MATHEMATICS

\mathscr{G}-GROUPOIDS, CROSSED MODULES AND THE FUNDAMENTAL GROUPOID OF A TOPOLOGICAL GROUP

RONALD BROWN aND CHRISTOPHER B. SPENCER ${ }^{1}$)

(Communicated by Prof. H. Freudenthal at the meeting of March 27, 1976)

INTRODUOTION

By a \mathscr{G}-groupoid is meant a group object in the category of groupoids. By a crossed module (A, B, δ) is meant a pair A, B of groups together with an operation of the group B on the group A, and a morphism d : $A \rightarrow B$ of groups, satisfying: (i) $\partial\left(a^{b}\right)=b^{-1}(\partial a) b$, (ii) $a^{-1} a_{1} a=a_{1}^{\partial a}$, for $a, a_{1} \in A, b \in B$. One object of this paper is to advertise the result:

Theorem 1. The categories of \mathscr{G}-groupoids and of crossed modules are equivalent.

This result was, we understand, known to Verdier in 1965; it was then used by Duskin [6]; it was discovered independently by us in 1972. The work of Verdier and Duskin is unpublished, we have found that Theorem 1 is little known, and so we hope that this account will prove useful. We shall also extend Theorem 1 to include in Theorem 2 a comparison of homotopy notions for the two categories.

As an application of Theorem 1, we consider the fundamental groupoid πX of a topological group X. Clearly πX is a \mathscr{G}-groupoid; its associated crossed module has (as does any crossed module) an obstruction class or k-invariant which in this case lies in $H^{3}\left(\pi_{0} X, \pi_{1}(X, e)\right)$. We prove in Theorem 3 that this k-invariant is the first Postnikov invariant of the classifying space $B_{S X}$ of the singular complex $S X$ of X. An example of the use of Theorem 3 is the (possibly well known) result that the first Postnikov invariant of $B_{0(n)}$ is zero.

Duskin was led to his application of Theorem 1 in the theory of group extensions by an interest in Isbell's principle ($\mathrm{a} \mathscr{B}$ in an \mathscr{A} is an \mathscr{A} in a \mathscr{B}). We were led to Theorem 1 as part of a programme for exploiting double groupoids (that is, groupoid objects in the category of groupoids) in homotopy theory. Basic results on and applications of double groupoids are given in [3], [2] and [4].

[^0]We would like to thank J. Duskin for sending us a copy of [6], and for informing us of Verdier's work.

1. \mathscr{G}-GROUPOIDS

We start with apparently greater generality by considering \mathscr{G}-categories. Thus let Cat be the category of small categories. A group object G in Cat is then a small category G equipped with functors $\cdot: G \times G \rightarrow G$, $e: * \rightarrow G$ (where $*$ is a singleton), $u: G \rightarrow G$, called respectively product, unit, and inverse, and satisfying the usual axioms for a group. The product of a, b in G is also written $a b, e(*)$ is written e, and $u(a)$ is written a^{-1}, while the composition in G of arrows $a: x \rightarrow y, b: y \rightarrow z$ is written $a \circ b$ and the inverse for of a (if it exists) is written \bar{a}.

That • is a functor gives the usual interchange law

$$
(b \circ a)(d \circ c)=(b d) \circ(a c)
$$

whenever $b \circ a, d \circ c$ are defined.
It is easy to prove that l_{e}, the identity at $e \in 0 b(G)$, is equal to e. Further, composition in G can be expressed in terms of the group operation, since if $a: x \rightarrow y, b: y \rightarrow z$ then

$$
\left\{\begin{align*}
a \circ b & =\left(1_{y}\left(1_{v}^{-1} a\right)\right) \circ(b e) \tag{1}\\
& =\left(1_{y} \circ b\right)\left(1_{v}^{-1} a \circ e\right) \\
& =b 1_{v}^{-1} a .
\end{align*}\right.
$$

Similarly

$$
\begin{equation*}
a \circ b=a \mathrm{l}_{v}^{-1} b \tag{2}
\end{equation*}
$$

and it follows that if $y=e$, then $b a=a b$; thus elements of $\operatorname{Cost}_{G} e$ and $\operatorname{St}_{G} e$ commute under the group operation. Another consequence of (1) and (2) is that if $a: x \rightarrow y$ then $1_{x} a^{-1} 1_{y}=\bar{a}$, the inverse of a under \circ; this proves that any \mathscr{G}-category is a groupoid (a remark due to J. Duskin [6]). A final remark in this context is that if $a, a_{1} \in \operatorname{Cost}_{G} e$, and a has initial point x, then $a 1_{x}^{-1} \in \operatorname{St}_{G} e$ and so commutes with a_{1}; this implies that

$$
\begin{equation*}
a^{-1} a_{1} a=1_{x}^{-1} a_{1} 1_{x} \tag{3}
\end{equation*}
$$

Now let $A=\operatorname{Cost}_{G} e, B=0 b(G)$. Then A, B inherit group structures from that of G, and the initial point map $\partial: A \rightarrow B$ is a morphism of groups. Further we have an operation $(a, x) \mapsto a^{x}$ of B on the group A given by $a^{x}=1_{x}^{-1} a 1_{x}, x \in B, a \in A$, and we clearly have

$$
\begin{gathered}
\partial\left(a^{x}\right)=x^{-1}(\partial a) x, \\
a^{-1} a_{1} a=a^{\mathrm{\partial}(a)}, \text { by }(3),
\end{gathered}
$$

for $a, a_{1} \in A, x \in B$. Thus (A, B, ∂) is a crossed module $[5,8,9,13]$ (also called a crossed group in [6]).

20 Indagatoines

We can express this more categorically. Let \mathscr{G} be the category of \mathscr{G}-groupoids (i.e. group objects in the category of groupoids, with morphisms functors of groupoids preserving the group structure). Let \mathscr{C} be the category of crossed modules where a morphism $\left(f_{2}, f_{1}\right):(A, B, \partial) \rightarrow$ $\rightarrow\left(A^{\prime}, B^{\prime}, \lambda^{\prime}\right)$ of crossed modules is a pair $f_{2}: A \rightarrow A^{\prime}, f_{1}: B \rightarrow B^{\prime}$ of morphism of groups such that $f_{1} \partial=\partial^{\prime} f_{2}$, and f_{2} is an operator morphism over f_{1}. Then we have clearly defined a functor $\delta: \mathscr{G} \rightarrow \mathscr{C}$. The result of Verdier is then:

Theorem 1. The functor $\delta: \mathscr{G} \rightarrow \mathscr{C}$ is an equivalence of categories. We sketch the proof, partly following unpublished notes of Duskin [6].
Let $M=(A, B, \partial)$ be a crossed module. A \mathscr{G}-groupoid $\theta(M)$ is defined as follows. The group of objects of $\theta(M)$ is the group B. The group of arrows of $\theta(M)$ is the semi-direct product $A \widetilde{\times} B$ with the usual group structure

$$
\left(a^{\prime}, b^{\prime}\right)(a, b)=\left(a^{\prime} b a, b^{\prime} b\right)
$$

the initial and final maps are defined respectively by $(a, b) \mapsto b \delta(a)$, $(a, b) \mapsto b$, while composition is given by

$$
\left(a^{\prime}, b^{\prime}\right) \circ(a, b)=\left(a a^{\prime}, b\right)
$$

It is then routine to check that $\theta(M)$ is a \mathscr{G}-groupoid. Clearly θ extends to a functor $\mathscr{C} \rightarrow \mathscr{G}$.

We easily obtain a natural equivalence $T: 1_{\mathscr{C}} \rightarrow \delta \theta$, where if $M=(A, B, \partial)$ is a crossed module, then T_{M} is the identity on B and on A is given by $a \mapsto(a, e)$.

To define the natural equivalence $S: \theta \delta \rightarrow 1 \mathscr{G}$, let G be a \mathscr{G}-groupoid. A map $S_{G}: \theta \delta(G) \rightarrow G$ is defined to be the identity on objects and on arrows is given by $(a, y) \mid \rightarrow 1_{y} a$. Clearly S_{G} is bijective on arrows so it only remains to check that S_{G} preserves composition and the group operation. This is routine and so is omitted.

We next show how the equivalence between \mathscr{G}-groupoids and crossed modules given by Theorem 1 extends to an equivalence between notions of homotopy in the two categories.

The standard notion of homotopy in \mathscr{C} is as follows [5]. Let (f_{2}, f_{1}) and (g_{2}, g_{1}): $M \rightarrow M^{\prime}$ be morphisms of crossed modules $M=(A, B, \partial)$, $M^{\prime}=\left(A^{\prime}, B^{\prime}, \partial^{\prime}\right)$. A homotopy $d:\left(f_{2}, f_{1}\right) \simeq\left(g_{2}, g_{1}\right)$ is a function $d: B \rightarrow A^{\prime}$ such that
(i) $d\left(b^{\prime} b\right)=d\left(b^{\prime}\right)^{g_{1}(b)} d(b)$, all $b, b^{\prime} \in B$,
(ii) $\partial^{\prime} d(b)=g_{1}(b)^{-1} f_{1}(b)$, all $b \in B$, and
(iii) $d \partial(a)=g_{2}(a)^{-1} f_{2}(a)$, all $a \in A$.

Given such a homotopy d, let $\theta(d): B \rightarrow A^{\prime} \widetilde{\times} B^{\prime}$ be the function into the semi-direct product $A^{\prime} \widetilde{\times} B^{\prime}$ such that $\theta(d)$ has components d and g_{1}. Then condition (i) on d is equivalent to $\theta(d)$ being a morphism of groups.

Now B is the set of objects of $\theta(M), A^{\prime} \widetilde{\times} B^{\prime}$ is the set of arrows of $\theta\left(M^{\prime}\right)$, while (f_{2}, f_{1}), $\left(g_{2}, g_{1}\right)$ determine morphisms $\theta\left(f_{2}, f_{1}\right), \theta\left(g_{2}, g_{1}\right): \theta(M) \rightarrow \theta\left(M^{\prime}\right)$ of \mathscr{G}-groupoids, $i=0,1$. It is now straightforward to verify that $\theta(d)$ is a homotopy or natural equivalence between these morphisms of groupoids.

We therefore define a \mathscr{G}-homotopy $V: h \simeq k$ of morphisms $h, k: G \rightarrow H$ of \mathscr{G}-groupoids to be a homotopy (or natural equivalence) in the usual sense with the additional property that $V: 0 b(G) \rightarrow \operatorname{Arr}(H)$ is a morphism of groups. This notion of homotopy gives \mathscr{G} the structure of a 2-category. Similarly \mathscr{C} has, with its notion of homotopy, the structure of a 2 -category.

Theorem 2. The 2 -categories of \mathscr{G}-groupoids and of crossed modules are equivalent 2 -categories.

We omit further details.

2. the fundamental groupoid of a topological group

Let $M=(A, B, \partial)$ be a crossed module. Then M determines an obstruction class or k-invariant $k(M) \in H^{3}(Q, A)$ where $Q=$ Coker $\delta, A=$ Ker δ $[8,9]$, which for free B classifies the crossed module up to homotopy equivalences which are the identity on A and on Q.

Thus a \mathscr{G}-groupoid G also determines a k-invariant $k(G) \in H^{3}\left(\pi_{0} G, G\{e\}\right)$, namely the k-invariant of its associated crossed module. (Here $G\{e\}$ is the abelian group $G(e, e)$.)

A particular example of a \mathscr{G}-groupoid is the fundamental groupoid πX of a topological group X, with group structure on πX induced by that of X (using the rule $\pi(X \times X)=\pi X \times \pi X$ [1]).

The object of this section is to prove:
Theorem 3. If X is a topological group, then the k-invariant of the \mathscr{G}-groupoid πX can be identified with the first Postnikov invariant of $B_{S X}$, the classifying space of the singular complex of X.

In this Theorem, the singular complex $S X$ is a simplicial group, and its classifying space $K=B_{S X}$ is the $C W$-complex which is the realisation $|L|$ of the simplicial set $L=\bar{W} S X$ [10]. We follow [9] in describing the Postnikov invariant of K in terms of its cell-structure as the k-invariant of the crossed module $M_{K}=\left(\pi_{2}\left(K, K^{1}\right), \pi_{1}\left(K^{1}\right), \partial^{\prime}\right)$, where K^{1} is the 1 skeleton of K and ∂^{\prime} is the homotopy boundary. Now the k-invariant of πX is that of the crossed module $M_{X}=\left(\operatorname{Cost}_{\pi_{X}} e, X, \partial\right)$. We prove Theorem 3 by constructing a morphism $f: M_{K} \rightarrow M_{X}$ such that f induces isomorphisms $f_{0}:$ Coker $\partial^{\prime} \rightarrow$ Coker $\partial, f_{3}:$ Ker $\partial^{\prime} \rightarrow$ Ker ∂. The construction of k-invariants [9] then implies that $f_{0}{ }^{*} k\left(M_{K}\right)=f_{3} * k\left(M_{X}\right)$ and this is what is required for Theorem 3.

Since $K=|L|$ where $L=\bar{W} S X$, we may use the descriptions of the i simplices of L given in [10]. Thus L_{0} is a point, and L_{1} consists of the points of X. Hence $\pi_{1}\left(K^{1}\right)$ is the free group on generators [u] for $u \in X$ with relation $[e]=1$, and a morphism $f_{1}: \pi_{1}\left(K^{1}\right) \rightarrow X$ is obtained by extending the identity map on generators.

According to [9] M_{K} is isomorphic to $M_{K}^{\prime}=\left(\varrho_{2} / d_{3} \varrho_{3}, \pi_{1}\left(K^{1}\right), \bar{d}_{2}\right)$ where d_{2} is induced by d_{2} in the operator sequence [13]

$$
\rightarrow \varrho_{3} \xrightarrow{d_{3}} \varrho_{2} \xrightarrow{d_{2}} \pi_{1}\left(K^{1}\right),
$$

and $\varrho_{n}=\pi_{n}\left(K^{n}, K^{n-1}\right)$ is for $n=2$ the free crossed ($\left.\varrho_{1}, d_{2}\right)$-module on the 2-cells of K and for $n=3$ is the free $\pi_{1}\left(K^{2}\right)$-module on the 3 -eells of K [13]. Thus to define $f_{2}^{\prime}: \varrho_{2} / d_{3} \varrho_{3} \rightarrow \operatorname{Cost}_{\pi X} e$ we need only define $f_{2}: \varrho_{2} \rightarrow \operatorname{Cost}_{n X} e$ by specifying $\bar{f}_{2}(\delta)$ for each 2 -cell δ of K in such a way that (i) $\partial f_{2}(\delta)=$ $=f_{1} d_{2}(\delta)$ and (ii) $f_{2} d_{3} \varrho_{3}=0$.

The elements of L_{2} are pairs (λ, u) such that $u \in X$ and λ is a path in X from $\lambda(0)$ to $\lambda(1)$. Then $\left.\partial_{0}(\lambda, u)=u, \partial_{1}(\lambda, u)=\lambda(1) u^{1}\right), \partial_{2}(\lambda, u)=\lambda(0)$ and so $d_{2}(\lambda, u)=[\lambda(0)][u][\lambda(1) u]^{-1}$. So we define $\bar{f}_{2}(\lambda, u)$ to be e if (λ, u) is degenerate and otherwise to be $[\lambda]\left(l_{\lambda(1)}\right)^{-1}$. It follows that

$$
\begin{aligned}
f_{1} d_{2}(\lambda, u) & =\lambda(0) u u^{-1} \lambda(1)^{-1} \\
& =\partial \bar{f}_{2}(\lambda, u) .
\end{aligned}
$$

This proves (i).
For the proof of (ii) it is enough to show that $\bar{f}_{2} d_{3}(x)=0$ for each nondegenerate 3 -simplex x of L, since these form a set of free generators of the $\pi_{1}\left(K^{2}\right)$-module ϱ_{3}, and d_{3} is an operator morphism. For such a x the homotopy addition lemma gives

$$
d_{3}(x)=\left[\partial_{3} x\right]\left[\partial_{1} x\right]\left[\partial_{2} x\right]^{-1}\left(\left[\partial_{0} x\right]^{a-1}\right)^{-1}
$$

where a is the element of $\pi_{1}\left(K^{1}\right)$ determined by $\partial_{3} \partial_{2}(\varkappa)$ and [$\left.\partial_{i} \chi\right]$ denotes the generator of ϱ_{2} corresponding to $\partial_{i} x$. Now x is a triple (σ, λ, u) where $u \in X, \lambda$ is a path in X and σ is a singular 2 -simplex in X. Let $\partial_{0} \sigma=\beta$, $\partial_{1} \sigma=\gamma, \partial_{2} \sigma=\alpha$ (so that, in $\pi X,[\gamma]=[\alpha] \circ[\beta]$), and let $\alpha(0)=x=\gamma(0)$, $\alpha(1)=\beta(0)=y, \beta(1)=\gamma(1)=z, \lambda(1)=s, \lambda(0)=t$. By the formulae ${ }^{1}$) for ∂_{i} in $\bar{W} G$, and since \bar{f}_{2} is an operator morphism

$$
\begin{align*}
\bar{f}_{2} d_{3}(x) & =\bar{f}_{2}(\alpha, t) \bar{f}_{2}(\beta \lambda, u) \bar{f}_{2}(\gamma, s u)^{-1} \bar{f}_{2}\left((\lambda, u)^{x-1}\right)^{-1} \\
& =[\alpha] 1_{v}^{-1}[\beta \lambda]\left(1_{z} 1_{s}\right)^{-1}\left([\gamma] 1_{z}^{-1}\right)^{-1}\left(1_{x}[\lambda] 1_{s}^{-1} 1_{x}^{-1}\right)^{-1} \tag{1}\\
& =[\alpha] 1_{y}^{-1}[\beta]\left([\lambda] 1_{s}^{-1}\right)\left\{[\beta]^{-1} 1_{y}\right\}\left\{[\alpha]^{-1} 1_{x}\right\}\left(1_{s}[\lambda]^{-1}\right) 1_{x}^{-1} \tag{2}\\
& =e \tag{3}
\end{align*}
$$

[^1]where to deduce (2) from (1) we use the substitution $[\gamma]=[\alpha] 1_{y}^{-1}[\beta]$, and to deduce (3) from (2) we note that each term in round brackets lies in $\operatorname{Cost}_{\pi X} e$ and so by $\S 1$ commutes with elements of $\mathrm{St}_{\pi X} e$, and in particular with each term in curly brackets.

This completes the proof of (ii) and so gives the construction of $f^{\prime}: M_{K}^{\prime} \rightarrow M_{X}$. Now $\pi_{1}(K)=\operatorname{Coker}\left(d_{2}: \varrho_{2} \rightarrow \varrho_{1}\right)$ is the free group on generators $[u], u \in X$, with relations $[e]=1,[u \cdot \lambda(0)]=[u][\lambda(1)]$, for $u \in X$, λ a path in X. It follows easily that $f_{0}^{\prime}:$ Coker $d_{2} \rightarrow$ Coker ∂ is an isomorphism $\pi_{1}(K) \rightarrow \pi_{0}(X)$. We also need to prove that $f_{3}^{\prime}:$ Ker $d_{2} \rightarrow$ Ker ∂ is an isomorphism, where $\operatorname{Ker} \bar{d}_{2}=\pi_{2}(K)$ and $\operatorname{Ker} \delta=\pi_{1}(X, e)$. But $\pi_{2}(K)=$ $=\pi_{2}(L)$ and L is a Kan complex ([7] Proposition 10.4); hence elements of $\pi_{2}(L)$ are represented by elements of L_{2} with faces at the base point, i.e. by pairs (λ, e) where λ is a loop at e. Then f_{3}^{\prime} is given by $[(\lambda, e)] \rightarrow[\lambda]$, and this is the standard map $\pi_{2}(L) \rightarrow \pi_{1}(S X)$ which is known to be an isomorphism.

This completes the proof of Theorem 3.
There should be a better proof of Theorem 3.
What would seem to be required is either a description of the first k-invariant of a topological space K in terms of some crossed module defined using fibrations, or else a description of the first k-invariant of a simplicial set L in terms of a crossed module defined directly by the simplicial structure of L. Neither such description is known to us.

Our final result gives an application of Theorem 3.

Proposition 4. Let X be a topological group which is a split extension of a discrete group by a path-connected group. Then the first k-invariant of $B_{S X}$ is zero.

Proof. According to [9] p. 43 the k-invariant of the crossed module $M_{X}=\left(\operatorname{Cost}_{\pi X} e, X, \partial\right)$ is determined from the exact sequence

$$
e \rightarrow \pi_{1}(X, e) \rightarrow \operatorname{Cost}_{\pi X} e \xrightarrow{\partial} X \xrightarrow{v} F \rightarrow e
$$

(where in our case $F=\pi_{0} X$ is discrete) by considering first the deviation from being a morphism of a section s of ν. However $\nu: X \rightarrow F$ has a section which is a morphism, since X is a split extension. Therefore the k-invariant of M_{X} is zero. The result follows from Theorem 3.

Corollary 5. The first k-invariant of the classifying space B_{X} is zero if X is any quotient of $0(n)$ by a normal subgroup.

Proof. If X is connected the result is clear. Otherwise it is well-known that the determinant map $0(n) \rightarrow Z_{2}$ has a section s which is a morphism,
and so a section for $X \rightarrow \pi_{0} X$ is the composite $Z_{2} \xrightarrow{s} 0(n) \xrightarrow{p} X$ where p is the projection.

There are examples of topological groups X such that M_{X} has nontrivial k-invariant-such an X is $G(Y)$ where Y is a connected finite simplicial complex with non-trivial first Postnikow invariant, and $G(Y)$ is Milnor's group model of the loop-space of Y [11].

R. Brown,
School of Mathematics and Computer Science, University College of North Wales, Bangor, Gwynedd, LL57 2UW
C. B. Spencer,
Department of Mathematics, The University, Hong Kong

REFERENCES

1. Brown, R. - Elements of modern topology. McGraw-Hill, Maidenhead, (1968).
2. Brown, R. and P. J. Higgins - On the connection between the second relative homotopy groups of some related spaces (submitted).
3. Brown, R. and C. B. Spencer - Double groupoids and crossed modules. Cah. de Top. Géom. Diff., 17 (1976).
4. Brown, R. and C. B. Spencer - A homotopy notion for double groupoids, in preparation.
5. Cockcroft, W. H. - On the homomorphisms of sequences. Proc. Cambridge Phil. Soc. 45, 521-532 (1952).
6. Duskin, J. - Preliminary remarks on groups. Unpublished notos, Tulano University, (1969).
7. Kan, D. M. - On homotopy theory and c.s.s. groups. Annals of Math., 68, 3853 (1958).
8. MacLane, S. - Cohomology theory of abstract groups III. Annals of Math., 50, 736-761 (1949).
9. MacLane, S. and J. H. C. Whitehead - On the 3-type of a complex. Proc. Nat. Acad. Sci. Washington 36, 41-48 (1950).
10. May, P. - Simplicial object in algebraic topology. van Nostrand, (1967).
11. Milnor, J. W. - Universal bundles I. Annals of Math. 63, 272-284 (1956).
12. Spanier, E. H. - Algebraic Topology. McGraw-Hill, New York (1966).
13. Whitehead, J. H. C. - Combinatorial homotopy II. Bull. Amer. Math. Soc. 55, 453-496 (1949).

[^0]: ${ }^{1}$) This work was done while the second author was at the University College of North Wales in 1972 with partial support by the Science Research Council under Research Grant B/RG/2282.

[^1]: ${ }^{1}$) The formula for ∂_{i+1} in $\bar{W} G$ on p. 87 of [10] should interchange $\partial_{0} g_{n-i}$ and g_{n-1+1}.

