
E
lLSEVIER Theoretical Computer Science 203 (1998) 123-141

Theoretical
Computer Science

Efficient Union-Find for planar graphs and
other sparse graph classes ’

Jens Gustedt *

TU Berlin, Srkr. MA 6-1, D-10623 Berlin, Germun\,

Abstract

We solve the Union-Find Problem (UF) efficiently for the case the input is restricted to several
graph classes, namely partial k-trees for any fixed k, d-dimensional grids for any fixed dimension

d and for planar graphs. The result on grids allows us to perform region growing techniques
that are used for image segmentation in linear time. For planar graphs we develop a technique

of decomposing such a graph into small subgraphs, patching, that might be useful for other
algorithmic problems on planar graphs, too.

By efficiency we do not only mean linear time in a theoretical setting but also a practical
reorganization of memory such that a dynamic data structures for UF is allocated consecutively.
@ 1998-Elsevier Science B.V. All rights reserved

Kqwwd.s: Graph algorithms; Union-find; Planar graphs; Image Segmentation

K,, we are back to the usual UF problem with no restrictions at all;

at least if we ignore complexity issues for a moment. In general, we will have some

family $9 of graphs and we will call the problem that the graph G might be arbitrarily

chosen from 27 the 4e-graphical Union-Find Problem, YUF. To avoid the lower bounds

for the complexity of UF, see [8, 131, we have to assume that such an instance G is

given explicitly:

’ Supported by the IFP “Digitale Filter”.
* E-mail: gustedt@math.tu.berlin.de.

0304-3975198/$19.00 @ 1998 -Elsevier Science B.V. All rights reserved

PII SO304-3975(97)00291-O

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector

https://core.ac.uk/display/82097021?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

124 J. Gustedtl Theorrtid Computer Science 203 (1998) 123-141

General Assumption. The input is at least as large as the number of edges of G.

The method we use (and develop in Sections 2 and 3) is an extension of the one

given by Gabow and Tarjan [6], namely by

(i) solving the problem for “small” sets in a preprocessing,

(ii) then dividing the instance by a “neglectable” portion of the graph, a skeleton,

into such small sets, the clusters, and

(iii) giving a technique how to perform UF as a combination of local information in

a cluster and global information in the skeleton.

This technique can also be seen as a method of reorganizing memory in order to

reduce memory faults or delay and thus improve the real time behavior of UF data

structures.

The real world bottleneck for Union-Find is the use of a dynamic data structure.

The usual path compression data structure makes no guarantee at all where in memory

the next item to fetch might be located. So if we are doing Unions more or less

arbitrary the real processing time of the algorithm is dominated by loading data, either

from memory into cache or - even worse - from disk into memory. A discussion of

this reorganization aspect is given at the end in Section 7.

Since for such practical considerations the distinction between random access ma-

chines (RAM) and pointer machines (PM) is rather academic we restrict ourselves to

the RAM.

The progress made here in this work for this class of problems is summarized by

the following theorem.

Main Theorem. 9UF is solvable on a RAM in time proportional to the number of

Finds for 99 any of the following classes of graphs:

(i) Trees and partial k-trees, for any jixed parameter k.

(ii) d-dimensional grids for jixed d and &neighborhood graphs of two-dimensional

grids.

(iii) Planar graphs.

Just to give an example of an application of this theorem consider the problem

of computing minimum spanning trees. Suppose we are in a situation that we have

graph with given edge weights such that in addition the sort order of the edges is

known (or easy to compute). With Kruskal’s algorithm our Main Theorem then im-

mediately gives linear time bounds if we restrict ourselves to the graph classes in

question.

For the proof of the Main Theorem the three parts are handled in Sections 4, 5 and

6. For the scope of this introduction we briefly describe the parts of the Main Theorem

in the following three paragraphs.

Partial k-trees: Graphs of treewidth at most k, the so-called partial k-trees, are a

quite popular generalization of trees, see Bodlaender [2]. These are graphs that have

a tree-decomposition of width k, i.e. such a graph can be separated by sets of size at

J. Gustedt I Theoretical Computer Science 203 (1998) 123-141 125

most k + 1 in a “tree-like” fashion. For partial k-trees the result obtained as well as

the methods used are straight generalizations of Gabow and Tarjan [6]. It is primarily

chosen as a first illustration of the power of this approach.

Grids and UF for image segmentation: An important application will be that the

underlying graph G is, e.g. a grid as it appears in image segmentation. In image seg-

mentation the goal is to group a digital image into homogeneous connected regions, the

so-called segments. An important technique to do this is region growing: starting from

one-point segments and gluing together neighboring segments if appropriate. Clearly,

such a technique involves UF as a data structure: segments are subsets of the set of

pixels and gluing them together involves a Union of two such sets. But the Union’s

that are permissible are strongly restricted by the requirement that segments always

should be connected.

Until now there are only two special cases where the complexity of this approach is

known to be linear, see [4,5]. These special cases strongly restrict the order in which

Unions may be performed, the so-called scanning order, see [4], and the neighborhood

definition that is used for the connectivity property. One of our goals here is to extend

this to arbitrary scanning orders, to other neighborhood dejnitions on digital images

and even to three-dimensional images.

Planar graphs: For planar graphs we develop a technique, called patching, of de-

composing such a graph into small subgraphs that might be useful for other algorithmic

problems on planar graphs, too. A patching is a separator of the graph of negligible

size, i.e. smaller than n/slow(n) for some growing function slow, that separates the

graph into small components.

2. Basic definitions and facts

2.1. Notations

Graphs are simple and without loops or isolated vertices. For a graph G, V(G) and

E(G) denote the vertex and edge sets. The degree of a vertex v is denoted by deg,(v),

deg, is the maximum degree over all vertices. dG(u,w) denotes the distance between

two vertices u and w, i.e. the number of edges on a shortest path between u and w.

The notation dc(U, W) is the obvious extension to arbitrary vertex sets U and W. For

some vertex set U and some value p we define the p-neighborhood of U as

N;(u) = {u E v 1 dc(k u><p}. (1)

We will always assume that graphs that are given as instances are given explicitly as

lists of edges, say. So in particular we always have an input size that is proportional

to the number of edges.

The following problem certainly is one of the most important (and famous) in the

theory of data structures and algorithms and already appeared very early as a real-world

subproblem in algorithms dealing with any kind of set operations:

126 J. Gustedt I Theoretical Computer Science 203 (1998) 123-141

Problem 2.1 (Union-Find Problem, UF).

Instance: A set V und VI,. . u partition of V.

Task: Perform a sequence of n < 1 VI Unions und m 3 1 V 1 Finds on V.

Here Union operations are considered to unify two existing subsets of the partition

and creating thus a new partition of V. Find operations are used to identify for each

element v E V the subset of the partition it currently belongs to. Usually, this iden-

tification in a Find is thought to output some designated element of that subset, its

representative.

A commonly used restriction of the UF problem is the case that the partition that

is given in the instance are just the singleton subsets of V. Indeed, this restriction

is not too severe since we may simply assume that we perform the necessary Union

operations to obtain the partition VI,. . . in a preprocessing.

The problem we are dealing with is a restriction of the general UF problem and

given by the following specification.

Problem 2.2 (Graphical Union-Find Problem, GUF).

Instance: A graph G.

Task: Perform a sequence of n < I V(G)1 U nions and m 3 / V(G)1 Finds on V(G)

that respect G.

Here a sequence of Unions and Finds respects a graph G if after each Union every

subset created induces a connected subgraph of G. This is equivalent of saying that

every Union can be realized as an edge contraction in G.

A graph H is said to be a minor of another graph G if H (or its isomorphic image)

can be obtained by a sequence of edge or vertex deletions and edge contractions. Thus,

the actual state of a UF process is always represented by a minor H of G. So we easily

obtain the following remark.

Remark 2.3. Let G- be a minor of G+ such that a sequence of edge contractions and

deletions that lead from G+ to GP is explicitly given. Suppose GUF is solvable for

G+ in time t(n,m), then any sequence of n- < IV(G-)I Unions and m- 2 IV(G-)I

Finds on V(G-) that respects G- is solvable in time t(n- + I V(G+)l, m-).

Observe that this means in particular that if the size of G+ is linear in the size of

G-, GUF may be solved on G- in the same complexity as on G+.

We will investigate the GUF problem restricted to certain graph classes. If 9 is a

class of graphs YUF refers to GUF restricted to 9. To warm up, let us consider the

problem g3UF, where 9’ is the class of graphs of degree bounded by 3.

Remark 2.4. GUF is solvable in linear time iff ?J3UF is solvable in linear time,

Proof. “===+-” is trivial. For “t” replace in instance G any vertex of degree higher

than 3 by an appropriate binary tree:

.I. Gustedt I Theoretical Computer Science 203 (1998) 123-141 127

Let V be such a vertex and d = deg(u) its degree. Let T, be (newly created) binary

tree on [d/21 leaves. Delete u from G and connect the leaves of T, to the former

neighbors of v in an appropriate way.

By that we easily obtain a graph G’ that fulfills the requirements of Remark 2.3 and

is at most twice as large as G. 0

To simplify the discussion in the rest of the paper a bit we will always assume that

n = (V(G)1 - 1. We will also assume that the demand for a Union is presented by

pointing out an edge of G for which the components/subsets of the endpoints should

be glued into one; the question whether or not two current subsets may be united or

not is not part of the problem specijcation.

2.2. Slowly growing functions

We will reduce the problem so that the number of edges in the underlying graph

must not be too large compared to the number of vertices. Therefore, throughout the

following we use the notation of slow(n) for a slowly growing function. By that we

mean a monotone function that at least fulfills

and

that

one

slow(n) d & log log(n) (2)

is dominating CC, the inverse of the Ackerman function. We use a definition for

function c(that turns out to be basically (in O-notation) the same as the traditional

but is a bit simpler to handle:

a(m,n) = min{x 1 A(x, [m/nl) > n}, (3)

where A is the Ackermann function given by the usual recursion

A(i,O) = 1, (4)

A(O,x) = 2x, (5)

A(i + 1,x + 1) =A(i,A(i + 1,x)). (6)

Observe that x is increasing in the second argument but decreasing in the first:

~(m,n + 1) > cc(m, n), (7)

x(m + 1,n) < cx(m,n). (8)

We require for slow that there is a constant c such that A(c, [slow(n)]) > n for

all n. In particular, this means that

a(slow(n)n,n)<c. (9)

Observe that there are many commonly used functions that fulfill requirements (2) and

(9), e.g. (almost*) any iterated log-function or log*. For these functions choosing c

* Almost for the magic constant & in (2) that is needed for an estimation later on.

128 J. Gustedt I Theoreticul Computer Science 203 (1998) 123-141

to be 2 can be easily seen to do the job. In the rest of the paper we will assume that

such a function slow with corresponding constant c is chosen and jixed.

2.3. Known bounds for the Union-Find Problem

UF is one of the few problems for which a lower bound (i.e. ~~(m,n)m) on the com-

plexity is known. This lower bound has been given by Tarjan [13] for some restricted

version of a pointer machine and by La Poutre [8] for unrestricted pointer machines.

Whether or not this bound also applies to the RAM is an open problem.

By the work of Tarjan [12] and Banachowski [l] we also know that this bound is

sharp:

Theorem 2.5. Any UF problem can be solved in time O(z(m,n)m).

This is mainly achieved by two ideas:

(1) The elements of V are maintained in a rooted forest such that each component

corresponds to a actual subset and is represented by the root of that component.

Find operations are done by following the path from an element upward to its

root. Union operations are done by linking one of the two roots of the components

in question to the other one.

(2) During each Find operation the corresponding tree is updated to optimally use the

information collected when following a path upward. This is done by linking each

intermediate element on the path directly to the root, so-called path compression.

For an overview over UF problems see the article [111. For more details and legible

proofs see the book of Melhorn [lo].

As a corollary from that we easily obtain:

Corollary 2.6. Let G be an instance of GUF thut is given explicitly as input and

n = 1 V(G)/ with jE(G)I > cc(n,n)n. Then any sequence of Unions and Finds thut

respects G can be performed in linear time.

Together with Remark 2.4 this shows in particular that it makes sense to restrict our

discussion to classes of sparse graphs.

Until now there are several approaches known to solve restricted version of the UF

problem in linear time. All are in fact specializations of GUF. The most commonly

know work in that direction is the one of Gabow and Tarjan (1984). It solves the

problem if the class of graphs is restricted to trees.

Less commonly known are two papers that are motivated by UF as it appears in

image processing, Dillencourt et al. [4] and Fiorio and Gustedt [5]. They restrict the

permissible graphs to two-dimensional grids (and also to planar graphs in [5]) but in

addition pose severe restrictions on the order in which Unions between sets may be

performed to achieve their linear-time bounds.

Our goal here is to merge these two types of results to widen the classes of graphs

that are tractable and to eliminate all other restrictions on the order of Union operations.

J. Gustedt I Theoretical Computer Science 203 (1998) 123-141 129

2.4. Micro-encoding of small sets

A basic method will be to encode UF problems on small subsets of the ground

set by bit-vectors, so called micro-encoding. Here by “small” we mean sets that are

smaller than a function L with3

e(n)#GgYL (10)

Such micro-encodings will then be used to do UF on small subsets of the groundset.

Therefore, let V with IV(= n be a set and Vi, Vz,. . . a partition of V. We say that

a sequence of Unions and Finds on V respects the partition if for any subset U

produced by those Unions there is an i such that U 2 Vi. Our aim is the following

lemma.

Lemma Let V IV(= be a and V,, . a of V such that
1 Vj 1 d e(no) for all i. Th en any sequence of n Unions and m Finds on V that respects

the partition can be done in time O(no + n + m).

Proof. To have all operations in constant time we maintain tables for the Union and the

Find operation on sets smaller than [(no). We generate these tables in a preprocessing

that runs in time O(no).
We assume that we always know a part Vito, of V to which v belongs and the unique

“name” O<j(v) < /K::(u)I f o v in Vi(,). Now operation Find(v) identifies the state s of

Vito, and Find’s the current identifier of the subset of v by means of s and j(v).

Operation Union(v, w) does its job in a similar way and in addition updates the state

of Vi(o) to the new value representing the new family of subsets of Vi(u) that results.

So a state has to represent all information needed for such problems of sets of size

less than [(no). This can be done by representing each state by /(no) numbers of size

t(no). Thus, each such state may then be encoded in slogs bits which can be

bounded as follows:

/(no > log /(no > d f log log(n0 >+GGJ < i log(n0 1,

if n is large enough.

(11)

It is then easy to encode such a UF tree in a bit vector. Since /(no)logd(no) is

sufficiently small we may represent each such tree (=state) by an integer and thus we

achieve constant time per Union and Find .

To obtain the right complexity we have to show that the tables are not too large.

Therefore, observe that the number of possible states is less than

21!3M~) < 3 \Jno. (12)

So clearly the size of such tables for Union and Find can be bounded by

$6 log2 @0 > (13)

’ / stands for large, since it will be much larger than slow

130 J. Gustrdt I Theoretical Computer Science 203 (IWS) 123-141

which in turn is dominated by no if no is suitable large. The preprocessing to build up

all tables consistently is also easily seen to lay in that bound. 0

Observe that a concrete choice of / has not been necessary for the proof, we only

needed the upper bound (10). In the following it will only be important that / is

a function that is unbounded. So if the reader feels uncomfortable by assuming a

logarithmic word size of our RAM she or he may choose her or his growth function

for the word size and easily work out an appropriate choice of /. Any growth function

for the word size that dominates z(n,n) would do the trick.

3. Union-Find by clustering

For a graph G = (V,E) and 12 = IV(G)1 a skeleton, skel =skel(G), is a vertex

set with cardinality bounded by n/slow(n). A cluster C of G with respect to skel is

then a component of G\ skel. The boundary a(C) of C are those 2: E skel that have

an edge to a vertex in C. The closure d(C) of C is d(C) = C U a(C) = N;(C).

Denote by qskel the clustering w.r.t. skel, i.e. the family of components of G\skel.

A clustering % is valid if in addition Id(C)/ <e(n) for all C E %?. Clearly skel can

be reconstructed from gskel, and we will omit the subscript whenever possible. On

the other hand it will be sometimes necessary to denote the skeleton of a clustering ‘65

explicitly by skelw.

Because every edge either joins two elements of skel or is inside exactly one d(C)

for some cluster C and every such A(C) is connected we have that

C IA(d IQG)I (14)
CE%

and thus we may encode any clustering with an additional overhead that is linear in

IE(G)I.
We are now able to formulate a UF data structure for that context, see the procedures

Find above and Union on the next page. We assume that for each A(C) we maintain

a local (micro-encoded) UF data structure and a global (path compression) one on

skel. For the later we assume that if v # w are the representatives of their sets and

we perform Union(v,w) the representative of the newly created set will be v, i.e. the

first argument to Union.

Find

Input: Vertex v E V(G).

Output: Root Y E V(G) a unique identifier for the current subset of u.

1 if u 6 skel then v := Findd(ccr))v;

2 else return Findskel u;

3 if v E skel then return Findsk,l u;

4 else return v;

J. Gustedti Theoretical Computer Science 203 (1998) 123-141 131

Union

Input: Edge {u, w} E E(G).
1 if u $F’ skel then v := Findd(gg(“))u;

2 if w $ skel then w := Findd(a(,,,))w;

3 if v E skel then v := Find,k,lo;

4 if w E skel then w := Findskelw;

5 if u # w then

6

I

if w $ skel then Uniond(~(,))(u,w);

7 else

8

1

if u # skel then Uniond(o(,))(w, u);

9 else Union,k,l(u, w)

First observe that Find for some subset S indeed gives a unique identifier Y =

r(S) E S. Because of the interchange of t’ and w in line 8 of Union it is also easy to

see that the identifier of a subset is an element of skel whenever this is possible.

Remark 3.1. For any subset S created by Unions with S n skel # 0 we have that

r(S) E skel.

Lemma 3.2. Let G = (V,E) be an instance of GUF such that a valid clustering 92 of

G is given. Then the above data structure solves this problem for any valid sequence

qf n < JVJ Unions and ma JVJ Finds in time O(n + m) on a RAM.

Proof. Correctness follows directly from Remark 3.1. It remains to show the complex-

ity. We have O(n + m) calls to the operations of the local UF data structure and an

over all O(n) preprocessing time, so the local data structures poses no problems.

In addition, we have m + 2n Finds on the global data structure. This global data

structure has at most n’ = n/slow(n) elements and in particular we cannot perform

more than n’ Unions here. We find that

m>n > n’ = n/slow(n) (15)

and

m/n’ 3 n/n’ = slow(n) > slow(n’) (lo)

which amounts to

m 2 slow(n’)n’. (17)

So the complexity of the global Unions and Finds is bounded by

x(m + 24 n’)m < a(m, n’)m <a (slow(n’)n’, n’) m. (18)

Since slow(n’) is suitably growing, by (9) we have that the right-hand

side is bounded by c.m, and we are done. 0

132 J. Gustedt I Theoretical Computer Science 203 (1998) 123-141

Tree Partition

Input: A binary rooted tree G, with root r and n = V(G).

Output: skel, a valid skeleton for G.

1 skel := 8;

2 foreach o E V(G) do c, = 0;

3 foreach v E V(G) from leaves up to r do

4 foreach child w of v do c, + = c,;

5

6

7
I

if c, >2slow(n) then

1

skel := skel U {v};

C” = 0;

4. Partial k-trees

Let us now prove part (i) of the Main Theorem. Since the ideas are just straight

forward extensions of the ideas of Gabow and Tajan [6], we give the proof in an

informal way.

Let us first concentrate on the case that is settled by Gabow and Tarjan, namely

trees. The key observation is to restrict ourselves to binary trees. This can easily be

achieved as described for Remark 2.4 since the local replacements that were done for

vertices of high degree are indeed binary themselves.

If we now root such an instance given by a binary tree at an arbitrary vertex r we

may easily collect subtrees as clusters of size s with slow (n)<s < 2slow(n) from

leaves to r and cut of such subtrees by their root, see procedure TreePartition

above. So for a choice of e(n) = 2slow(n) Lemma 3.2 easily applies to that case.

To prove the theorem for partial k-trees, recall that k is assumed to be a fixed

constant. From Bodlaender [3] we know that a tree decomposition of width k for such

a graph can be found in linear time and it is also well known that such a decomposition

may be easily adapted such that the underlying tree is binary. Since every vertex of

the decomposition tree represents a separator of size at most k + 1 (and k is fixed)

the ideas for trees immediately extend: collect subgraphs of size s with slow(n) <s <

2slow(n) + k corresponding to subtrees of the decomposition tree and cut them of the

graph by the separator corresponding to the root of the subtree.

5. ddimensional grids and relatives

Recall from the introduction that one of our goals is to provide UF algorithms for

image segmentation. This in fact is easily modeled as graphical UF problem restricted

to two- or 3-dimensional grids. Recall also that we want to be able to attack arbi-

J. Gustedt I Theoretical Computer Science 203 (1998) 123-141 133

log log n/2

log log n

Fig. 1. The skeleton in a two-dimensional grid.

trary sequences of UF operations (as long as they respect the grid) with generalized

neighborhood relations inside the grid.

Besides the usual neighborhood definition on grids another one that also is widely

used is the so called g-neighborhood which connects a pixel to all 8 pixels surrounding

it: left, right, up, down, left-up, right-up, left-down, right-down. The arguments used

in [4,5] to show linear time complexity of certain UF algorithms heavily rely on the

fact that the underlying graph is planar which is not the case for the g-neighborhood

any more. So there is no hope to extend this to the 8-neighborhood.

Proof of Main Theorem, part (ii). Let d be some fixed integer and the instance of

the GUF G be a d-dimensional grid. Assume that the vertices are identified with their

position (pt , . . . , pd) in the grid. An appropriate skeleton of G can easily be defined:

skel(G) = {(p~,...,pd) E V(G) 1 there is i s.t pi = Omod loglog(n)/d} (19)

We easily obtain that Iskel(G)I is bounded by d. n/loglog(n) and that for every

connected component K of G \ skel(G).

ldKl<(l + loglog(n)/d)d. (20)

So if we choose a(n) to be (1 +log log(n)/d)d the part of the statement for grids follows

easily with Lemma 3.2. To solve the problem such two paths on the &neighborhood

in a two-dimensional grid (or a higher-dimensional analogue) observe that the skeleton

given above still is a separator and so there is nothing new to prove. 0

6. Planar graphs

A natural approach to apply our technique to planar graphs would be to use the

Planar Separator Theorem, see [9], by dividing the graph into two halves and going

on recursively in each of the halves until we remain with parts that are small enough.

But for two reasons a straightforward application of that theorem does not lead to the

desired result. First the running time guaranteed by that approach would only lead to

134 J. Gustedt I Theoretical Computer Science 203 (1998) 123-141

(a) A single boundary face (b) Two boundary faces

Fig. 2. The two possibilities for p-patches.

O(n log n) which is much too bad for our purposes. Second, it is not easy to establish

an appropriate bound on the size of the skeleton; by a single application of that theorem

we obtain a separator of size fi and a partition into unequal halves. So we are only

able to show that each level 1 of recursion in total contributes v@Jil for some D > 2

to the skeleton. But this is only leads to a super-linear bound on the size of the skeleton.

So we follow another way to solve GUF if the input graph is planar. What we would

like to do is to proceed analogously as for two-dimensional grids. But this is also not

as straight forward as one could hope. We have to introduce some technical definitions

(p-patches) that will play the (key) role that the tiling squares of size log log(n)/2

played for the grids.

6.1. p-patches

For some positive value p a p-patch is a planar graph G = (V,E) together with

either

(a) a face F = FG the boundary, partitioned into two intervals fl = ITilc, the upper
boundary, and &!J = !JJG, the lower boundary, or

(b) two distinct faces riii = IiIo the upper boundary, and u = IJo, the lower boundury,
such that

(i) all faces but rii and VI (resp. F) are triangles,

(ii) deg, ~8,

(iii) dc(v,&!J)<p for all v E V and

(iv) lliij d3p.Y.

See Fig. 2 for an illustration of the two different cases (a) and (b). The constants 3,

5 and 8 appearing in this definition are more or less arbitrary and chosen to make the

estimations easy. An p-patch is narrow if (iv) is strengthened to Iflo 63~. We will

omit the subscript G at F, L!J and Ciil whenever possible.

Let G and G’ be p-patches. G’ is a p-subpatch of G if it is a subgraph of G and if

uo, = uo/ v(o). Observe that if G’ # G then also FG, # Fc. Important properties of

p-patches are reflected by the following lemmas.

J. Gustedt I Theoretical Corn! ziter Science 203 (1998) 123-141 135

Fig. 3. The p-neighborhood of li?l.

Lemma 6.1. Let G be an p-patch then IN,!#il)l d 15~. 5*P.

Proof. This is easy to see because of properties (i) and (ii). The (not so important)

constant 5 comes from the fact that when coming from Iii at least one edges is needed

as back edge and at least two are needed as side edges because of the triangulation,

enforced by (i). So the size of N#iil)<5N~-‘(~). 0

Lemma 6.2. Let G be an p-patch and K be a connected component of G\Ng (n) and
G’ = N;(K). Then G’ with &!JGJ = iir),/ V(C~J is p-subpatch of G.

Proof. Consider Fig. 3. Here the vertical bar represents Uo, the filled circles repre-

sent elements of liilo and the dashed line represents the boundary of the connected

components of G \ N$il).

We have to show that liil~ is not too large. Because (iii) of the definition we have

that for every v E rii a path P from v to U is included in NE(liil). Since G is planar,

such two such paths of neighbors on lTil separate G and thus G\N$iil) into two different

components. So the component K under investigation is cut of by two such paths P,
one on the left and one on the right. Thus, there is V’ & Iiil with 1 V’I < 2 such that K

can already be found as G \ Ng (V’).

But this means also that no’ s NE (V’) and thus because of the degree constraints

that (ITi& 62.58. 0

Lemma 6.3. There is an algorithm that, given an integer p and a narrow p-patch G
as input, runs in linear time and finds a skeleton skel G of sized IV(G)l/p such that
every cluster is of size at most 15p.5*P.

Proof. Compute a BFS-forest growing from iii and let Li (level i) be the set of vertices

of distance i from Iri. For each j = 0,. , . , p - 1 we sum up the cardinalities of all levels

136 J. Gustedf I Theoretical Computer Science 203 (1998) 123-141

Bound Degree

Input: arbitrary planar graph G.

Output: Triangulated planar graph G’ of degree bounded by 8 such that

G is a minor of G’ and such that 1 V(G’)I d 101 V(G)J.

1 Triangulate G;

2 Isolate vertices of high degree, see Fig. 4(a);

3 Replace the neighborhood of high degree vertices, see Fig. 4(b);

i with i= jmodp:

Si = jz~odp ILil. (21)
-J

Since the levels form a partition of the vertex set there exists a j, such that

sjo d I I’(G)//p. (22)

The union of all corresponding levels

S= U Li
Gjomodp

(23)

gives our desired skeleton.

Because G is narrow, level jo itself has at most 3~. 5j0 63~. 5P elements and thus

N$ (07) and G\Ng (liil) are both p-patches. Now applying Lemma 6.2 iteratively shows

that G\Nt (07) breaks down into p-patches and Lemma 6.1 shows that these have the

appropriate sizes. 0

Observe also, that the multiplicative constant hidden in the linear time bound does

not depend on p.

6.2. Patching an arbitrary planar graph

To apply these methods to an arbitrary planar graph we first have to ensure that we

always may find a major that is triangulated and has bounded degree, see procedure

Bound Degree on the current page.

Clearly, triangulation poses no problem at all. Zsolation of vertices of high degree

is done in such a way that afterwards we have

(i) all vertices v with deg(v) > 8 only have neighbors of degree 6 or less

(ii) every vertex w has at most 2 neighbors 2) with deg(v) > 8.

This can easily be achieved by dividing each edge by a new vertex and joining all

these new vertices to the other 4 new vertices on the neighboring facets. It is clear

that now

(i) every old vertex only has new vertices as neighbors,

(ii) every new vertex has degree 6,

J. Gustedt I Theoretical Computer Science 203 (1998) 123-141 137

(a) Isolating ver-

tices of high de-

grce

c old vertex/edge

-- new vertex/edge

(b) Replacement at a

vertex of high degree

(c) Replacement of 4

neighbors by 2 new

ones

Fig. 4. Bounding the degree

(iii) every such new vertex has 2 old vertices as neighbors and

(iv) the resulting graph is triangulated again.

See Fig. 4(a) for an illustration.

Replucement at vertices of high degree is done as follows. Let v be a vertex of

degree larger than 8 and w and w’ two neighbors that form a triangle together with v.

Then

(i) delete the edges uw and uw’ from G

(ii) introduce a new vertex v’ and join it to u, w and w’.

Do so for all adequate pairs of edges of v. These are Ldeg(v)/2]. If deg(u) is

odd divide the remaining edge by yet another new vertex. Now join all new vertices

obtained in this step to a cycle, see Fig. 4(b). Up to now all new vertices have degree

at most 5 and all old vertices (but v) have their degree unchanged. To triangulate this

newly obtained graph observe that the only facets that are not triangles are those with

two new vertices and two former neighbors of v. These squares can be triangulated

by diagonals that all go in the same direction, to the right, say, see Fig. 4(c) Now all

new vertices have degree 6 and all former neighbors of v have their degree increased

at most by one.

We iterate this procedure until deg(v)<S. Then all new vertices introduce have

degree at most 7.

We then loop for all vertices of high degree. Any vertex w that originally had degree

at most 6 is involved into such a replacement for at most 2 vertices of high degree.

So the new degree of w is at most 8. To summarize we state

Proposition 6.4. Let G be a planar graph; then there is a triangulated planar graph

G’ of degree not larger than 8 such that

138 J. Gustedtl Throreficul Computer Science 203 (1998) 123-141

Patch

10

Input: Triangulated planar graph G of bounded degree 8, n =) V(G)/,

vertex ug E V(G).

Output: S c V(G) of size ISI <n/p and such that every component of G \ S

but the one of 00 is a p-patch.

Grow a BFS-tree from UO;

for i = I,..., do collect the cardinalities c(i) of all levels L(i);

Group levels according to their index i mod p;

There is such a group io of levels that in total has cardinality < 1 V(G)l/p;

foreach i = iomodp do
if c(i) > 3p then

11

for j = 1,. . . , [c(i)/pJ do

1
Collect equidistant elements w(i,j);

Let P(i,j) be the path from w(i,j) down to level L(i - p);

S = U L(i) U IJ P(i,j)
i=iomodp i=iomcdp

j=l,... Lc(i)/pJ

(i) G is a minor of G’,

(ii) / V(G’)I d 10) V(G)/,

and such a graph G’ can be found in linear time.

Proof of Main Theorem, part (iii). If we chose

p = p(n) = slow(n) (24)

and

e(n) = 15slow(n)5 2slow(n)

we have by (2) that

(25)

f(n) < g . log log(n)5(‘i9)“0g’os(“) 6 2 . log log(n) log(n)‘“a5!9 < vw (26)

and thus Lemmas 3.2 and 6.3 show the claim for narrow p(n)-patches. With Proposi-

tion 6.4 it remains to show how to obtain narrow p-patches from a triangulated planar

graph of bounded degree 8. We mainly use the same idea that was used to split narrow

p-patches themselves, see procedure Patch above.

First we compute a BFS-tree from an arbitrary vertex uo and partition the vertex set

V into the levels Li of distance i. Then we look for a value io such that the union

of the levels with i s io(p) is small enough. For every such i, we then look at the

component that remains when we eliminate levels Li and Li--p. If it is not a narrow

p-patch we have to divide it further by paths of length p that join Li and Li-_p.

J. Gustedti Theoretical Computer Science 203 (1998) 123-141 139

Fig. 5. Patch on level i

Now every connected component of G \ S (but the one of UO) is a narrow p-patch,

see Fig. 5. The only non-p-patch maybe the component of ug but this is of size at

most 5P, so it is already an appropriate cluster.

By line 6 we ensure that a level is only split into multiple patches if this is necessary.

Observe that otherwise we possibly would collect too much vertices into the paths

P(i,j). So now S as chosen above is not too large. In fact, its cardinal&y can be

estimated as follows:

ISI d c IL(‘)\ + c ‘y 2 I
i=ro(p) MO(P) /=I

c(i)>3p

The second term then is bounded by

&p) ,z p G 1 V(G)l’p. _
C(i)>3P

P(i,.i)l. (27)

So all together IS(is bounded by <2IV(G)l/p and we are done. 0

(28)

7. Perspectives

7. I. Practical considerations: Reorganization of memory

Clearly, one disadvantage of our approach is the intensive use of a RAM as com-

putational model. It is often claimed that using micro-encoding to handle “small” sub-

problems would only pay off in cases where the overall problem size is so huge, that

we never expect it to occur in our limited universe. Therefore, there have been inten-

sive studies to avoid such use of the RAM and to restrict the computational model to

a pointer machine, PM, see e.g. [8].

140 J. Gustedt I Theoreticul Computer Science 203 (1998) 123-141

On the other hand it is also often argued that z is such a slowly growing function

that the factor is completely neglectable for practical purposes. So some people claim,

that avoiding cc-factors is a useless theoretical game.

Both criticisms go to short, since the real-world bottleneck for doing UF on large data

as it occurs, e.g. in image processing is the von Neumann bottleneck, i.e. the different

speed main memory and CPU have in modern computers. According to the book by

[7, ch. 51, nowadays the factor for an access to main memory commonly is between 40

and 100 clock cycles, and, seen the difference in the development of CPU speed and

memory access times, this factor is increasing. Modem computer architectures work

against this with a hierarchical organization of memory, in particular by the introduction

of caches.

Seen this, the bottleneck for Union-Find is the use of a dynamic data structure. The

usual technique of path compression makes no guarantee at all where in memory the

next item might be located: suppose we have to follow a chain of elements vi, ~2,. .

and by bad luck vi is not present in cache. Then we have to wait 40 clock cycles,

say, until we even know which element is next. If our elements are randomly spread

in memory the probability that we do not have to wait is only

cache size
phit =

data size
(29)

which for large data is a neglectable small number.

If we are doing Unions more or less arbitrary we may create chains that link memory

items arbitrarily and then the real performance of the algorithm is dominated by loading

data from memory. Clearly, that the inability to reflect this real world restriction applies

to both, to the PM as well as to the RAM. So from that point of view, none of these

models is preferable.

On the other hand the approach of clusters as presented in this paper easily allows a

reorganization of memory that hopefully may cooperate with the strategies of modem

architectures. Since here the data is fetched in larger blocks, the necessary wait is much

less dramatic if memory access goes to “close” locations several times.

For a conventional UF data structure, it is very unlikely that dereferencing a parent

pointer of a UF element stays on the same page or even on a small group of pages. In

contrast to that, with a given valid clustering we can allocate each cluster continuously

on subsequent pages of memory and do the same for the skeleton as a whole, this

behavior changes drastically. Then a Find may either

(i) stay inside a cluster and thus on the pages allocated for it or

(ii) lead into the skeleton and thus stay on the pages allocated for the skeleton.

Thus, only a sublinear number of pages are potentially accessed. This is so, even if

we do not impose any other restriction for the sequence of UF than to respect the

underlying graph. So the probability phi* that we can guarantee is much better than

without the reorganization, namely

Phit =
sublinear function in the data size

cache size
(30)

J. Gustedt I Theoretical Computer Science 203 (1998) 123-141 141

7.2. Possible generalizations

For graph algorithms people have in many cases been able to avoid the a-bottleneck

of UF by looking closely the graphical structure occurring in their particular problem.

We have the impression that there must be a common pattern behind all these attempts.

In regard to Remark 2.4 and by hoping on the best of all worlds we conclude with

the following conjecture.

Conjecture. GUF is solvable in linear time on a RAM.

References

[l] L. Banachowski, A complement to Tarjan’s result about the lower bound on the complexity of the set

union problem, Inform. Process. Lett. 11 (2) (1980) 59-65.

[2] H.L. Bodlaender, A tourist guide through treewidth, Acta Cybemet. 11 (1993) l-23.

[3] H.L. Bodlaender, A linear time algorithm for finding tree-decompositions of small treewidth, SIAM J.

Comput. 25 (1996) 1305-1317.

[4] M.B. Dillencourt, H. Samet, M. Tamminen, A general approach to connected-component labeling for

arbitrary image representations, J. Assoc. Comput. Mach. 39 (2) (1992) 2533280. Corr. pp. 985-986.

[5] C. Fiorio, J. Gustedt, Two linear time Union-Find strategies for image processing, Theoret. Comput.

Sci. 154 (2) (1996) 165-181.

[6] H.N. Gabow, R.E. Tarjan, A linear-time algorithm for a special case of disjoint set union, J. Comput.

System Sci. 30 (1984) 209-221.

[7] J.L. Hennessy, D.A. Patterson, Computer Architecture, A Quantitative Approach, 2nd ed., Morgan-

Kaufmann, Los Altos, CA, 1996.

[8] J.A. La Poutre, Lower bounds for the Union-Find and the Split-Find problem on pointer machines,

J. Comput. System Sci. 52 (1) (1996) 87-99.

[9] R.J. Lipton, R. E. Tarjan, A separator theorem for planar graphs, SlAM J. Appl. Math. 36 (1979)

177-189.

[lo] K. Melhom, Data Structures and Algorithms, vol 1: Sorting and Searching, Springer, Berlin, 1984.

[I I] K. Mehlhom, A. Tsakalidis, in: J. van Leeuwen (Ed.), Handbook of Theoretical Computer Science,

vol. A, Algorithms and Complexity, ch. 6, Data Structures, Elsevier, Amsterdam, 1990, pp. 301-3 14.

[12] R.E. Tarjan, Efficiency of a good but not linear set union algorithm, J. Assoc. Comput. Mach. 22 (1975)

215-225.

[13] R.E. Tarjan, A class of algorithms which require non-linear time to maintain disjoint sets, J. Comput.

System Sci. 18 (1979) 110-127.

