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Abstract 

Vasoactive intestinal peptide (VIP) stimulated adenylyl cyclase activity in rat and mouse peritoneal macrophage membranes. GTP 
potentiated the stimulatory effect of VIP so that it was routinely included at 10 IxM GTP. Other agents like GTP, Gpp(NH)p, GTP-3,-S, 
sodium fluoride, and forskolin, at a concentration of 0.1 mM, increased the basal activity of enzyme by 3.1, 5.7, 4.7, 3.6, and 7.8-fold, 
respectively. The stimulation of adenylyl cyclase by VIP was time, temperature, and membrane concentration dependent. Half-maximal 
enzyme activation (EDso) was very similar in rat and mouse peritoneal macrophage membranes (1.5 _+ 0.1 nM and 1.0 _+ 0.1 nM, 
respectively). However, VIP showed more efficacy in mouse macrophages membranes (about 3.l-fold basal values) than that in rat 
macrophage membranes (about 2.5-fold basal values). The relative potency of several peptides upon stimulation of adenylyl cyclase 
activity showed the following potency in both species: VIP = PACAP38 = PACAP27 > helodermin > PHI > secretin. On the other hand, a 
Mr-45 kDa ~ subunit of G~ protein was demonstrated by both ADP-ribosylation and immunoblot in mouse and rat peritoneal 
macrophage membranes. The present results, together other previous, strongly suggest that VIP play an important role in the regulation of 
macrophage function. 
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1. Introduct ion 

Vasoactive intestinal peptide (VIP) is a 28 amino acid 
peptide that is produced by the central and peripheral 
nervous system [1], where it is considered to behave as a 
neurotransmitter or a neuromodulator [1], and by immune 
system [2], where it is considered to behave as an impor- 
tant immunoregulatory peptide [3]. The biological effects 
of  VIP on its target cells are triggers by the interaction of  
peptide with specific plasma membrane receptors coupled 
to the enzyme adenylyl cyclase and the subsequent cyclic 
AMP (cAMP) production. In this context, specific recep- 
tors for VIP have been demonstrated in human lympho- 
cytes [4,5], human monocytes [6], both mouse and rat 
lymphocytes [7,8], and more recently, in mouse and rat 
peritoneal macrophages [9,10], where it has been shown 
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that VIP receptor is a membrane protein of  52 kDa [9,10] 
and the VIP binding to its receptor is regulated by guanine 
nucleotides [11]. On the other hand, VIP has been shown 
to activate adenylyl cyclase in human lymphocyte mem- 
branes [12] and to stimulate cyclic AMP production in 
human lymphocytes [4,5] and in mouse and rat peritoneal 
macrophages [9,13]. Finally, VIP has been reported to 
activate cyclic AMP-dependent protein kinase (PKA) in 
human lymphocytes [14]. 

At a molecular level, it is well established in the VIP 
signal transduction pathway that VIP receptors are coupled 
to the adenylyl cyclase through a stimulatory GTP binding 
protein G~ [15,16]. In macrophages, though the cAMP 
production has been well reported, a complete functional 
and molecular characterization of  the adenylyl cyclase 
activated for VIP never has been realized. The aim of  the 
present report is to study at functional and molecular level 
the adenylyl cyclase activated for VIP in rat and mouse 
peritoneal macrophages. 
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2. Materials and methods 

Synthetic rat VIP, pituitary adenylyl cyclase activating 
peptide (PACAP-27 and PACAP-38), porcine peptide his- 
tidine isoleucine (PHI), helodermin, secretin, and insulin 
were purchased from Peninsula Laboratories Europe 
(Merseyside, UK). Bacitracin, bovine serum albumin 
(BSA), 3-isobutyl-l-methyl-xanthine (IBMX), ethylene- 
diaminetetraacetic acid (EDTA),  N-[2-hydroxy-  
ethyl]piperazine-N'-[2-hydroxypropanesulfonic acid] 
(Hepes), forskolin, cholera toxin, GTP, guanosine 5'-[3,~/- 
imidotriphosphate [Gpp(NH)p], guanosine 5'-O-(3-triphos- 
phate) (GTP-3,-S), ATP, CTP, creatine phosphokinase, and 
creatine phosphate were from Sigma (Alcobendas, Spain). 
Phenylmethylsulfonylfluoride (PMSF), N-et-tosyl-L-lysine 
chloromethyl ketone (TLCK) and leupeptine were from 
Boehringer Mannheim GmbH (Germany). Chemicals and 
protein markers for sodium dodecyl sulfate-polyacrylamide 
gel electrophoresis (SDS-PAGE) were from Bio-Rad Lab- 
oratories (Richmond, CA, USA). Cyclic AMP assay kits 
were obtained from Radiochemical Center (Amersham, 
UK). [32p]NAD was from New England Nuclear-Dupont. 
Specific antisera against C-terminal (385-394) of ot~ sub- 
unit of G~ protein was from Calbiochem. 

2.1. Preparation of  macrophage membranes 

Rat and mouse peritoneal macrophages were obtained 
from Wistar rats and Swiss mouse respectively as de- 
scribed previously [9,10]. Quickly, macrophages were re- 
suspended in 5 mM HEPES (pH 7.5 at 4°C) containing 0.1 
mg/ml  bacitracin, 0.01 mg/ml  leupeptine, 0.01 mg/ml  
TLCK, 0.05 mg/ml  PMSF, and 1 mM EDTA. After 15 
min incubation at 4°C, cells were disrupted by sonication 
for two 10-s bursts at maximal power and tune meter 
separated by 10-s intervals. The homogenate was centrifu- 
gated at 600 × g for 10 min at 4°C. The 600 × g super- 
natant was centrifugated at 30 000 × g for 30 min at 4°C. 
The 30 000 × g pellet was resuspended in 20 mM Hepes 
(pH 7.5 at 4°C) containing 0.05 mg/ml  PMSF and was 
immediately frozen at -80°C until used. Proteins were 
measured by the method of Bradford [17] using bovine 
serum albumin as standard. 

2.2. Adenylyl cyclase assay 

Adenylyl cyclase activity was measured as described 
previously [18]. In a standard assay, membranes (50 
ixg/ml) were incubated in 0.1 ml of 25 mM tri- 
ethanolamine-HC1 buffer (pH 7.5) containing 1 mM 3-iso- 
butyl-l-methyl-xanthine (IBMX), 5 mM MgSO4, 1 mM 
EDTA, 1 mg/ml  bacitracin, 1.5 mM ATP, 10 I~M GTP, 
and a ATP-regenerating system (7.4 mg/ml  creatine phos- 
phate and 1 mg/ml  creatine kinase) in the absence or 
presence of different concentrations of VIP. After 20 min 
incubation at 30°C, the reaction was stopped by the addi- 

tion of 2.5 ml methanol. The precipitate was removed by 
centrifugation, aliquots of the supernatant were evaporated 
and cyclic AMP was measured by a kit cyclic AMP assay 
system. 

2.3. Cholera toxin-catalyzed ADP-ribosylation 

ADP-ribosylation of membranes was carried out as 
previously reported [19] with minor modifications. Thiol 
preactivated cholera toxin was incubated at 80 ixg/mi 
with membranes (0.8 mg protein/ml) in 0.25 M phosphate 
buffer (pH 7.0) containing 5 mM ATP, 50 I~M GTP, 1 
IxM [32p]NAD+, 2 mM EDTA, 5 mM MgCI2, and ATP- 
regenerating system. After 45 min at 30°C, the reaction 
was stopped by ice-cold 10% (w/v )  trichloroacetic acid. 
Protein pellets were washed with acetone and solubilized 
on SDS-gel loading buffer for SDS-PAGE as described [9]. 

2.4. Immunodetection of  ~s subunit of  G~ protein 

Membranes were solubilized in SDS sample buffer and 
proteins were run on a 10% SDS-polyacrylamide gel as 
described [19]. The transfer of proteins to nitrocellulose 
and the immunodetection of the a s of G s protein using a 
specific antisera against et s subunit of G s protein, were 
carried out as described [19]. Briefly, the transferred nitro- 
cellulose sheets were cut into slices, preincubated with 50 
mM Tris-HC1 pH 8.0, 2 mM CaC12, 80 mM NaC1, 0.2% 
(v /v )  Nonidet P40, and 5% (w/v)  non-fat dry milk. 
Antisera was diluted in the same buffer and incubated for 
1 h at room temperature. After washing, immunoreactive 
protein bound was revealed using [125I]-labelled goat anti- 
bodies against rabbit IgG and immunoblots were exposed 
for 3 days at -80°C to a DuPont Cronex-4 film with an 
intensifying screen (DuPont Cronex Lightning Plus). 

3. Results 

The general characteristics of rat peritoneal macrophage 
membrane adenylyl cyclase are showed in Fig. 1. The 
basal adenylyl cyclase activity was 9.3 _+ 0.7 pmol 
cA MP /m in /m g  protein. The GTP and its nonhydrolizable 
analogs Gpp(NH)p and GTP-~/-S, sodium fluoride, and 
forskolin stimulated the adenylyl cyclase activity in a 
dose-dependent manner. At a concentration of 0.1 mM, 
GTP, Gpp(NH)p, GTP-~/-S, sodium fluoride, and forskolin 
increased the basal activity of enzyme by 3.1, 5.7, 4.7, 3.6, 
and 7.8-fold, respectively. The corresponding concentra- 
tions required for half-maximal stimulation (EDs0) were 
0.7 IxM, 0.5 IxM, 0.6 2 IxM, 1.5 IxM, and 0.6 ~M, 
respectively. On the other hand, other nucleotide such as 
CTP, was completely ineffective in modifying basal adeny- 
lyl cyclase activity when assessed at concentrations as high 
as 0.1-1 mM. 

VIP-stimulated adenylyl cyclase activity was a time- 
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Fig. 1. Effect of increasing conce, trations of guanine nucleotides, sodium 
fluoride and forskolin on the adenylyl cyclase activity of rat peritoneal 
macrophage membranes. Enzymatic activity is expressed as pmol cAMP 
formed per min- ] mg protein- 1. Results are the mean of four duplicate 
experiments. Statistical significance was determined by one-way analysis 
of variance (ANOVA test) and B(mferroni test. 

and temperature-dependent process (Fig. 2) The response 
was rapid and linear ( r  = 0.90) with time up to 15 min at 
30°C and decreased thereafter. At  15°C, the cAMP re- 
sponse decreased in rate and extent, with an apparent 
steady state reached after 30 rain. 

Fig. 3 shows the effect of  increasing membrane protein 
concentration on VIP-st imulated adenylyl  cyclase. Under 
standard conditions, the stimulation of  adenylyl  cyclase 
activity was linear ( r  = 0.98) with protein concentration up 
to 50 Ixg p ro t e in /ml .  Thus, membrane concentration of  50 
Ixg p r o t e i n / m l  was used in subsequent experiments.  

VIP-st imulated adenyly1 cyclase activity in a dose-de- 
pendent  manner both in rat and mouse peritoneal 
macrophage membranes (Fig. 4). The response occurred in 
the 0 .1 -1000  nM range of  VIP concentrations. Maximal  
stimulation was obtained between 0 .1-1  IxM VIP in both 
species. However,  VIP showed more efficacy in mouse 
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Fig. 2. VIP-induced adenylyl cyclase enzyme activity in rat peritoneal 
macrophage membranes as a function of incubation time and temperature. 
Membranes were incubated in the presence of 0.1 ~M VIP plus 10 o~M 
GTP at 30°C (0 )  or 15°C (O). The data correspond to a representative 
experiment of three performed in duplicated. 
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Fig. 3. Effect of protein concentration on adenylyl cyclase activity 
stimulated by 0.1 v,M VIP plus 10 I~M GTP. Rat peritoneal macrophage 
membranes were incubated at 30°C for 15 min. This experiment is 
representative of two others. 

macrophages membranes (about 3.1-fold basal values) than 
that in rat macrophage membranes (about 2.5-fold basal 
values). On the other hand, the potency of  VIP was very 
similar in rat and mouse peritoneal macrophage mem- 

branes, as indicated by the corresponding EDso values 
(1.5 _ 0.1 nM and 1.0 _+ 0.1 nM, respectively). The effect 
of  VIP on adenylyl  cyclase activity in rat and mouse 
peritoneal macrophage membranes was potentiated by GTP 
(Fig. 4), since the increase in enzyme activity caused by 
the nucleotide plus VIP was significantly greater than the 
sum of  the increase caused by each agent acting alone. 

The specificity of  VIP on adenylyl  cyclase activity in 
rat and mouse peritoneal macrophage membranes was 
studied using several peptides either structurally related or 
not to VIP (Fig. 5 and Table 1). The dose-effect  curves for 
peptide stimulation of  adenylyl  cyclase showed the follow- 

ing potency in both species: VIP = PACAP38 = PACAP27 
> helodermin > PHI > secretin. Under experimental  con- 
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Fig. 4. Dose-effect curves of adenylyl cyclase activity stimulation in rat 
(0 )  and mouse (©) peritoneal macrophage membranes by VIP in the 
absence or presence of GTP 10 wM. Values are the mean of five separate 
experiments, each performed in duplicate. Statistical significance was 
determined by one-way analysis of variance (ANOVA test) and Bonfer- 
roni test. 
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Fig. 5, Effect of increasing concentrations of VIP and other related 
peptides on adenylyl cyclase activity in rat (left) and mouse (right) 
peritoneal macrophage membranes. Membranes (50 Ixg/ml) were incu- 
bated for 15 min at 30°C with different concentrations of VIP (O), 
PACAP-38 (O), PACAP-27 (D), helodermin (1),  PHI (A), secretin 
(a) ,  and insulin (*) in the presence of 10 p,M GTP. Results are 
expressed as percentage of maximum adenylyl cyclase activity increment 
above basal. Each point is the mean of three separate experiments 
performed in duplicate. For clarity, standard errors are not indicated; they 
are always below 8% of the mean values. 

Table l 
Half-maximal stimulation (EDso) of VIP and VIP-family peptides 

Peptide ED~ o (nM) 

Rat marophages Mouse macrophages 

VIP 1.5 + 0.08 1.0 _ 0.11 
PACAP-38 1.3 +0.1 1.1 +0.18 
PACAP-27 1.5 + 0.2 1.3 + 0.12 
Helodermin 2.7 -I- 0.1 3.3 + 0.23 
PHI 230+ 15 171 +23 
Secretin 1580 ___ 251 1420 + 180 

The dose-effect experiments with VIP and VIP-related peptides repre- 
sented in Fig. 5 served to calculate the corresponding EDs0 values. The 
data are the mean -t- S.E.M. of three separate experiments. 
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Fig. 6. Autoradiograph of [32  P]ADP-rybosylated membrane proteins of 
mouse and rat peritoneal macrophage membranes. Mouse and rat peri- 
toneal macrophage membranes were incubated with [32p]NAD in the 
presence ( + ) or absence ( - ) of cholera toxin as described in Section 2. 
This experiment is representative of three others. 
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Fig. 7. Immunodetection of (~ subunit of G,, protein of mouse and rat 
peritoneal macrophage membranes. Plasma membranes from mouse and 
rat peritoneal macrophages were separated by SDS-PAGE. Proteins were 
transferred to nitrocellulose and immunoblotted with a specific antisera 
against C-terminal (385-394) of G~c~. This experiment is representative 
of three others. For details, see Section 2. 

ditions used, PACAP38, PACAP27 or he lodermin  did not 
result in a s t imulat ion higher  than that obtained with the 
most  efficient peptide (VIP), suggest ing that VIP-related 
peptide acted through a c o m m o n  membrane  receptor. Other 
peptide not  structurally related to V1P such as insulin,  was 
ineffective on the s t imulat ion of  enzyme activity when 
assessed at concentra t ions  as high as 0 . 1 -1  IxM. 

It is well established that adenylyl  cyclase activity is 

s t imulated by a s subuni t  of  s t imulatory G protein (Gs). On 
the other hand,  as it is shown in Fig, 4, the st imulatory 

effect of  VIP on adenylyl  cyclase activity in rat and mouse  
peri toneal macrophage membranes  was strongly potenti-  
ated by GTP.  This feature indicates that the funct ional  
coupl ing of  VIP receptors to adenylyl  cyclase occurs 
through a G~ protein. Further  exper iments  explored the 
presence of  a s subuni t  of  G~ protein in rat and mouse  
peri toneal macrophage membranes  by ADP-r ibosyla t ion  
with cholera toxin and by immunob lo t  with a specific 

antisera against  a s. Thus,  both rat and mouse  peri toneal 
macrophage membranes  were treated with cholera toxin in 
the presence of  [32p]NAD under  condi t ions  in which the 
G~ protein is specifically labelled on its a~ subuni t  by 
ADP-r ibosyla t ion.  As it is shown in Fig. 6, cholera toxin 
induced the label l ing by 32p in the Mr-45 kDa a~ subuni t  

in both membrane  preparations.  As control,  no incorpora- 
tion of  32p radioactivi ty was detected when the cholera 

toxin was omit ted (Fig. 6). Immunob lo t  us ing a anti-a~ 
subuni t  ant ibody also revealed the Mr-45 kDa o~ subuni t  
in both rat and mouse  peri toneal  macrophage membranes  
(Fig. 7). 

4. Discuss ion 

The present  study shows that VIP stimulates in a dose- 
dependent  manne r  the adenylyl  cyclase activity in rat and 
mouse  peri toneal macrophage membranes .  Furthermore,  in 
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this report we show experimental evidence that strongly 
suggests that this stimulation is mediated by a G S protein. 
The general characteristics of adenylyl cyclase present in 
rat peritoneal macrophage membranes, such as its stimula- 
tion by GTP, Gpp(NH)p, GTP-~/-S, sodium fluoride, and 
forskolin are in good agreement with that described in 
guinea pigs [20]. Maximal stimulation for VIP of the 
adenylyl cyclase activity was obtained between 0.1-1 ~M 
VIP in both species. However, VIP showed more efficacy 
in to activate the enzyme in mouse macrophages mem- 
branes (about 3.1-fold basal values) than that in rat 
macrophage membranes (about 2.5-fold basal values). On 
the other hand, the potency of VIP, as it is indicated by the 
corresponding half-maximal stimulation (EDso) values, 
was very similar in rat and mouse peritoneal macrophage 
membranes (1.5 + 0.1 nM ~md 1.0 + 0.1 nM, respectively). 
These results are in good agreement with the K d value of 
the high-affinity receptors (1.1 + 0.1 nM in rat and 1.0 + 
0.2 nM in mouse) and with the EDso values for cyclic 
AMP accumulation (1.2 ___ 0.5 nM in rat and 1.0 ___ 0.2 nM 
in mouse) described previously in intact macrophages 
[9,13,21]. These data suggest that only the binding of VIP 
with its high-affinity receptors is coupled to the adenylyl 
cyclase and the subsequent cyclic AMP production. Simi- 
lar results have been shown for VIP in human lymphocytes 
[4,5], rat alveolar macrophages [22], and in other cells 
[23,24]. 

The effect of VIP upon adenylyl cyclase activity was 
strongly potentiated by GTP in rat and mouse peritoneal 
macrophage membranes. This result is in concordance with 
that observed in other VIP systems such as human lympho- 
cytes [12], rat intestinal membranes [25], and rat seminal 
vesicle membranes [24]. This feature is other experimental 
result that suggests that the functional VIP receptors are 
coupled to adenylyl cyclase through a G~ protein. In fact, 
we have evidenced the presence of a ot~ subunit of 45 kDa 
by ADP-ribosylation with cholera toxin and by im- 
munoblot with a specific antisera against a~ of G~ protein 
in both rat and mouse peritoneal macrophage membranes. 
This G~ protein has been showed by other authors in 
human lymphocytes [26,27], but it has never been de- 
scribed in rat and mouse peritoneal macrophages. On the 
other hand, in other tissues such as liver [25], brain [28], 
pancreas [29], and parotid acini [30], the GTP displayed 
only a slight potentiating effect on the action of VIP. 

Various peptides structurally related to VIP also caused 
a significant stimulation of adenylyl cyclase activity in rat 
and mouse peritoneal macrophage membranes. The dose- 
effect curves for peptide stimulation of adenylyl cyclase 
showed the following potency in both species: VIP = 
PACAP38 = PACAPz7 > helodermin > PHI > secretin. 
Other peptide not structurally related to VIP such as 
insulin, was ineffective on the stimulation of adenylyl 
cyclase activity when assessed at concentrations as high as 
0.1-1 IxM. This pattern of specificity correlates well with 
the specificity observed in binding and cyclic AMP accu- 

mulation studies previously reported in rat and mouse 
intact macrophages [9,13,21 ]. Under experimental condi- 
tions used, neither PACAP38, PACAP27, helodermin nor 
peptide structurally related to VIP, resulted in a stimulation 
higher than that obtained with the most efficient VIP 
concentration. An important and interesting feature of 
these results is that VIP, PACAP38, and PACAP27 caused 
a stimulation of adenylyl cyclase in rat and mouse peri- 
toneal macrophage membranes with very similar potency. 
This datum supports the view that VIP and PACAP acted 
through a common membrane receptor in both species. 
The fact that the VIP, PACAP38 , and PACAP27 may share 
an identical binding site has been previously reported in rat 
and human liver [31,32], human intestine [33], rat lung 
[34], and mouse splenocytes [35]. Actually, this common 
receptor that shows very similar affinities for PACAP27, 
PACAP38, and for VIP is denominated VIP type I recep- 
tor/PACAP type II receptor and it is clearly different from 
the so-called PACAP type I receptor observed in rat 
hypothalamus or rat astrocytes [36,37] that has a high 
affinity for PACAP27 and PACAP38 but a very low affinity 
for VIP. 

At present, two types of VIP receptors have been 
cloned and sequenced. The type 1 receptor (VIP1-R) is the 
classical VIP receptor and was cloned by screening rat 
lung [38,39] and the type 2 receptor (VIP2-R), that was 
cloned from a rat olfactory bulb cDNA library [40], and it 
seems to be present in regions with neuroendocrine func- 
tions where VIP1-R is absent. On the other hand, recently 
has been cloned a VIP receptor from SUP-T1 lympho- 
blasts that has 87% sequence homology with the VIP2-R 
[41]. We consider that the type of VIP receptor involved in 
the effects showed in this paper is the VIP1-R. In fact, it 
has been recently shown the gene expression of VIP1-R 
type in both rat T and B lymphocytes [42]. Furthermore, 
we have shown for the first time the expression of VIP1-R 
type in rat peritoneal macrophages [43]. 

The previous demonstration of the presence of high 
affinity and specificity VIP receptors in rat and mouse 
peritoneal macrophages [9,10,21], the sensitivity of VIP 
binding activity to guanine nucleotides [11], together the 
ability of VIP to stimulate the adenylyl cyclase activity, 
argue strongly for a physiological role of VIP in the 
regulation of macrophage function. 

Macrophages play a principal role in many immune 
functions, but the molecular mechanisms involved are 
poorly defined. Many hormonally responsive systems are 
regulated through changes in intracellular cyclic AMP 
levels. It is well documented that numerous macrophage 
functions, including lysosomal enzyme secretion [44], 
phagocytosis [45], cytotoxicity [46], chemotaxis [47], and 
adhesion [48] are influenced by agents that modulate cyclic 
AMP levels. With respect to VIP and macrophages, it has 
been reported that VIP inhibits the respiratory burst in 
monocytes, the precursor cell of macrophages, and that 
VIP inhibits substrate adherence capacity of rat peritoneal 
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macrophage membranes by mechanisms that involve cyclic 
AMP [49,50]. In this context, our results strongly suggest 
that VIP could play an important role in regulation of 
immune function not only acting on lymphocyte functions 
[51], but also modulating macrophage functions. 
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