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INTRODUCTION

By a @-groupoid is meant a group object in the category of groupoids.
By a crossed module (4, B, d) is meant a pair A, B of groups together
with an operation of the group B on the group 4, and a morphism 9:
A—>B of groups, satisfying: (i) d(a?)=b1(da)b, (ii) alaa=ar*, for
a,a € A, be B. One object of this paper is to advertise the result:

TuroreEM 1. The categories of #-groupoids and of crossed modules
are equivalent.

This result was, we understand, known to Verdier in 1965; it was
then used by Duskin [6]; it was discovered independently by us in
1972. The work of Verdier and Duskin is unpublished, we have found
that Theorem 1 is little known, and so we hope that this account will
prove useful. We shall also extend Theorem 1 to include in Theorem 2
a comparison of homotopy notions for the two categories.

As an application of Theorem 1, we consider the fundamental groupoid
X of a topological group X. Clearly nX is a ¥-groupoid; its associated
crossed module has (as does any crossed module) an obstruction class or
k-invariant which in this case lies in H3(mX, m(X, e)). We prove in
Theorem 3 that this k-invariant is the first Postnikov invariant of the
classifying space Bsx of the singular complex 8X of X. An example of
the use of Theorem 3 is the (possibly well known) result that the first
Postnikov invariant of Byw) is zero.

Duskin was led to his application of Theorem 1 in the theory of group
extensions by an interest in Isbell’s principle (a % in an &/ is an &/ in a &).
We were led to Theorem 1 as part of a programme for exploiting double
groupoids (that is, groupoid objects in the category of groupoids) in homo-
topy theory. Basic results on and applications of double groupoids are
given in [3], [2] and [4].

1) This work was done while the second author was at the University College
of North Wales in 1972 with partial support by the Seience Research Council under
Research Grant B/RG/2282.
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We would like to thank J. Duskin for sending us a copy of [6], and
for informing us of Verdier’s work.

1. %-GROUPOIDS

We start with apparently greater generality by considering %-categories.
Thus let Cat be the category of small categories. A group object G in
Cat is then a small category G equipped with functors .: G xG — G,
e: * — (@ (where x is a singleton), u: G' — G, called respectively product,
unit, and inverse, and satisfying the usual axioms for a group. The product
of @,b in @ is also written ab, e(x) is written e, and u(a) is written a1,
while the composition in & of arrows a: z —y, b: y —> 2z is written @ 0o b
and the inverse for o of e (if it exists) is written 4.

That - is a functor gives the usual interchange law
(b o a)(d oc)=(bd) o (ac)
whenever b oa, d oc are defined.
It is easy to prove that 1, the identity at e e 0b(G), is equal to e.

Further, composition in @ can be expressed in terms of the group operation,
since if a: x >y, b: y -z then

a o b=(1,(1;" a)) o (be)

1) =(ly0b)(l; e oe)
=bl;'a.

Similarly

(2) aob=al;'h,

and it follows that if y=e¢, then ba =ab; thus elements of Costg e and Stge
commute under the group operation. Another consequence of (1) and (2)
is that if @: z —y then 1;a-11,=d, the inverse of @ under o; this proves
that any @-category is a groupoid (a remark due to J. Duskin [6]). A final
remark in this context is that if a, a1 € Coste ¢, and a has initial point z,
then al;! e Stge and so commutes with a;; this implies that

(3) alaa=1"a11;.

Now let 4 =Costee, B=0b(GF). Then A, B inherit group structures from
that of @, and the initial point map 0: 4 — B is a morphism of groups.
Further we have an operation («, z) i— a* of B on the group 4 given by
a*=1;'al,, xe€ B, ac A, and we clearly have

o(a*)=z"2(da)x,
alaya=a"?, by (3),
for a,a; € A, z € B. Thus (4, B, d) is a crossed module [5, 8, 9, 13] (also

called a crossed group in [6]).
20 Indagatoines
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We can express this more categorically. Let % be the category of
@-groupoids (i.e. group objects in the category of groupoids, with mor-
phisms functors of groupoids preserving the group structure). Let € be
the category of crossed modules where a morphism (fs, f1): (4, B, ) —
— (4’, B, ') of crossed modules is a pair fo: 4 > 4', fi: B— B’ of
morphism of groups such that ,0=0'fs, and f; is an operator morphism
over fi. Then we have clearly defined a functor 4: ¥ — €. The result of
Verdier is then:

TeeorEM 1. The functor §: ¥ — & is an equivalence of categories.
We sketch the proof, partly following unpublished notes of Duskin [6].
Let M=(4, B, d) be a crossed module. A -groupoid 6(M) is defined
as follows. The group of objects of §(M) is the group B. The group of
arrows of 6(M) is the semi-direct product 4 X B with the usual group

structure
(@', b')(a, b)=(a'va, b'b);

the initial and final maps are defined respectively by (a, b) I— bd(a),
(@, b) 1> b, while composition is given by

(@', b') o (@, b)=(aa’, b).

It is then routine to check that 6(M) is a ¥-groupoid. Clearly 6 extends
to a functor € - %.

We easily obtain a natural equivalence 7': 1¢ — 66, whereif M = (4, B, 9)
is a crossed module, then 73 is the identity on B and on A4 is given by
a |- (a, e).

To define the natural equivalence S: 66 — lg, let G be a %-groupoid.
A map Sg: 06(G) - @ is defined to be the identity on objects and on
arrows is given by (a, y) 1> lya. Clearly Sg is bijective on arrows so it
only remains to check that S¢ preserves composition and the group
operation. This is routine and so is omitted.

We next show how the equivalence between #-groupoids and crossed
modules given by Theorem 1 extends to an equivalence between notions
of homotopy in the two categories.

The standard notion of homotopy in € is as follows [5]. Let (fe, f1)
and (gz, g1): M — M’ be morphisms of crossed modules M =(4, B, 9),
M =(4', B',0'). A homotopy d: (fz, L) == (g2, ¢1) is a function d: B -> A’
such that

(i) d(d'b)=d(d')®d(b), all b,b" € B,
(ii) O'd(b)=g1(b)1fi(b), all be B, and
(iii) do(a)=ga(a)1fz(a), all a € A.

Given such a homotopy d, let 8(d): B— A’ X B’ be the function into
the semi-direct product 4’ X B’ such that 6(d) has components d and g;.
Then condition (i) on d is equivalent to 6(d) being a morphism of groups.
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Now B is the set of objects of 8(M), A’ X B’ is the set of arrows of 6(M’),
while (f2, f1), (g2, 91) determine morphisms 6(f, f1), 6(g2, g1): 6(M) — 6(M’)
of %-groupoids, =0, 1. It is now straightforward to verify that 9(d) is
a homotopy or natural equivalence between these morphisms of groupoids.

We therefore define a -homotopy V: h ~ k of morphisms &, k: G > H
of %-groupoids to be a homotopy (or natural equivalence) in the usual
sense with the additional property that V: 0b(G) — Arr(H) is a morphism
of groups. This notion of homotopy gives ¢ the structure of a 2-category.
Similarly € has, with its notion of homotopy, the structure of a 2-category.

TaEOoREM 2. The 2-categories of %-groupoids and of crossed modules
are equivalent 2-categories.

We omit further details.

2. THE FUNDAMENTAL GROUPOID OF A TOPOLOGICAL GROUP

Let M=(A4, B,0) be a crossed module. Then M determines an ob-
struction class or k-invariant k(M) € H3(Q), A) where @ = Coker 3, A =Ker o
[8, 9], which for free B classifies the crossed module up to homotopy
equivalences which are the identity on 4 and on @.

Thus a @-groupoid G also determines a k-invariant k(Q) € H3(mo@G, G{e}),
namely the k-invariant of its associated crossed module. (Here G{e} is
the abelian group G(e, e).)

A particular example of a ¥-groupoid is the fundamental groupoid #X
of a topological group X, with group structure on #X induced by that
of X (using the rule #(X x X)=nX xxnX [1]).

The object of this section is to prove:

Teeorem 3. If X is a topological group, then the k-invariant of the
%-groupoid X can be identified with the first Postnikov invariant of Bsx,
the classifying space of the singular complex of X.

In this Theorem, the singular complex SX is a simplicial group, and
its classifying space K= Bgx is the CW-complex which is the realisation
|L| of the simplicial set L=WSX [10]. We follow [9] in describing the
Postnikov invariant of K in terms of its cell-structure as the k-invariant
of the crossed module Mx=(n2(K, K1), m(K!), d'), where K! is the 1-
skeleton of K and 9’ is the homotopy boundary. Now the k-invariant of
7 X is that of the crossed module M x = (Cost.x ¢, X, 0). We prove Theorem 3
by constructing & morphism f: Mg — M x such that f induces isomorphisms
fo: Coker d' — Coker 9, f3: Ker 8’ —> Ker . The construction of k-invariants
[9] then implies that fox 2(Mk)=fs*k(M x) and this is what is required
for Theorem 3.
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Since K =|L| where L=WS8X, we may use the descriptions of the i-
simplices of L given in [10]. Thus Ly is a point, and L; consists of the
points of X. Hence #;(K!) is the free group on generators [«] for u € X
with relation [e]=1, and a morphism f;: m(K!) -> X is obtained by ex-
tending the identity map on generators.

According to [9] Mg is isomorphic to Mz = (gz2/dsgs, 71(K1), d2) where

ds is induced by ds in the operator sequence [13]
d da
~ 03— 02 —> m(KY),

and on=mny(K", K»-1) is for n=2 the free crossed (g1, dz)-module on the
2-cells of K and for n =3 is the free 7;1(K2)-module on the 3-eells of K [13].
Thus to define fz: g2/ds g3 — Costax ¢ we need only define f;: g2 — Costaxe
by specifying f>(6) for each 2-cell § of K in such a way that (i) ofe(8)=
=f1d2(8) and (ii) fadzpes=0.

The elements of L, are pairs (4, ) such that v € X and 1 is a path in
X from A(0) to A(1). Then d¢(4, u)=1u, d1(4, u)=A(1)u 1), ds(4, »)=A(0) and
80 da(, u)=[A(0)][w][A(1)u]1. So we define fo(4, u) to be e if (A, u) is
degenerate and otherwise to be [A](laq))L. It follows that

f1 da(A, w) = A(0) w u~t A(1)

= bfg()., ’M)
This proves (i).

For the proof of (ii) it is enough to show that f>ds(x)=0 for each non-
degenerate 3-simplex » of L, since these form a set of free generators of
the 71(K2)-module g3, and d3 is an operator morphism. For such a » the
homotopy addition lemma gives

da(2) = [03 %][01 #][d2 x]1([do x]e~Y)1

where a is the element of 7;(K!) determined by d3d2(%) and [0s¢] denotes
the generator of gz corresponding to d;x. Now x is a triple (o, 4, #) where
#we X, 2is a path in X and o is a singular 2-simplex in X. Let dgo=3,
O016=y, ds0=0n (so that, in #X, [y]=[«] o [B]), and let «(0)=z=y(0),
x(1)=B8(0)=y, p(1})=y(1)=z2, A(1)=s, A(0)=t. By the formulae 1) for o
in W@, and since f, is an operator morphism

Fods(2) = fol o, t) fa(BA, w) faly, su)L fa((4, u)r~1)-1

() =[] 15" [AAN(L L) Y([y11s )2 (AL[AT 157)2
2 = [o]15  [BIAILT BT 1 {7 Lo} (1a[AT )15
(3) =e

1} The formula for 341 in W@& on p. 87 of [10] should interchange d gn—¢ and
gn—t+1.
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where to deduce (2) from (1) we use the substitution [y]=[a]l;'[f], and
to deduce (3) from (2) we note that each term in round brackets lies in
Costrx e and so by § 1 commutes with elements of St.xe, and in particular
with each term in curly brackets.

This completes the proof of (ii) and so gives the construction of
f: Mg - Mx. Now m(K)=Coker (d2: p2 — ¢1) is the free group on
generators [u], v € X, with relations [e]=1, [u-A(0)]=[u][A(1)], for u € X,
A a path in X. It follows easily that fo: Coker d2 — Coker d is an iso-
morphism 71(K) — 7p(X). We also need to prove that f3: Ker ds — Ker d
is an isomorphism, where Ker d; = m3(K) and Ker d =m;(X, €). But np(K) =
=my(L) and L is a Kan complex ([7] Proposition 10.4); hence elements
of ms(L) are represented by elements of L, with faces at the base point,
i.e. by pairs (4, ¢) where A is a loop at e. Then f; is given by [(4, e)] — [4],
and this is the standard map as(L) - = (SX) which is known to be an
isomorphism.

This completes the proof of Theorem 3.
There should be a better proof of Theorem 3.

What would seem to be required is either a description of the first
k-invariant of a topological space K in terms of some crossed module
defined using fibrations, or else a description of the first k-invariant of
a simplicial set L in terms of a crossed module defined directly by the
simplicial structure of L. Neither such description is known to us.

Our final result gives an application of Theorem 3.

ProposrTion 4. Let X be a topological group which is a split extension
of a discrete group by a path-connected group. Then the first k-invariant
of Bsx is zero.

Proor. According to [9] p. 43 the k-invariant of the crossed module
Mx=(Cost.xe, X, 0) is determined from the exact sequence

o]
e > m(X, e) > Costrxe —— X s F e

(where in our case F=noX is discrete) by considering first the deviation
from being a morphism of a section s of ». However »: X — F has a
section which is a morphism, since X is a split extension. Therefore the
k-invariant of Mx is zero. The result follows from Theorem 3.

CoroLLARY 5. The first k-invariant of the classifying space Bx is zero
if X is any quotient of O(n) by & normal subgroup.

Proor. If X is connected the result is clear. Otherwise it is well-known
that the determinant map 0(n) — Z; has a section s which is a morphism,
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and so a section for X — 7 X is the composite Z, N On) P.x where
p is the projection.

There are examples of topological groups X such that M x has non-

trivial k-invariant—such an X is G(Y) where Y is a connected finite
simplicial complex with non-trivial first Postnikow invariant, and G(Y)
is Milnor’s group model of the loop-space of Y [11].

R. Brown, C. B. Spencer,

School of Mathematics and Computer Science, Department of Mathematics,
University College of North Wales, The University,

Bangor, Gwynedd, LL57 2UW Hong Kong
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