
MATHEMATICS 

‘%GROUPOIDS, CROSSED MODULES AND THE 
FUNDAMENTAL GROUPOID OF A TOPOLOGICAL GROUP 

BY 

RONALD BROWN AND CHRISTOPHER B. SPENCER’) 

(Communicated by Prof. H. FREUDENTHAL at the meeting of March 27, 1976) 

INTRODUUTION 

By a 8-groupoid is meant a group object in the category of groupoids. 
By a crossed m&.&. (A, B, b) is meant a pair A, B of groups together 
with an operation of the group B on the group A, and a morphism b: 
A + B of groups, satisfying: (i) b(a*) = b-l(ba)b, (ii) a-lalcc = al”, for 
a, al E A, b E B. One object of this ps,per is to advertise the result: 

THEOREN 1. The categories of 8-groupoids and of crossed modules 
are equivalent. 

This result was, we understand, known to Verdier in 1965; it was 
then used by Duskin [6] ; it was discovered independently by us in 
1972. The work of Verdier and Duskin is unpublished, we have found 
that Theorem 1 is little known, and so we hope that this account will 
prove useful. We shall also extend Theorem 1 to include in Theorem 2 
a comparison of homotopy notions for the two cittegories. 

As an application of Theorem 1, we consider the fundamental groupoid 
nX of a topological group X. Clemly nX is a B-groupoid ; its associated 
crossed module has (as does any crossed module) an obstruction class or 
k-invariant which in this case lies in @(,X, zl(X, e)). We prove in 
Theorem 3 that this k-invariant is the fist Postnikov invariant of the 
classifying space Bsx of the singular complex 8X of X. An example of 
the use of Theorem 3 is the (possibly well known) result that the first 
Postnikov invariant of Bob) is zero. 

Duskin was led to his application of Theorem 1 in the theory of group 
extensions by an interest in Isbell’s principle (a 9’ in an Lsl is an &’ in a &Y). 
We were led to Theorem 1 as part of a programme for exploiting double 
groupoids (thab is, groupoid objects in the category of groupoids) in homo- 
topy theory. Basic results on and applications of double groupoids are 
given in [3], [2] and [4]. 

1) This work was done while the second author was at the University College 
of North Wales in 1972 with partial support by the Saience Reeearch Council under 
Research Grant B/RG/2282. 
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We would like to thank J. Duskin for sending us a copy of [6], and 
for informing us of Verdier’s work. 

1. 8-CJROUPOIDS 

We start with apparently greater generality by considering g-categories. 
Thus let Cat be the category of small categories. A growp object G in 
Cat is then a small category G equipped with functors . : G XC + G, 
e: * --+ G (where * is a singleton), u: G -+ G, called respectively product, 
unit, and inverse, and satisfying the usual axioms for a group. The product 
of a, b in G is also written ab, e(*) is written e, and u(a) is written a-l, 
while the composition in G of arrows a: x -+ y, b : y -+ z is written a o b 
and the inverse for Q of a (if it exists) is written d. 

That . is a functor gives the usual interchange law 

(b o a)(d o c)=(bd) o (ac) 

whenever b o a, d o c are defined. 
It is easy to prove that l,, the identity at e E Oh(G), is equal to e. 

Further, composition in G can be expressed in terms of the group operation, 
since if a: z+y, b: y-tz then 

i 
a o b=(l,(l;‘a)) o (be) 

(1) 

i 

=(lU o b)(l;la o e) 

=bl;‘a. 
Similarly 

(2) a o b=al;‘b, 

and it follows that if y = e, then ba=ab ; thus elements of Costa e and Sto e 
commute under the group operation. Another consequence of (1) and (2) 
is that if a: z + y then La-1 1, = E, the inverse of a under o; this proves 
that any g-category is a groupoid (a remark due to J. Duskin [6]). A final 
remark in this context is that if a, al E Costa e, and a has initial point z, 
then al;’ E Sto e and so commutes with al; this implies that 

(3) a-lala= lilai l$. 

Now let A = Costa e, B= Oh(G). Then A, B inherit group structures from 
that of G, and the initial point map o: A + B is a morphism of groups. 
Further we have an operation (a, x) I+ a% of B on the group A given by 
as= l;‘al,, x E B, a E A, and we clearly have 

b(az) = x-l(ba) x, 

a-lala=a”a’, by (3), 

for a, al E A, z E B. Thus (A, B, b) is a crossed module [6, 8, 9, 131 (also 
called a croossed group in [S]). 

20 Indagatoines 
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We can express this more categorically. Let $9 be the category of 
9groupoids (i.e. group objects in the category of groupoids, with mor- 
phisms functors of groupoids preserving the group structure). Let V be 
the category of crossed modules where a morphism (fz, /I) : (A, B, b) -+ 
-+ (A’, B’, a’) of crossed modules is a pair fz: A + A’, fi : B -+ B’ of 
morphism of groups such that fib=b’fs, and fs is an operator morphism 
over fi. Then we have clearly defined a fun&or 6: 9 --f ‘$7. The result of 
Verdier is then: 

THEOREM 1. The functor 6: ‘3 -+ %? is an equivalence of categories. 
We sketch the proof, partly following unpublished notes of Duskin [6]. 
Let M = (A, B, b) be a crossed module. A 8-groupoid 8(X) is defined 

as follows. The group of objects of B(M) is the group B. The group of 
arrows of 6(M) is the semi-direct product A ? B with the usual group 
structure 

(a’, b’)(u, b) = (u’bu, b’b); 

the initial and final maps are defined respectively by (a, 13) I-+ bb(a), 
(a, b) I+ b, while composition is given by 

(a’, b’) 0 (a, a) = (ua’, b). 

It is then routine to check that B(ilf) is a 8-groupoid. Clearly 8 extends 
to a functor V + 92. 

We easily obtain a natural equivalence T : 1~ -+ 68, where if M = (A, B, a) 
is a crossed module, then TM is the identity on B and on A is given by 
a I-+ (a, e). 

To define the natural equivalence 8: 88 + lg, let G be a 9-groupoid. 
A map So: OS(G) + G is defined to be the identity on objects and on 
arrows is given by (a, y) I-+ 1,a. Clearly So is bijective on arrows so it 
only remains to check that 6’~ preserves composition and the group 
operation. This is routine and so is omitted. 

We next show how the equivalence between 9-groupoids and crossed 
modules given by Theorem 1 extends to an equivalence between notions 
of homotopy in the two categories. 

The standard notion of homotopy in $2 is as follows [5]. Let (fa, fi) 
and (gz, 91) : M --f M’ be morphisms of crossed modules M = (A, B, a), 
M’ = (A’, B’, b’). A homotopy d: (fs, fi) N (gs, gi) is a function d: B -+ A’ 
such that 

(i) d(b’b) =d(b’)gl(*) d(b), all b, b’ E B, 
(ii) b’d(b) =g@)-l/l(b), all b E B, and 

(iii) o%(a) =ga(a)-l/a(u), all a E A. 

Given such a homotopy d, let B(d): B + A’ Y B’ be the function into 
the semi-direct product A’ ? B’ such that O(d) has components d and gi. 
Then condition (i) on d is equivalent to 19(d) being a morphism of groups. 
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Now B is the set of objects of 0(N), A’ 7 B’ is the set of arrows of 0(&?‘), 
while (f2, /I), (92, gl) determim morphisms W, /I), B(g2, gl) : B(M) + O(W) 
of 9-groupoids, i=O, 1. It is now straightforward to verify that 8(d) is 
a homotopy or natural equivalence between these morphisms of groupoids. 

We therefore define a %‘-hmnotopy V : h II k of morphisms h, k : G -+ H 
of g-groupoids to be a homotopy (or natural equivalence) in the usual 
sense with the additional property that V: Oh(G) -+ Am(H) is a morphism 
of groups. This notion of homotopy gives +? the structure of a a-category. 
Similarly % has, with its notion of homotopy, the structure of a 2-category. 

THEOREM 2. The 2-categories of 8-groupoids and of crossed modules 
are equivalent a-categories. 

We omit further details. 

2. THE FUNDAMENTAL QROUPOID OF A TOPOLOGICAL GROUP 

Let M= (A, B, b) b e a crossed module. Then M determines an ob- 
struction class or k-invariant k(N) E H3( &, A) where Q = Coke, b, A = Ker b 
[S, 91, which for free B classifies the crossed module up to homotopy 
equivalences which are the identity on A and on Q. 

Thus a g-groupoid G also determines a k-invariant k(G) E H3(mG, G(e)), 
namely the k-invariant of its associated crossed module. (Here G{e} is 
the abelian group G(e, e).) 

A particular example of a $?Y-groupoid is the fundamental groupoid nX 
of a topological group X, with group structure on nX induced by that 
of X (using the rule n(X x X)=nX x xX [l]). 

The object of this section is to prove: 

THEOREM 3. If X is a topological group, then the k-invariant of the 
$?-groupoid aX can be identified with the first Postnikov invariant of BSX, 
the classifying space of the singular complex of X. 

In this Theorem, the singular complex 8X is a simplicid group, and 
its classifying space R= B,SX is the CW-complex which is the realisation 
IL] of the simplicial set L= w8X [lo]. We follow [9] in describing the 
Postnikov invariant of K in terms of its cell-structure as the k-invariant 
of the crossed module Mx= (m(K, Kl), no, a’), where Kl is the l- 
skeleton of K and b’ is the homotopy boundary. Now the k-invariant of 
nX is that of the crossed module Mx= (Cost,xe, X, b). We prove Theorem 3 
by constructing a morphism f : A!lx + Mx such that f induces isomorphisms 
fo : Coker b’ +- Coker 8, fs : Ker b’ -+ Ker b. The construction of k-invariants 
[9] then implies that fo* k(MK) =fa*k(Mx) and this is what is required 
for Theorem 3. 
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Since K = 1~51 where L= W&‘X, we may use the descriptions of the i- 
simplices of L given in [lo]. Thus & is a point, and & consists of the 
points of X. Hence nl(K1) is the free group on generators [u] for u E X 
with relation [e] = 1, and a morphism fi : nl(K1) -+ X is obtained by ex- 
tending the identity map on generators. 

According to [9] Mx is isomorphic to 2M&= (~z/&~s, nl(Kl), 62) where 
& is induced by da in the operator sequence [13] 

ds da 
-+ e3 - e2 - m(=), 

and en =n,,(Kn, K+-1) is for n= 2 tbe free crossed (en &)-module on the 
S-cells of K and for n= 3 is the free ni(K2)-module on the 3-eells of K [13]. 
Thus to define & : es/da es --f CosLx e we need only define & : es -+ CO&X e 
by specifying $46) for each 2-cell 6 of K in such a way that (i) $46) = 
=f~dz(d) and (ii) jz&ea=O. 

The elements of LZ are pairs (2, U) such that u E X and 1 is a path in 
X from 2(O) to J(1). Then bo(L, u)=u, bi(l, u)=2(l)u I), bz(l, u)=A(O) and 
so &(A, u) = [A(O)][u][A( l)u]-1. s o we define f&l, U) to be e if (2, U) is 
degenerate and otherwise to be [J](lnu,)-1. It follows that 

This proves (i). 

fl &(A, 21) = i(O) u u-1 A( 1)-i 

= $f2(2,u). 

For the proof of (ii) it is enough to show that fad&) = 0 for each non- 
degenerate 3-simplex x of L, since these form a set of free generators of 
the ni(Ks)-module es, and & is an operator morphism. For such a x the 
homotopy addition lemma gives 

where a is the element of nl(Kl-) determined by bsbz(x) and [&XI denotes 
the generator of ez corresponding to &x. Now x is a triple (a, 1, u) where 
u E X, 3L is a path in X and 0 is a singular S-simplex in X. Let bo a=p, 
&o=y, bzo=ol (so that, in I~X, [~]=[a] o [PI), and let ol(O)=z=y(O), 
or(l)=p(O)=y, p(l)=r(l)=x, n(l)=s, J(O)=t. By the formulaei) for ba 
in WC, and since f2 is an operator morphism 

(1) 

(2) 

(3) 

A&M =f2b, Of22(/9~, N&Y, @-lf2a(@, uF1)-l 

= [&]l;‘[@]( 1, l&1( [y]l[‘)-i( l,[A]l;ll,l)-1 

= ~~]~;‘[~](~~]~;‘)(~B1-1 ly}{[&l L}(Lw1)1~’ 

=e 

1) The formula for &+I in VG on p. 87 of [lo] should interchange bgn-r and 

gn4+1. 
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where to deduce (2) from (1) we use the substitution [r]= [m]l;‘[fi], and 
to deduce (3) from (2) we note that each term in round brackets lies in 
Cost,x e and so by $1 commutes with elements of St,x e, and in particular 
with each term in curly brackets. 

This completes the proof of (ii) and so gives the construction of 
f’ : Mk -+ Mx. Now m(K) = Coker (ds : ez + ~1) is the free group on 
generators [u], u E X, with relations [e] = 1, [u-2( 0)] = [u][A( l)], for u E X, 
), a path in X. It follows easily that fh: Coker & --f Coker b is an iso- 
morphism ni( K) -+ n,-,(X). We also need to prove that fi: Ker 62 + Ker b 
is an isomorphism, where Ker a$ = ~z( K) and Ker b = ni(X, e). But nz(K) = 
=nz(L) and L is a Kan complex ([7] Proposition 10.4) ; hence elements 
of m(L) are represented by elements of LZ with faces at the base point, 
i.e. by pairs (1, e) where 1 is a loop at e. Then fi is given by [(A, e)] + [A], 
and this is the standard map m(L) -+ ni(SX) which is known to be an 
isomorphism. 

This completes the proof of Theorem 3. 

There should be a better proof of Theorem 3. 

What would seem to be required is either a description of the first 
k-invariant of a topological space R in terms of some crossed module 
defined using fibrations, or else a description of the first k-invariant of 
a simplicial set L in terms of a crossed module defined directly by the 
simplicial structure of L. Neither such description is known to us. 

Our final result gives an application of Theorem 3. 

PROPOSITION 4. Let X be a topological group which is a split extension 
of a discrete group by a path-connected group. Then the first k-invariant 
of BSX is zero. 

PROOF. According to [9] p. 43 the k-invariant of the crossed module 
Mx = (Cost,x e, X, o) is determined from the exact sequence 

e + 221(X, e) + Costnxe -+ a XL-+-F+e 

(where in our case F =neX is discrete) by considering first the deviation 
from being a morphism of a section s of v. However v : X --f F has a 
section which is a morphism, since X is a split extension. Therefore the 
k-invariant of MX is zero. The result follows from Theorem 3. 

COROLLARY 5. The first k-invariant of the classifying space Bx is zero 
if X is any quotient of O(m) by a normal subgroup. 

PROOF. If X is connected the result is clear. Otherwise it is well-known 
that the determinant map O(n) + 22 has a section s which is a morphism, 
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and so & section for X -+ m X is the composite 22 --! + O(n) T-+ X where 
p is the projection. 

There are examples of topological groups X such that Mx haa non- 
trivial k-invariant -such an X is G(Y) where Y is a connected finite 
simplicial complex with non-trivial first Postnikow invariant, and G(Y) 
is M&or’s group model of the loop-space of Y [ll]. 

R. Brown, C. B. Spencer, 
School of Mathematics and Computer Scien.ce, Department of Mathematics, 
University College of North Wales, The University, 
Bangor, fITu.iynedd, LL57 2UW Hong Kong 
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