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MATHEMATICS

DIFFERENT REALIZATIONS OF A NON SUFFICIENT JET

BY

JACEK BOCHNAK axp TZEE-CHAR KUO1)

(Communicated by Prof. N. H. KuipEr at the meeting of June 26, 1971)

§ 1. THE RESULT

Conjecture (THOM, [11], Problem 3, p. 229). If an r-jet w € J'(n, p) is
not CO-sufficient, then w has an infinite family of realizations {f,} such
that for a8, (the germs of) f, and f, are not topologically equivalent.

The purpose of this paper is to establish this conjecture when p=1.
The case n=2, p=1 has been proved in [4].

The terminology involved is explained as follows. The jet space J7(n, 1)
consists of all real polynomials w(zy, ..., zx) of degree <r with w(0)=0.
If w e Jr(n, 1) coincides with the Taylor’s expansion up to degree r of a
given C7- (resp. Cr+l-) function f, then f is called a realization of w in
&'1r1 (vesp. &1ri1)). Here &) denotes the set of all germs of Cé-functions.
An r-jet w € Jr(n, 1) is v-sufficient in &y (resp. &rr1y) ([2], [3], [4]), if for
any two realizations f and g of w, the germs of the varieties f-1(0) and
¢71(0) are homeomorphic. If there exists a local homeomorphism A:
(B», 0) — (B®, 0) such that f o A=g, then w is called C%-sufficient.

It has been proved in [2] that C?-sufficiency is equivalent to v-sufficiency
in Jr(n, 1). Hence in this paper we shall abreviate both notions simply
as sufficiency.

Theorem. If wedJr(n,1) is not sufficient in &y or in i1y, then
there exists an infinite sequence {fi};ew of realizations of w with mutually
non homeomorphic (germs of) varieties f=1(0).

§ 2. THE PROOF
We shall only consider the case &[+13; that for & is similar. The
case n=1 is trivial, we shall assume 7> 2.

Illustrative Example. The 5-jet w(z, y)=x4—-222y3 € J5(2, 1) ad-
mits a realization f(z, y) = (22 —y3)2. The variety f(z, y)=0 is singular (i.e.
grad f=0) along the ares x= + y3/2. Now adding perturbations such as
+ ¥*¥ (N >3) and (cos 1/y) exp (— 1/y42) to f will cause catastrophic changes
to the variety near = -+ y32. Hence w is not sufficient and in this way
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one can find infinitely many different realizations. (Similar examples:
w=x2—2xy? e J3, with f= (z—y%)2;
w=x3—3xy5 € J& with f=(x—y52)%(z+ 2y572).)

These examples suggest that the proof of the theorem should be divided
into three steps. The first is to detect an arc for w (such as z=y%/2) along
which a realization is singular. The second step is to construct such a
realization. The final step is to construct infinitely many perturbations
giving rise to infinitely many different realizations.

Step 1. For a given (germ of) polynomial function g of » variables, let
Ey={uecRn: |grad g(u)| = miny,.,, igrad g(z)|}.

(On the sphere |#|=constant, |grad g| takes its minimum on the points
of E,). By the Seidenberg-Tarski theorem ([5], p. 17), K, is a semi-algebraic
set. Applying the Curve Selection Lemma ([7], p. 103; [10], § 3), one can
find an analytic arc

Lg: xg=X4(1), 0<i<y

(each A(?) is a convergent power series) such that A(t) = (A1(f), ..., An(t)) € By
A(0)=0, A(t)+#0 for t>0. Observe that A([0, %)) is a semi-analytic set.
We shall call such an arc in E; a Y.ojasiewicz arc for g.

The most important property of L, is the following. Let g <oo, u<oo
be the numbers such that [A(f)| ~ ¢, |grad g{A(t))| ~t*, (A(f) ~ B(t) means
that 4/B lies between two positive constants, for ¢ >0 and ¢ small). Then
lgrad g(z)| > ¢|z|#/ for 2 near 0, where ¢>0 is a constant.

Now for the given non sufficient jet w, choose a Yojasiewicz arc Ly
and let u, o be defined as above. Then we must have

I
(2.1) £,
0

since otherwise w would be sufficient ([4], Theorem 0 with d=r—u/p).
(For non-sufficiency in &7 we must have ufo>r—1 by KurpEr’s
theorem [3]).

Step 2. By rotating B", if necessary, we can assume that L, is
tangent to the positive x;-axis. Then
(2.2) 0(4(®)) > 0(As(2)), i>2,

where 0(A(?)) is the (lowest) order of the series A(f).
Moreover, we may assume

M(t)=t1, g=0(A(t)).

This can be achieved by changing the parameter ¢ analytically (if neces-
sary). (If Ji(t)=aqt?+..., a;>0, then change ¢ to s=t(ag+agt+...)1/4.)
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To sum up, we have put L, in the form

(2.3) )=, 4t)= 3 aytl, 2<ign.
i>q+1

With the above prepé.ra.tion, we now state the main result in this step.

Proposition 1. For a non sufficient jet w € J7(n, 1) with a Lojasie-
wicz arc Ly, of the form (2.3), there exists a realization ¢ having the
following properties:

(1) =0 and grad ¢=0 along the arc L.

(2) ¢=v1+ys, with 1 analytic and y; of the form wya(zy, 2o, ..., 2x)=
=f(oq(x1), X2, ..., Zn), Where o¢(r1) =21|21|1/2-1, 04(0)=0, g N and f is
an analytic function.

(3) ¢71(0) is semi-analytic (in a neighborhood of 0).

(4) For any z1>0 (2; small), the function

(w2, ..., Tn) > @21, X2, ..., Tn)

admits the point (xs, ..., #n) = (Aa(212/9), ..., 2x(211/9)) as a non-degenerate
critical point.

Proof. Consider the local C'-coordinate transformation
(w1, @2, ..., Tn) = (1, X2 — A2(0g(71)), ..., Tn— An(0g(x1))) = (Y1, -..; Yn)-
This transformation is Cl since 0(4(¢))>¢. The arc L, is transformed

into the positive y-axis. Let us write w in the coordinate system (y1, ..., ¥a):

W1, - Yn) =)+ 3 GO S G alGaly))y e iy
i=2 2<igt ... Hig<r

where g, g4, ¢45...¢, are analytic functions in a neighborhood of 0 in R.
Observe that

ow __d(g o ag) ow _ .
51 W0 0) = == ) 5o (41, 0 =gy o oalyn), 7=2, ...

Let o, u be the numbers such that

A(®)] ~ #
and
igrad w(A(£))| ~ t~.

Then by (2.1), ufe>r. By (2.3), |A(f)] ~ |A1(t)| =7 and s0 o=gq, = |y |4/,
Hence
ow

ow 0
I (ﬁ (y]-’ 0)’&/'2 (yls 0)’ ceey '67“:‘ (yl: 0)) l ~ lyll'l

where ri=ufo>r.
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Thus the order of g (resp. g, j=2, ..., n) is greater than or equal to
g(r+1) (resp. gr). This implies that

P(@1, .., 70) =glogan)) + 3 iloaan)ar—Aooe(a)

is a Cr+l function, r-flat at 0. Now
1/)2=’L0-—-P

is a realization satisfying the property (1) of the Proposition.

We shall construet an analytic function yy, sufficiently flat at 0, singular
along Ly, so that ¢ =y + s also satisfies (4). We repeat here some argu-
ments due to Losasimwicz [2].

As we mentioned above, the image A([0, 7)) of the arc L, is semi-analytic.
This implies that there exists a system of pseudo-polynomials of two
variables Hi(xzy, &), t=2, ..., n, of the form

mi—-1

Hy(zy, &) =£&m™+ ’2 ayy(21)&
-0

where ay are analytic functions, such that for each x>0 (sufficiently
small)

(2.4) Hi(wy, Mi(|2a]1/2)) =0

oH
(25) 3 (o o) 0.

This follows as a special case from the general theory of normal decom-
position compatible with a given semi-analytic set (f.osastEwWIczZ [6] p. 451,
or [7]). (In our case, however, we can simply eliminate ¢ in (2.3) to find
an H; satisfying (2.4). Then an H; satisfying (2.4) with minimal degree
also satisfies (2.5).)

Put

Vi@, ..., 7a) = bor¥ ‘iz (Hi(z1, 20))2.

The value of N will be decided later.
By (2.4) and (2.5)

%y oH,
det :I —ap-N H ( ) ]
0T40T; |, 159 O Je-s,

along L. It is different from 0 for z;, >0.
Now along L,, we can write

Po) + (n— 1
?()1:2 bxqu ):I i ° i L)

o2 O0H
I'o(x)=det [Wz;f:l y Tam-1(x)= H ( ‘)

where
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(along Ly), and each I is independent of N. Let Dy(t) denote the function
obtained by substituting (2.3) into Y x;/¥ I}, then

D(s?) = 3 47 yy(s)

where y;(s) = I'j(A(s?)).

By the definition of s, Dn(s?) is an analytic function of s. We now
show that Dx(s?) 5% 0 for all large values of N. In fact, the set of values
of N for which Dy = 0 consists of at most g(n — 1) elements. For if Dy = 0
for g(n— 1)+ 1 different values N = N1, ..., Ny@-1)+1, then since y4m-1)(8)#0
((2.6)), we would have

1 oM ... oM
=0
1 o¥+1 ... oPNpa

where o=s2, p=g(n—1). But the value of the above determinant is
(—1)* Tlici<i<ps1 (aV¥i—o¥;) (for some k), which is not identically zero.
Now choose N so that Dy(s2)50, then due to analyticity, Dy(s2)#0
for all positive s (s small). This implies condition (4), for the function
@=y1+ya. Moreover, if N>r also, then ¢ remains a realization of w.
It is clear that condition (3) is implied by (2). The proof of Proposition 1
is complete.

Step 3. A proof of the following lemma will be given in § 3.

Lemma 1. There exists a sequence {4};¢n of closed subsets of [0, co)
with mutually non-homeomorphic germs at 0. Moreover, the germ of each
A; is not locally connected.

Notation. For a subspace X of B", let X denote the set of all z € X,
such that no neighborhood of # in X is homeomorphic with Bn-1.
The ideas in this step are best explained in the following.

Example. Let w(x,...,xs)=3;_, & in Jr(n, 1), r>3, e2=1. Take
p=w, Ly=the positive z;-axis. Let fi: B - [0, co) be a (°-function, flat
at 0, with 8;~1(0) = 4;. Then the realizations f; = + f; give rise to mutually

non-homeomorphic germs of varieties. Observe that m ishomeomorphic
with A,.

The general case is slightly more complicated.

In the following, ¢ is the function in Proposition 1. Firstly, we shall
select an open semianalytic subset Uy, of B® containing L.,\{0}, Uy C
C (0, o0) x BR#~1, in which

% o9
(bxg’ T O

where m>1 is a constant.

(2.6) >le™ Y e x|t
i=2
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In fact, U, will be & horn-shaped set (a so-called horn-neighborhood)
of the form

{(@1, ..., 2n) B 3 |y — Ao(|21|1/9)[2 < |21 2}
j=2
where the value of m is to be determined.

Observe that, by the conditions (2) and (4) in Proposition 1, the
inequality

n b(p 9 n
(27) 5. (55) =20t 5, ket
i=2 \O%1 i=2
defines in the (zy, ..., za, n)-space a semi-analytic set E, containing the

arc (Ly\{0}) x {0} in its interior. Therefore by Losasiewicz regular sepa-
ration theorem for semi-analytic sets ([7]) (cf. [8], p. 14), there exists m
such that the set

Hp={(, 7): 92 + laes — As(|22[1/2) |2 < 2]z [2m}

which contains (L,\{0}) x {0}, is contained in K.

Now for z e Uy, (21, |21|™) € Hy and so by (2.7), we have (2.6).

Let y(x1, ..., €4) >0 be a C®-function, flat at 0, y=0 outside U,, y>0
on L,,\{0} and

0 0 i
(b—;; ’ “"8%) ’ = %lxllm 522 lxt——li(lxﬂl/q”-
(The construction of such a y is easy).
By (2.6)
(2.8) grad (¢ +y)(x)#0

in Uy, except possibly along L, But y>0 along L,\{0}, the variety
(p+y)1(0) is disjoint from L,\{0}. Hence (p+7)~1(0) is a manifold of
codimension 1 in Uy.

Now let fi: B — [0, 1] be C™-function, flat at 0B, and Bi1(0)=4;,
where A; are the sets in Lemma 1. We also assume |df/dxz;| < 1. We claim that

f@) = p(x) + Bi(z1)y (%)

are the desired realizations.

Consider V;=f;1(0). We shall now show that for ¢+j the germs of V;
and V; are non-homeomorphic. Clearly it is sufficient to prove that V;
and ¥, are non-homeomorphic. Suppose that a homeomorphism % exists
between these two, we shall then derive a contradiction.

By (2.8) and by the choice of f,

Lyw=P,N Up={xeB®: v € Ly, 21 € A¢}.
So by our construction, we have homeomorphisms

Ven Uy ~ 4, for every ieN.
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The germ of the image h(L,®) intersects U, only at 0, since otherwise
we would have A; ~ 4;. Hence

MLw®\{0}) C VA\T.

Clearly V\U,=V\Uyu, where V=g¢1(0), for any icN. The set V is
semi-analytic (see Lemma 2 below), hence so is V¢\U, and hence both
are locally connected ([7], Prop. 3, p. 76). But A(L,®\{0}) is open in
P/\Uw (since L,®\{0} is open in ¥;) and isnot locally connected (Lemma 1);
this gives rise to another contradiction. Therefore » does not exist.

Lemma 2. If X is a semi-analytic set, then so is X.
A proof is given in the next section.

§ 3. Proors oF LEMMAS 1 AND 2

Proof of Lemma 1. Let F CR be given. We define by recurrence
the derived sets F(1)={x € F: H{Xn}ien, ¥n € F, xpn#2, 2y—2x} and F(n)=
=F(n—1)(1). It is clear that for compact subsets £, F C R, if for some £,
E(k)=0 and F(k)+#0, then there does not exist a continuous injection
F—E.

Now let Ay={>]., a;:a;€ A} where 4={0,1,4,%,...}.

Since

-1 0N\ = i-1
lim (Y a;+ —) = > aj, we have Ay(1) D As.
1 i=1

k—+00 \fm= k

We now show that 4i(1)=A4;;. For a given y € Ay(1), choose a sequence
Zn € Ay, Tn#Y, Zn > Y, and write

Zp=q1n+...+0n

where each ay,, is of the form 1/m. Then lim,_, ., ax,»=0 for at least
one k(1 <k<1), since otherwise each a;,, could take only a finite set of
different values, 2, can not tend to y. Now, by replacing x, by a suitable
subsequence, if necessary, we can assume that lim,_, ., ay,» exists for each
j. Hence im xp=;.; lim a5, € 4¢.

Now take A0={0}’ A_1=0, then An(m)=A”_m :=¢ if n<m

£0 if n>m
Hence if p<n, there does not exist a continuous injection 4, - 4,. In
particular, 4, is not homeomorphic to 4, if n#p.

Proof of Lemma 2. Since X is semi-analytic, X admits a regular
stratification X = U M; in the sense of Whitney [7], where each stratum
M, is a connected semi-analytic manifold. By Corollary (10.2) in [9], any
two points of a same stratum have homeomorphic neighborhoods in X.
Hence for each 4, either M; C X or M;n X=0. That is, X is a (locally-
finite) union of semi-analytic strata, hence is semi-analytiec.
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