary themselves. 

If we now root such an instance given by a binary tree at an arbitrary vertex r we 

may easily collect subtrees as clusters of size s with slow (n)<s < 2slow(n) from 

leaves to r and cut of such subtrees by their root, see procedure TreePartition 

above. So for a choice of e(n) = 2slow(n) Lemma 3.2 easily applies to that case. 

To prove the theorem for partial k-trees, recall that k is assumed to be a fixed 

constant. From Bodlaender [3] we know that a tree decomposition of width k for such 

a graph can be found in linear time and it is also well known that such a decomposition 

may be easily adapted such that the underlying tree is binary. Since every vertex of 

the decomposition tree represents a separator of size at most k + 1 (and k is fixed) 

the ideas for trees immediately extend: collect subgraphs of size s with slow(n) <s < 

2slow(n) + k corresponding to subtrees of the decomposition tree and cut them of the 

graph by the separator corresponding to the root of the subtree. 

5. ddimensional grids and relatives 

Recall from the introduction that one of our goals is to provide UF algorithms for 

image segmentation. This in fact is easily modeled as graphical UF problem restricted 

to two- or 3-dimensional grids. Recall also that we want to be able to attack arbi- 



J. Gustedt I Theoretical Computer Science 203 (1998) 123-141 133 

log log n/2 

log log n 

Fig. 1. The skeleton in a two-dimensional grid. 

trary sequences of UF operations (as long as they respect the grid) with generalized 

neighborhood relations inside the grid. 

Besides the usual neighborhood definition on grids another one that also is widely 

used is the so called g-neighborhood which connects a pixel to all 8 pixels surrounding 

it: left, right, up, down, left-up, right-up, left-down, right-down. The arguments used 

in [4,5] to show linear time complexity of certain UF algorithms heavily rely on the 

fact that the underlying graph is planar which is not the case for the g-neighborhood 

any more. So there is no hope to extend this to the 8-neighborhood. 

Proof of Main Theorem, part (ii). Let d be some fixed integer and the instance of 

the GUF G be a d-dimensional grid. Assume that the vertices are identified with their 

position (pt , . . . , pd ) in the grid. An appropriate skeleton of G can easily be defined: 

skel(G) = {(p~,...,pd) E V(G) 1 there is i s.t pi = Omod loglog(n)/d} (19) 

We easily obtain that Iskel(G)I is bounded by d. n/loglog(n) and that for every 

connected component K of G \ skel(G). 

ldKl<(l + loglog(n)/d)d. (20) 

So if we choose a(n) to be (1 +log log(n)/d)d the part of the statement for grids follows 

easily with Lemma 3.2. To solve the problem such two paths on the &neighborhood 

in a two-dimensional grid (or a higher-dimensional analogue) observe that the skeleton 

given above still is a separator and so there is nothing new to prove. 0 

6. Planar graphs 

A natural approach to apply our technique to planar graphs would be to use the 

Planar Separator Theorem, see [9], by dividing the graph into two halves and going 

on recursively in each of the halves until we remain with parts that are small enough. 

But for two reasons a straightforward application of that theorem does not lead to the 

desired result. First the running time guaranteed by that approach would only lead to 
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(a) A single boundary face (b) Two boundary faces 

Fig. 2. The two possibilities for p-patches. 

O(n log n) which is much too bad for our purposes. Second, it is not easy to establish 

an appropriate bound on the size of the skeleton; by a single application of that theorem 

we obtain a separator of size fi and a partition into unequal halves. So we are only 

able to show that each level 1 of recursion in total contributes v@Jil for some D > 2 

to the skeleton. But this is only leads to a super-linear bound on the size of the skeleton. 

So we follow another way to solve GUF if the input graph is planar. What we would 

like to do is to proceed analogously as for two-dimensional grids. But this is also not 

as straight forward as one could hope. We have to introduce some technical definitions 

(p-patches) that will play the (key) role that the tiling squares of size log log(n)/2 

played for the grids. 

6.1. p-patches 

For some positive value p a p-patch is a planar graph G = (V,E) together with 

either 

(a) a face F = FG the boundary, partitioned into two intervals fl = ITilc, the upper 
boundary, and &!J = !JJG, the lower boundary, or 

(b) two distinct faces riii = IiIo the upper boundary, and u = IJo, the lower boundury, 
such that 

(i) all faces but rii and VI (resp. F) are triangles, 

(ii) deg, ~8, 

(iii) dc(v,&!J)<p for all v E V and 

(iv) lliij d3p.Y. 

See Fig. 2 for an illustration of the two different cases (a) and (b). The constants 3, 

5 and 8 appearing in this definition are more or less arbitrary and chosen to make the 

estimations easy. An p-patch is narrow if (iv) is strengthened to Iflo 63~. We will 

omit the subscript G at F, L!J and Ciil whenever possible. 

Let G and G’ be p-patches. G’ is a p-subpatch of G if it is a subgraph of G and if 

uo, = uo/ v(o). Observe that if G’ # G then also FG, # Fc. Important properties of 

p-patches are reflected by the following lemmas. 
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Fig. 3. The p-neighborhood of li?l. 

Lemma 6.1. Let G be an p-patch then IN,!#il)l d 15~. 5*P. 

Proof. This is easy to see because of properties (i) and (ii). The (not so important) 

constant 5 comes from the fact that when coming from Iii at least one edges is needed 

as back edge and at least two are needed as side edges because of the triangulation, 

enforced by (i). So the size of N#iil)<5N~-‘(~). 0 

Lemma 6.2. Let G be an p-patch and K be a connected component of G\Ng (n) and 
G’ = N;(K). Then G’ with &!JGJ = iir),/ V(C~J is p-subpatch of G. 

Proof. Consider Fig. 3. Here the vertical bar represents Uo, the filled circles repre- 

sent elements of liilo and the dashed line represents the boundary of the connected 

components of G \ N$il). 

We have to show that liil~ is not too large. Because (iii) of the definition we have 

that for every v E rii a path P from v to U is included in NE(liil). Since G is planar, 

such two such paths of neighbors on lTil separate G and thus G\N$iil) into two different 

components. So the component K under investigation is cut of by two such paths P, 
one on the left and one on the right. Thus, there is V’ & Iiil with 1 V’I < 2 such that K 

can already be found as G \ Ng (V’). 

But this means also that no’ s NE (V’) and thus because of the degree constraints 

that (ITi& 62.58. 0 

Lemma 6.3. There is an algorithm that, given an integer p and a narrow p-patch G 
as input, runs in linear time and finds a skeleton skel G of sized IV(G)l/p such that 
every cluster is of size at most 15p.5*P. 

Proof. Compute a BFS-forest growing from iii and let Li (level i) be the set of vertices 

of distance i from Iri. For each j = 0,. , . , p - 1 we sum up the cardinalities of all levels 
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Bound Degree 

Input: arbitrary planar graph G. 

Output: Triangulated planar graph G’ of degree bounded by 8 such that 

G is a minor of G’ and such that 1 V(G’)I d 101 V(G)J. 

1 Triangulate G; 

2 Isolate vertices of high degree, see Fig. 4(a); 

3 Replace the neighborhood of high degree vertices, see Fig. 4(b); 

i with i= jmodp: 

Si = jz~odp ILil. (21) 
-J 

Since the levels form a partition of the vertex set there exists a j, such that 

sjo d I I’(G)//p. (22) 

The union of all corresponding levels 

S= U Li 
Gjomodp 

(23) 

gives our desired skeleton. 

Because G is narrow, level jo itself has at most 3~. 5j0 63~. 5P elements and thus 

N$ (07) and G\Ng (liil) are both p-patches. Now applying Lemma 6.2 iteratively shows 

that G\Nt (07) breaks down into p-patches and Lemma 6.1 shows that these have the 

appropriate sizes. 0 

Observe also, that the multiplicative constant hidden in the linear time bound does 

not depend on p. 

6.2. Patching an arbitrary planar graph 

To apply these methods to an arbitrary planar graph we first have to ensure that we 

always may find a major that is triangulated and has bounded degree, see procedure 

Bound Degree on the current page. 

Clearly, triangulation poses no problem at all. Zsolation of vertices of high degree 

is done in such a way that afterwards we have 

(i) all vertices v with deg(v) > 8 only have neighbors of degree 6 or less 

(ii) every vertex w has at most 2 neighbors 2) with deg(v) > 8. 

This can easily be achieved by dividing each edge by a new vertex and joining all 

these new vertices to the other 4 new vertices on the neighboring facets. It is clear 

that now 

(i) every old vertex only has new vertices as neighbors, 

(ii) every new vertex has degree 6, 
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(a) Isolating ver- 

tices of high de- 

grce 

c old vertex/edge 

-- new vertex/edge 

(b) Replacement at a 

vertex of high degree 

(c) Replacement of 4 

neighbors by 2 new 

ones 

Fig. 4. Bounding the degree 

(iii) every such new vertex has 2 old vertices as neighbors and 

(iv) the resulting graph is triangulated again. 

See Fig. 4(a) for an illustration. 

Replucement at vertices of high degree is done as follows. Let v be a vertex of 

degree larger than 8 and w and w’ two neighbors that form a triangle together with v. 

Then 

(i) delete the edges uw and uw’ from G 

(ii) introduce a new vertex v’ and join it to u, w and w’. 

Do so for all adequate pairs of edges of v. These are Ldeg(v)/2]. If deg(u) is 

odd divide the remaining edge by yet another new vertex. Now join all new vertices 

obtained in this step to a cycle, see Fig. 4(b). Up to now all new vertices have degree 

at most 5 and all old vertices (but v) have their degree unchanged. To triangulate this 

newly obtained graph observe that the only facets that are not triangles are those with 

two new vertices and two former neighbors of v. These squares can be triangulated 

by diagonals that all go in the same direction, to the right, say, see Fig. 4(c) Now all 

new vertices have degree 6 and all former neighbors of v have their degree increased 

at most by one. 

We iterate this procedure until deg(v)<S. Then all new vertices introduce have 

degree at most 7. 

We then loop for all vertices of high degree. Any vertex w that originally had degree 

at most 6 is involved into such a replacement for at most 2 vertices of high degree. 

So the new degree of w is at most 8. To summarize we state 

Proposition 6.4. Let G be a planar graph; then there is a triangulated planar graph 

G’ of degree not larger than 8 such that 
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Patch 

10 

Input: Triangulated planar graph G of bounded degree 8, n = ) V(G)/, 

vertex ug E V(G). 

Output: S c V(G) of size ISI <n/p and such that every component of G \ S 

but the one of 00 is a p-patch. 

Grow a BFS-tree from UO; 

for i = I,..., do collect the cardinalities c(i) of all levels L(i); 

Group levels according to their index i mod p; 

There is such a group io of levels that in total has cardinality < 1 V(G)l/p; 

foreach i = iomodp do 
if c(i) > 3p then 

11 

for j = 1,. . . , [c(i)/pJ do 

1 
Collect equidistant elements w(i,j); 

Let P(i,j) be the path from w(i,j) down to level L(i - p); 

S = U L(i) U IJ P(i,j) 
i=iomodp i=iomcdp 

j=l,... Lc(i)/pJ 

(i) G is a minor of G’, 

(ii) / V(G’)I d 10) V(G)/, 

and such a graph G’ can be found in linear time. 

Proof of Main Theorem, part (iii). If we chose 

p = p(n) = slow(n) (24) 

and 

e(n) = 15slow(n)5 2slow(n) 

we have by (2) that 

(25) 

f(n) < g . log log(n)5(‘i9)“0g’os(“) 6 2 . log log(n) log(n)‘“a5!9 < vw (26) 

and thus Lemmas 3.2 and 6.3 show the claim for narrow p(n)-patches. With Proposi- 

tion 6.4 it remains to show how to obtain narrow p-patches from a triangulated planar 

graph of bounded degree 8. We mainly use the same idea that was used to split narrow 

p-patches themselves, see procedure Patch above. 

First we compute a BFS-tree from an arbitrary vertex uo and partition the vertex set 

V into the levels Li of distance i. Then we look for a value io such that the union 

of the levels with i s io(p) is small enough. For every such i, we then look at the 

component that remains when we eliminate levels Li and Li--p. If it is not a narrow 

p-patch we have to divide it further by paths of length p that join Li and Li-_p. 
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Fig. 5. Patch on level i 

Now every connected component of G \ S (but the one of UO) is a narrow p-patch, 

see Fig. 5. The only non-p-patch maybe the component of ug but this is of size at 

most 5P, so it is already an appropriate cluster. 

By line 6 we ensure that a level is only split into multiple patches if this is necessary. 

Observe that otherwise we possibly would collect too much vertices into the paths 

P(i,j). So now S as chosen above is not too large. In fact, its cardinal&y can be 

estimated as follows: 

ISI d c IL(‘)\ + c ‘y 2 I 
i=ro(p) MO(P) /=I 

c(i)>3p 

The second term then is bounded by 

&p) ,z p G 1 V(G)l’p. _ 
C(i)>3P 

P(i,.i)l. (27) 

So all together IS( is bounded by <2IV(G)l/p and we are done. 0 

(28) 

7. Perspectives 

7. I. Practical considerations: Reorganization of memory 

Clearly, one disadvantage of our approach is the intensive use of a RAM as com- 

putational model. It is often claimed that using micro-encoding to handle “small” sub- 

problems would only pay off in cases where the overall problem size is so huge, that 

we never expect it to occur in our limited universe. Therefore, there have been inten- 

sive studies to avoid such use of the RAM and to restrict the computational model to 

a pointer machine, PM, see e.g. [8]. 
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On the other hand it is also often argued that z is such a slowly growing function 

that the factor is completely neglectable for practical purposes. So some people claim, 

that avoiding cc-factors is a useless theoretical game. 

Both criticisms go to short, since the real-world bottleneck for doing UF on large data 

as it occurs, e.g. in image processing is the von Neumann bottleneck, i.e. the different 

speed main memory and CPU have in modern computers. According to the book by 

[7, ch. 51, nowadays the factor for an access to main memory commonly is between 40 

and 100 clock cycles, and, seen the difference in the development of CPU speed and 

memory access times, this factor is increasing. Modem computer architectures work 

against this with a hierarchical organization of memory, in particular by the introduction 

of caches. 

Seen this, the bottleneck for Union-Find is the use of a dynamic data structure. The 

usual technique of path compression makes no guarantee at all where in memory the 

next item might be located: suppose we have to follow a chain of elements vi, ~2,. . 

and by bad luck vi is not present in cache. Then we have to wait 40 clock cycles, 

say, until we even know which element is next. If our elements are randomly spread 

in memory the probability that we do not have to wait is only 

cache size 
phit = 

data size 
(29) 

which for large data is a neglectable small number. 

If we are doing Unions more or less arbitrary we may create chains that link memory 

items arbitrarily and then the real performance of the algorithm is dominated by loading 

data from memory. Clearly, that the inability to reflect this real world restriction applies 

to both, to the PM as well as to the RAM. So from that point of view, none of these 

models is preferable. 

On the other hand the approach of clusters as presented in this paper easily allows a 

reorganization of memory that hopefully may cooperate with the strategies of modem 

architectures. Since here the data is fetched in larger blocks, the necessary wait is much 

less dramatic if memory access goes to “close” locations several times. 

For a conventional UF data structure, it is very unlikely that dereferencing a parent 

pointer of a UF element stays on the same page or even on a small group of pages. In 

contrast to that, with a given valid clustering we can allocate each cluster continuously 

on subsequent pages of memory and do the same for the skeleton as a whole, this 

behavior changes drastically. Then a Find may either 

(i) stay inside a cluster and thus on the pages allocated for it or 

(ii) lead into the skeleton and thus stay on the pages allocated for the skeleton. 

Thus, only a sublinear number of pages are potentially accessed. This is so, even if 

we do not impose any other restriction for the sequence of UF than to respect the 

underlying graph. So the probability phi* that we can guarantee is much better than 

without the reorganization, namely 

Phit = 
sublinear function in the data size 

cache size 
(30) 
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7.2. Possible generalizations 

For graph algorithms people have in many cases been able to avoid the a-bottleneck 

of UF by looking closely the graphical structure occurring in their particular problem. 

We have the impression that there must be a common pattern behind all these attempts. 

In regard to Remark 2.4 and by hoping on the best of all worlds we conclude with 

the following conjecture. 

Conjecture. GUF is solvable in linear time on a RAM. 

References 

[l] L. Banachowski, A complement to Tarjan’s result about the lower bound on the complexity of the set 

union problem, Inform. Process. Lett. 11 (2) (1980) 59-65. 

[2] H.L. Bodlaender, A tourist guide through treewidth, Acta Cybemet. 11 (1993) l-23. 

[3] H.L. Bodlaender, A linear time algorithm for finding tree-decompositions of small treewidth, SIAM J. 

Comput. 25 (1996) 1305-1317. 

[4] M.B. Dillencourt, H. Samet, M. Tamminen, A general approach to connected-component labeling for 

arbitrary image representations, J. Assoc. Comput. Mach. 39 (2) (1992) 2533280. Corr. pp. 985-986. 

[5] C. Fiorio, J. Gustedt, Two linear time Union-Find strategies for image processing, Theoret. Comput. 

Sci. 154 (2) (1996) 165-181. 

[6] H.N. Gabow, R.E. Tarjan, A linear-time algorithm for a special case of disjoint set union, J. Comput. 

System Sci. 30 (1984) 209-221. 

[7] J.L. Hennessy, D.A. Patterson, Computer Architecture, A Quantitative Approach, 2nd ed., Morgan- 

Kaufmann, Los Altos, CA, 1996. 

[8] J.A. La Poutre, Lower bounds for the Union-Find and the Split-Find problem on pointer machines, 

J. Comput. System Sci. 52 (1) (1996) 87-99. 

[9] R.J. Lipton, R. E. Tarjan, A separator theorem for planar graphs, SlAM J. Appl. Math. 36 (1979) 

177-189. 

[lo] K. Melhom, Data Structures and Algorithms, vol 1: Sorting and Searching, Springer, Berlin, 1984. 

[I I] K. Mehlhom, A. Tsakalidis, in: J. van Leeuwen (Ed.), Handbook of Theoretical Computer Science, 

vol. A, Algorithms and Complexity, ch. 6, Data Structures, Elsevier, Amsterdam, 1990, pp. 301-3 14. 

[12] R.E. Tarjan, Efficiency of a good but not linear set union algorithm, J. Assoc. Comput. Mach. 22 (1975) 

215-225. 

[13] R.E. Tarjan, A class of algorithms which require non-linear time to maintain disjoint sets, J. Comput. 

System Sci. 18 (1979) 110-127. 


