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Abstract

Given a sequence of martingale differences, Burkholder found the sharp constant for the L p-norm
of the corresponding martingale transform. We are able to determine the sharp L p-norm of a small
“quadratic perturbation” of the martingale transform in L p . By “quadratic perturbation” of the martingale
transform, we mean the L p norm of the square root of the squares of the martingale transform and the
original martingale (with a small constant). The problem of perturbation of martingale transform appears
naturally if one wants to estimate the linear combination of Riesz transforms (as, for example, in the
case of Ahlfors–Beurling operator). Let {dk}k≥0 be a complex martingale difference in L p

[0, 1], where
1 < p < ∞, and {εk}k≥0 a sequence in {±1}. We obtain the following generalization of Burkholder’s
famous result. If τ ∈ [−

1
2 , 1

2 ] and n ∈ Z+, then n
k=0


εk
τ


dk


L p([0,1],C2)

≤ ((p∗
− 1)2

+ τ2)
1
2

 n
k=0

dk


L p([0,1],C)

,

where ((p∗
− 1)2

+ τ2)
1
2 is sharp and p∗

− 1 = max{p − 1, 1
p−1 }. For 2 ≤ p < ∞, the result is also true

with the sharp constant for τ ∈ R.
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1. Introduction

In a series of papers, [5–12], Burkholder was able to compute the L p operator norm
of the martingale transform, which we will denote as MT . This was quite a revolutionary
result, not only because of the result itself but because of the method for approaching the
problem. Burkholder’s method in these early papers was the inspiration for the Bellman function
technique, which has been a very useful tool in approaching modern and classical problems in
harmonic analysis (this paper will demonstrate the Bellman function technique as well). But, the
result itself has many applications. One particular application of his result is for obtaining sharp
estimates for singular integrals. Consider the Ahlfors–Beurling operator, which we will denote

as T . Lehto, [16], showed in 1965 that ∥T ∥p := ∥T ∥p→p ≥ (p ∗ −1) = max


p − 1, 1
p−1


.

Iwaniec conjectured in 1982, [15], that ∥T ∥p = p∗
− 1. The only progress toward proving that

conjecture has been using Burkholder’s result, see [17,2,1] for the major results toward proving
the conjecture. However, Burkholder’s estimates have been useful for lower bound estimates as
well. For example, Geiss et al. [14] were able to show that ∥ℜT ∥p, ∥ℑT ∥p ≥ p∗

− 1, by using
Burkholder’s estimates. The upper bound for these two operators was determined as p∗

− 1 by
Nazarov and Volberg, [17] and Bañuelos et al. [2], so we now have ∥ℜT ∥p = ∥ℑT ∥p = p∗

− 1.
Note that ℜT the difference of the squares of the planar Riesz transforms, i.e. T = R2

1 − R2
2 .

A recent result of Geiss et al. [14] points to the following observation, though not
immediately. We can estimate linear combinations of squares of Riesz transforms if we know
the corresponding estimate for a linear combination of the martingale transform and the identity
operator. In other words, one can get at estimates of the norm of (R2

1 − R2
2) + τ · I , by knowing

the estimates of the norm of MT +τ · I · ∥MT +τ · I∥p has only been computed for either τ = 0
by Burkholder [8] or τ = ±1 by Choi [13]. The problem is still open for all other τ -values and
seems to be very difficult, though we have had some progress. But, if we consider “quadratic”
rather than linear perturbations then things become more manageable (see [3,4]). This brings
us to the focus of this paper, which is determining estimates for quadratic perturbations of the
martingale transform, which will have connections to quadratic combinations of squares of Riesz
transforms.

To prove our main result, we are going to take a slightly indirect approach. Burkholder
(see [8]) defined the martingale transform, MTε, as

MTε


n

k=1

dk


:=

n
k=1

εkdk .

Then the main result can be stated as

sup
ε⃗

MTε⃗

τ I


L p(C)→L p(C2)

= sup
ε⃗

 n
k=1


εk
τ


dk


p n

k=1
dk


p

= ((p∗
− 1)2

+ τ 2)
1
2 ,

where I is the identity transformation and τ is “small”. However, rather than working with
this martingale transform in terms of the martingale differences, in a probabilistic setting, we
will define another martingale transform in terms of the Haar expansion of L p

[0, 1] functions
and set up a Bellman function in that context. Burkholder showed, in [12], that these two
different martingale transforms have the same L p operator norm, for τ = 0, so we expected
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a perturbation of these to act similarly and it turns out that they do. For convenience, we
will work with the martingale transform in the Haar setting. Using the Bellman function
technique will turn the problem of finding the sharp constant of the above estimate into
solving a second order partial differential equation. The beauty of this approach is that it
gets right to the heart of the problem with very little advanced techniques needed in the
process. In fact, the only background material that is needed for the Bellman function technique
approach, is some basic knowledge of partial differential equations and some elementary
analysis.

Observe that for 2 ≤ p < ∞, the estimate from above is just an application of Minkowski’s
inequality on L

p
2 and Burkholder’s original result. But, this argument does not address sharpness,

even though the constant obtained turns out to be the sharp constant for small τ . For 1 < p < 2,

Minkowski’s inequality (in l
2
p ) also plays a role, but to a lesser extent and cannot give the sharp

constant, as we will see Proposition 30. It is, indeed, very strange that such sloppy estimation
could give the estimate with sharp constant for 1 ≤ p < ∞. We will now rigorously develop
some background ideas needed to set up the Bellman function.

In our calculations, we follow the scheme of [19], but our “Dirichlet problem” for
Monge–Ampère is different. For small τ the scheme works. For large τ and 1 < p < 2 it
definitely must be changed as [3] shows. The amazing feature is the “splitting” of the result into
two quite different cases: 1 < p < 2 and 2 ≤ p < ∞, where in the former case we know the
result only for small τ , but in the latter one τ is unrestricted.

1.1. Motivation of the Bellman function

Let I be an interval and α±
∈ R+ such that α+

+α−
= 1. These α± generate two subintervals

I ± such that |I ±
| = α±

|I | and I = I −
∪ I +. We can continue this decomposition indefinitely as

follows. Any sequence {αn,m : 0 < αn,m < 1, 0 ≤ m < 2n, 0 < n < ∞, αn,2k + αn,2k+1 = 1},
generates the collection I := {In,m : 0 ≤ m < 2n, 0 < n < ∞} of subintervals of I , where
In,m = I −

n,m ∪ I +
n,m = In+1,2m+1 ∪ In+1,2m+1 and α−

= αn+1,2m, α+
= αn+1,2m+1. Note that

I0,0 = I .

For any J ∈ I we define the Haar function h J := −


α+

α−|J |
χJ− +


α−

α+|J |
χJ+ . If max

{|In,m | : 0 ≤ m < 2n
} → 0 as n → ∞ then {h J }J∈I is an orthonormal basis for L2

0(I ) :=

{ f ∈ L2(I ) :


I f = 0}. However, if we add one extra function then Haar functions form an
orthonormal basis in L2

[0, 1]. Fix I0 = [0, 1] and I = D as the dyadic subintervals of I . Let
Dn = {I ∈ D : |I | = 2−n

}. We use the notation ⟨ f ⟩J to represent the average integral of f over
the interval J ∈ D and σ(Dn) to be the σ -algebra generated by Dn . For any f ∈ L1(I0) we have
the identity

I∈Dn

⟨ f ⟩I χI = ⟨ f ⟩(I0)χ[0,1) +


I∈σ(Dn)

( f, h I )h I . (1.1)

By Lebesgue differentiation, the left-hand side in (1.1) converges to f almost everywhere, as
n → ∞. So any f ∈ L p(I0) ⊂ L1(I0) can be decomposed in terms of the Haar system
as

f = ⟨ f ⟩(I0)χ(I0) +


I∈D

( f, h I )h I .
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In terms of the expansion in the Haar system we define the martingale transform, g of f ,
as

g := ⟨g⟩(I0)χ(I0) +


I∈D

εI ( f, h I )h I ,

where εI ∈ {±1}. Requiring that |(g, h J )| = |( f, h J )|, for all J ∈ D, is equivalent to g being
the martingale transform of f , for f, g ∈ L p(I0).

Now we define the Bellman function as B(x1, x2, x3) :=

sup
f,g

{⟨(g2
+ τ 2 f 2)

p
2 ⟩I : x1 = ⟨ f ⟩I , x2 = ⟨g⟩I , x3

= ⟨| f |
p
⟩I , |( f, h J )| = |(g, h J )|, ∀J ∈ D}

on the domain Ω = {x ∈ R3
: x3 ≥ 0, |x1|

p
≤ x3}. The Bellman function is defined in

this way, since we would like to know the value of the supremum of
 g

τ f


p
, where g is

the martingale transform of f . Note that |x1|
p

≤ x3 is just Hölder’s inequality. Even though
the Bellman function is only being defined for real-valued functions, we can “vectorize” it to
work for complex-valued (and even Hilbert-valued) functions, as we will later demonstrate.
Finding the Bellman function will make proving the following main result quite easy. We will

call ⟨(g2
+ τ 2 f 2)

p
2 ⟩

1
p
I the “quadratic perturbation” of the martingale transform’s norm ⟨|g|

p
⟩

1
p
I .

Theorem 1. Let {dk}k≥1 be a complex martingale difference in L p
[0, 1], where 1 < p < ∞,

and {εk}k≥1 a sequence in {±1}. If τ ∈ [−
1
2 , 1

2 ] and n ∈ Z+ then n
k=1


εk
τ


dk


L p([0,1],C2)

≤ ((p∗
− 1)2

+ τ 2)
1
2

 n
k=1

dk


L p([0,1],C)

,

where ((p∗
−1)2

+ τ 2)
p
2 is sharp. The result is also true with the sharp constant for 2 ≤ p < ∞

and τ ∈ R.

Note that when τ = 0 we get Burkholder’s famous result [8].
Now that we have the problem formalized, notice that B is independent of the initial choice

of I0 (which we will just denote I from now on) and {αn,m}n,m , so we return to having them
arbitrary. Finding B when p = 2 is easy, so we will do this first.

Proposition 2. If p = 2 then B(x) = x2
2 − x2

1 + (1 + τ 2)x3.

Proof. Since f ∈ L2(I ) then f = ⟨ f ⟩I χI +


J∈D( f, h J )h J implies

⟨| f |
2
⟩I =

1
|I |


I
| f |

2

= ⟨ f ⟩
2
I + 2⟨ f ⟩I


J∈D

( f, h J )
1
|I |


I

h J +
1
|I |


I


J,K∈D

( f, h J )( f, hK )h J hK

= ⟨ f ⟩
2
I +

1
|I |


J∈D

|( f, h J )|2.
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So ∥ f ∥
2
2 = |I |x3 = |I |x2

1 +


J∈D |( f, h J )|2 and similarly

∥g∥
2
2 = |I |x2

2 +


J∈D

|(g, h J )|2 = |I |x2
2 +


J∈D

|( f, h J )|2.

Now we can compute B explicitly, (p = 2)

⟨(g2
+ τ 2 f 2)

p
2 ⟩I = ⟨|g|

2
⟩I + τ 2

⟨| f |
2
⟩I = x2

2 + τ 2x2
1 + (1 + τ 2)

1
|I |


J∈D

|( f, h J )|2

= x2
2 + τ 2x2

1 + (1 + τ 2)(x3 − x2
1). �

1.2. Outline of argument to prove main result

Computing the Bellman function, B, for p ≠ 2, is much more difficult, so more machinery
is needed. In Section 1.3, we will derive properties of the Bellman function, the most notable of
which is concavity under certain conditions. Finding a B to satisfy the concavity will amount to
solving a partial differential equation, after adding an assumption. This PDE has a solution on
characteristics that is well known, so we just need to find an explicit solution from this, using
the Bellman function properties. How the characteristics behave in the domain of definition for
the Bellman function will give us several cases to consider. In Section 2, we will get a Bellman
function candidate for 1 < p < ∞ by putting together several cases. Once we have what
we think is the Bellman function, we need to show that it has the necessary smoothness and
that Assumption 7 was not too restrictive to give us the Bellman function. This is covered in
Section 3. Finally the main result is shown in Section 4. In Section 6, we show why several
cases did not lead to a Bellman function candidate and why the value of τ was restricted for the
Bellman function candidate.

1.3. Properties of the Bellman function

One of the properties we nearly always have (or impose) for any Bellman function, is
concavity (or convexity). It is not true that B is globally concave, on all of Ω , but under certain
conditions it is concave. The needed condition is that g is the martingale transform of f , or
|x+

1 − x−

1 | = |x+

2 − x−

2 | in terms of the variables in Ω .

Definition 3. We say that the function B on Ω has restrictive concavity if for all x±
∈ Ω

such that x = α+x+
+ α−x−, α+

+ α−
= 1 and |x+

1 − x−

1 | = |x+

2 − x−

2 | then B(x) ≥

α+B(x+) + α−B(x−).

Proposition 4. The Bellman function B is restrictively concave in the x-variables.

Proof. Let ε > 0 be given and x±
∈ Ω . By the definition of B, there exists f ±, g± on I ± such

that ⟨ f ⟩J± = x±

1 , ⟨g⟩J± = x±

2 , ⟨| f ±
|
p
⟩I ± = x±

3 and

B(x±) − ⟨[(g±)2
+ τ 2( f ±)2

]
p
2 ⟩I ± ≤ ε.

On I = I +
∪ I − we define f and g as f := f +χI + + f −χI − , g := g+χI + + g−χI − . So,

|x+

1 − x−

1 | = |⟨ f ⟩I + − ⟨ f ⟩I − | =

 1
|I +|


|I −|

f −
1

|I −|


I −

f


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=

 1
α+|I |


|I −|

f −
1

α−|I |


I −

f

 =
1
|I |

 f


1

α+
χI + −

1
α−

χI −


=


|I |

α+α−

 f h I

 =:


|I |

α+α−
|( f, h I )| .

Similarly, |x+

2 −x−

2 | =


|I |

α+α− |(g, h I )|. So our assumption |x+

1 −x−

1 | = |x+

2 −x−

2 | is equivalent
to |( f, h I )| = |(g, h I )|. Since x1 = ⟨ f ⟩I , x2 = ⟨g⟩I and x3 = ⟨| f |

p
⟩I then f and g are test

functions and so

B(x) ≥ ⟨(g2
+ τ 2 f 2)

p
2 ⟩I

= α+
⟨[(g+)2

+ τ 2( f +)2
]

p
2 ⟩I + + α−

⟨[(g−)2
+ τ 2( f −)2

]
p
2 ⟩I −

≥ α+B(x+) + α−B(x−) − ε. �

At this point we do not quite have concavity of B on Ω since there is the restriction
|x+

1 − x−

1 | = |x+

2 − x−

2 | needed. To make this condition more manageable, we will make
a change of coordinates. Let y1 :=

x2+x1
2 , y2 :=

x2−x1
2 and y3 := x3. We will also change

notation for the Bellman function and corresponding domain in the new variable y. Let
M(y1, y2, y3) := B(x1, x2, x3) = B(y1 − y2, y1 + y2, y3). Then the domain of definition for M
will be Ξ := {y ∈ R3

: y3 ≥ 0, |y1 − y2|
p

≤ y3}.
If we consider x±

∈ Ω such that |x+

1 − x−

1 | = |x+

2 − x−

2 |, then the corresponding points
y±

∈ Ξ satisfy either y+

1 = y−

1 or y+

2 = y−

2 . This implies that fixing y1 as y+

1 = y−

1 or y2 as
y+

2 = y−

2 will make M concave with respect to y2, y3 under fixed y1 and with respect to y1, y3
under y2 fixed.

Rather than using Proposition 4 to check the concavity of the Bellman function we can just
check it in the following way, assuming M is C2. Let j ≠ i ∈ {1, 2} and fix yi as y+

i = y−

i .
Then M as a function of y j , y3 is concave if

M y j y j M y j y3

M y3 y j M y3 y3


≤ 0,

which is equivalent to

M y j y j ≤ 0, M y3 y3 ≤ 0, D j = M y j y j M y3 y3 − M y3 y j M y j y3 ≥ 0.

Proposition 5 (Restrictive Concavity in y-Variables). Let j ≠ i ∈ {1, 2} and fix yi as y+

i = y−

i .
If M y j y j ≤ 0, M y3 y3 ≤ 0 and D j = M y j y j M y3 y3 − (M y j y3)

2
≥ 0 for j = 1 and j = 2 then

M is Restrictively concave.

The Bellman function, as it turns out, has many other nice properties.

Proposition 6. Suppose that M is C1(R3), then M has the following properties.

(i) Symmetry: M(y1, y2, y3) = M(y2, y1, y3) = M(−y1, −y2, y3).
(ii) Dirichlet boundary data: M(y1, y2, (y1 − y2)

p) = ((y1 + y2)
2
+ τ 2(y1 − y2)

2)
p
2 .

(iii) Neumann conditions: M y1 = M y2 on y1 = y2 and M y1 = −M y2 on y1 = −y2.
(iv) Homogeneity: M(r y1, r y2, r p y3) = r p M(y1, y2, y3), ∀r > 0.
(v) Homogeneity relation: y1 M y1 + y2 M y2 + py3 M y3 = pM.
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Proof. (i) Note that we get B(x1, x2, x3) = B(−x1, x2, x3) = B(x1, −x2, x3) by considering
test functions f = − f andg = −g. Change coordinates from x to y and the result follows.

(ii) On the boundary {x3 = |x1|
p
} of Ω we see that

1
|I |


I
| f |

p
= ⟨| f |

p
⟩I = x3 = |x1|

p
= |⟨ f ⟩I |

p
=

 1
|I |


I

f

p

is only possible if f ≡ const. (i.e. f = x1). But, |( f, h J )| = |(g, h J )| for all J ∈ I ,
which implies that g ≡ const. (i.e. g = x2). Then B(x1, x2, |x1|

p) = ⟨(g2
+ τ 2 f 2)

p
2 ⟩I =

(x2
2 + τ 2x2

1)
p
2 . Changing coordinates gives the result.

(iii) This follows from (i).
(iv) Consider the test functions f = r f,g = rg.
(v) Differentiate (iv) with respect to r and evaluate it at r = 1. �

Now that we have all of the properties of the Bellman function we will turn our attention
to actually finding it. Proposition 5 gives us two partial differential inequalities to solve, D1 ≥

0, D2 ≥ 0, that the Bellman function must satisfy. Since the Bellman function is the supremum
of the left-hand side of our estimate under the condition that g is the martingale transform of f ,
and must also satisfy the estimates in Proposition 5, then it seems reasonable that the Bellman
function (being the optimal such function) may satisfy the following, for either j = 1 or j = 2:

D j = M y j y j M y3 y3 − (M y3 y j )
2

= 0.

The PDE that we now have is the well known Monge–Ampère equation which has a solution.
Let us make it clear that we have added an assumption.

Assumption 7. D j = M y j y j M y3 y3 − (M y3 y j )
2

= 0, for either j = 1 or j = 2.

Adding this assumption comes with a price. Any function that we construct, satisfying all
properties of the Bellman function, must somehow be shown to be the Bellman function. We will
refer to any function satisfying some, or all Bellman function properties as a Bellman function
candidate.

Proposition 8. For j = 1 or 2, M y j y j M y3 y3 − (M y3 y j )
2

= 0 has the solution M(y) =

y j t j + y3t3 + t0 on the characteristics y j dt j + y3dt3 + dt0 = 0, which are straight lines
in the y j × y3 plane. Furthermore, t0, t j , t3 are constant on characteristics with the property
My j = t j , My3 = t3.

This is a result of Pogorelov; see [18,20]. Now that we have a solution M to the
Monge–Ampère, we need to get rid of t0, t j , t3 so that we have an explicit form of M , without
the characteristics. We note that a solution to the Monge–Ampère is not necessarily the Bellman
function. It must satisfy the restrictive concavity of Proposition 5, be C1-smooth, and satisfy
the properties of Proposition 6. The restrictive concavity property is one of the key deciding
factors of whether or not we have a Bellman function in many cases. Even if the Monge–Ampère
solution satisfies all of those conditions, it must still be shown to be equal to the Bellman function,
because we added an additional assumption (Assumption 7) to get the Monge–Ampère solution
as a starting point. This will be considered rigorously in Section 3, after we obtain a solution
to the Monge–Ampère equation, with the appropriate Bellman function properties. So from this
point on we will use M and B to denote solutions to the Monge–Ampère equation, i.e. Bellman
function candidates, and M and B to denote the true Bellman function.
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Fig. 1. Sample characteristic of solution from Case (12).

2. Computing the Bellman function candidate from the Monge–Ampère solution

Due to the symmetry property of M, from Proposition 6, we only need to consider a portion of
the domain Ξ , which we will denote as, Ξ+ := {y : −y1 ≤ y2 ≤ y1, y3 ≥ 0, (y1 − y2)

p
≤ y3}.

Since the characteristics are straight lines, then one end of each line must be on the boundary
{y : (y1 − y2)

p
= y3}. Let U denote the point at which the characteristic touches the boundary.

Furthermore, the characteristics can only behave in one of the following four ways, since they
are straight lines in the plane:

(1) The characteristic goes from U to {y : y1 = y2}.
(2) The characteristic goes from U to infinity, running parallel to the y3-axis.
(3) The characteristic goes from U to {y : y1 = −y2}.
(4) The characteristic goes from U to {y : (y1 − y2)

p
= y3}.

To find a Bellman function candidate we must first fix a variable (y1 or y2) and a case for the
characteristics. Then we use the Bellman function properties to get rid of the characteristics. If the
Monge–Ampère solution satisfies restrictive concavity, then it is a Bellman function candidate.
However, checking the restrictive concavity is quite difficult in many of the cases, since it
amounts to doing second derivative estimates for an implicitly defined function. Let us now
find our Bellman function candidate.

Remark 9. Since we will have either y1 or y2 fixed in each case, then there will be eight cases in
all. Let (1 j ), (2 j ), (3 j ), (4 j ) denote the case when My j y j My3 y3 − (My3 y j )

2
= 0 and yi is fixed,

where i ≠ j . Also, we will denote G(z1, z2) := (z1 +z2)
p−1

[z1 −(p−1)z2] and ω :=


M(y)

y3

 1
p

from this point on.

2.1. Bellman candidate for 2 < p < ∞

The solution to the Monge–Ampère equation when 2 < p < ∞, is only partially valid on the
domain in two cases, due to restrictive concavity. Case (12), will give us an implicit solution that
is valid on part of Ξ+ and Case (22) will give us an explicit solution for the remaining part of
Ξ+. First, we deal with Case (12). (See Fig. 1)

2.1.1. Case (12)

Since we are considering Case (12), then y1 ≥ 0 is fixed until the point that we have
the implicit solution independent of the characteristics satisfying all of the Bellman function
properties.
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Proposition 10. For 1 < p < ∞ and p−2
p y1 < y2 < y1, M is given implicitly by the relation

G(y1 + y2, y1 − y2) = y3G(
√

ω2 − τ 2, 1), where G(z1, z2) := (z1 + z2)
p−1

[z1 − (p − 1)z2] on

z1 + z2 ≥ 0 and ω :=


M(y)

y3

 1
p
.

This is proven through a series of lemmas.

Lemma 11. M(y) = t2 y2 + t3 y3 + t0 on the characteristic y2dt2 + y3dt3 + dt0 = 0 can be

simplified to M(y) =

√
(y1+u)2+τ 2(y1−u)2

y1−u

p

y3, where u is the unique solution to the equation

y2+( 2
p −1)y1

y3
=

u+


2
p −1


y1

(y1−u)p and p−2
p y1 < y2 < y1.

Proof. A characteristic in Case (12) is from U = (y1, u, (y1 − u)p) to W = (y1, y1, w).
Throughout the proof we will use the properties of the Bellman function from Proposition 6.
Using the Neumann property and the property from Proposition 8 we get My1 = My2 = t2 at W .
By homogeneity at W we get

py2t2 + pwt3 + pt0 = pM(W ) = y1 My1 + y2 My2 + py3 My3 = 2y1t2 + pwt3.

Then t0 = ( 2
p −1)y1t2 and dt0 = ( 2

p −1)y1dt2, since y1 is fixed. So M(y) = [y2+( 2
p −1)y1]t2+

y3t3 on [y2 + ( 2
p − 1)y1]dt2 + y3dt3 = 0. By substitution we get, M(y) = y3[t3 − t2

dt3
dt2

] on

characteristics. But, t2, t3,
dt3
dt2

are constant on characteristics, which gives that M(y)
y3

≡ const. as
well. We can calculate the value of the constant by using the Dirichlet boundary data for M at U .

Therefore, M(y) =

√
(y1+u)2+τ 2(y1−u)2

y1−u

p

y3, where u is the solution to the equation

y2 +


2
p − 1


y1

y3
=

u +


2
p − 1


y1

(y1 − u)p . (2.1)

Now fix u = −( 2
p − 1)y1. Then we see that y2 = −( 2

p − 1)y1 = u is also fixed by (2.1).
This means that the characteristics are limited to part of the domain, as shown in Fig. 2, since
they start at U and end at W ∈ {y1 = y2}. All that remains is verifying Eq. (2.1) has exactly one
solution u = u(y1, y2, y3) in the sector p−2

p y1 < y2 < y1. Indeed, the function

f (u) := y3


u +


2
p

− 1


y1


− (y1 − u)p


y2 +


2
p

− 1


y1


is monotone increasing for u < y1, f (−( 2

p − 1)y1) = −


2
p y1

p
y2 +

 2
p − 1


y1


< 0 and

f (y1) =
2
p y1 y3 > 0. Therefore, we do get a unique solution, u, in the sector. �

Lemma 12. M(y) =

√
(y1+u)2+τ 2(y1−u)2

y1−u

p

y3 can be rewritten as G(y1 + y2, y1 − y2) =

y3G(
√

ω2 − τ 2, 1) for p−2
p y1 < y2 < y1.

Proof. ω =


M(y)

y3

 1
p

=

√
(y1+u)2+τ 2(y1−u)2

y1−u ≥ |τ |
|y1−u|

y1−u = |τ |.
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Fig. 2. Sector for characteristics in Case (12), when p > 2.

Since y1 ± u ≥ 0 and ω2
− τ 2

≥ 0, then u =

√
ω2−τ 2−1

√
ω2−τ 2+1

y1 by inversion. Substituting this into

y2+


2
p −1


y1

y3
=

u+


2
p −1


y1

(y1−u)p gives

2p−1 y p−1
1 [py2 − (p − 2)y1] = y3(


ω2 − τ 2 + 1)p−1

[


ω2 − τ 2 − (p − 1)]

or (x1 + x2)
p−1

[x2 − (p −1)x1] =

B
2
p −


τ x

1
p

3

2

+ x
1
p

3

p−1 
B

2
p −


τ x

1
p

3

2

− (p −1)

x
1
p

3


. Thus, G(x2, x1) = G

B
2
p −


τ x

1
p

3

2

, x
1
p

3

 or G(y1 + y2, y1 − y2) = y3G

(
√

ω2 − τ 2, 1). �

This proves Proposition 10. We have constructed a partial Bellman function candidate from
the Monge–Ampère solution in Case (12), so y1 no longer needs to be fixed. All of the properties
of the Bellman function were used to derive this partial Bellman candidate, but the restrictive
concavity from Proposition 5 still needs to be verified. To verify restrictive concavity, we need
that My2 y2 ≤ 0, My3 y3 ≤ 0, D2 ≥ 0 and My1 y1 ≤ 0, D1 ≥ 0. By assumption D2 = 0,
we need not worry about that estimate. The remaining estimates will be verified in a series
of lemmas. The first lemma is an idea taken from Burkholder [6] to make the calculations for
computing mixed partials shorter. In the lemma, we compute the partials of arbitrary functions
which we will choose specifically later, although it is not hard to see what the appropriate choices
should be.

Lemma 13. Let H = H(y1, y2),Φ(ω) =
H(y1,y2)

y3
, R1 = R1(ω) :=

1
Φ′ and R2 = R2(ω) :=

R′

1 = −
Φ′′

Φ′2 . Then

My3 y3
=

pωp−2 R1 H2

y3
3

[ωR2 + (p − 1)R1]

My3 yi
= −

pωp−2 R1 H H ′

y2
3

[ωR2 + (p − 1)R1]
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Myi yi
=

pωp−2 R1

y3


[ωR2 + (p − 1)R1](H ′)2

+ ωy3 H ′′


Di = My3 y3

Myi yi
− M2

y3 yi
=

p2ω2p−3 R2
1 H2 H ′′

y3
3

[ωR2 + (p − 1)R1].

Proof. First of all we calculate the partial derivatives of ω:

Φ′ωy3
= −

H

y2
3

H⇒ ωy3
= −

R1 H

y2
3

,

Φ′ωyi
=

Hyi

y3
H⇒ ωyi

=
R1 Hyi

y3
=

R1 H ′

y3
, i = 1, 2.

Here and further we shall use notation H ′ for any partial derivative Hyi , i = 1, 2. This cannot
cause any confusion since only one i ∈ {1, 2} participate in the calculation of Di .

ωy3 y3
= −

R2ωy3
H

y2
3

+ 2
R1 H

y3
3

=
R1 H

y4
3

(R2 H + 2y3),

ωy3 yi
= −

R2ωyi
H

y2
3

−
R1 H ′

y2
3

= −
R1 H ′

y3
3

(R2 H + y3),

ωyi yi
=

R2ωyi
H

y3
+

R1 H ′

y3
=

R1

y2
3

(R2(H ′)2
+ y3 H ′′).

Now we pass to the calculation of derivatives of M = y3ω
p:

My3
= py3ω

p−1ωy3
+ ωp,

Myi
= py3ω

p−1ωyi
;

My3 y3
= py3ω

p−1ωy3 y3
+ 2pωp−1ωy3

+ p(p − 1)y3ω
p−2ω2

y3

=
pωp−2 R1 H2

y3
3

[ωR2 + (p − 1)R1], (2.2)

My3 yi
= py3ω

p−1ωy3 yi
+ pωp−1ωyi

+ p(p − 1)y3ω
p−2ωy3

ωyi

= −
pωp−2 R1 H H ′

y2
3

[ωR2 + (p − 1)R1],

Myi yi
= py3ω

p−1ωyi yi
+ p(p − 1)y3ω

p−2ω2
yi

=
pωp−2 R1

y3


[ωR2 + (p − 1)R1](H ′)2

+ ωy3 H ′′


. (2.3)

This yields

Di = My3 y3
Myi yi

− M2
y3 yi

=
p2ω2p−3 R2

1 H2 H ′′

y3
3

[ωR2 + (p − 1)R1]. � (2.4)
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Lemma 14. If αi , βi ∈ {±1} and H(y1, y2) = G(α1 y1 + α2 y2, β1 y1 + β2 y2) then

H ′′
=


4Gz1z2 , α j = β j
0, α j = −β j .

Consequently, in Case (12), sign H ′′
= − sign(p − 2).

Proof.

H ′′
=

∂2

∂y2
i

G(α1 y1 + α2 y2, β1 y1 + β2 y2)

= α2
i Gz1 z1

+ 2αiβi Gz1 z2
+ β2

i Gz2 z2

= Gz1 z1
+ Gz2 z2

± 2Gz1 z2
,

where the “+” sign has to be taken if the coefficients in front of yi are equal and the “−” sign in
the opposite case.

The derivatives of G are simple:

Gz1 = p(z1 + z2)
p−2z1 − (p − 2)z2


,

Gz2 = −p(p − 1)z2(z1 + z2)
p−2

;

Gz1 z2
= p(p − 1)(z1 + z2)

p−3z1 − (p − 3)z2

,

Gz1 z2
= −p(p − 1)(p − 2)z2(z1 + z2)

p−3,

Gz2 z2
= −p(p − 1)(z1 + z2)

p−3z1 + (p − 1)z2

.

Note that Gz1 z1
+ Gz2 z2

= 2Gz1 z2
, and therefore,

H ′′
=


4Gz1z2 , α j = β j
0, α j = −β j .

Now in Case (12), we must choose α1 = 1, α2 = 1, β1 = 1 and β2 = −1 for H to
match how the implicit solution was defined in terms of G in Proposition 10. Then Gz1 z2

=

−p(p − 1)(p − 2)(y1 − y2)(2y1)
p−3. �

Remark 15. Let β :=
√

ω2 − τ 2 from this point on. In Case (12), β > p − 1 in the sector
p−2

p y1⟨y2 < y1. Equivalently, B⟩(τ 2
+ (p − 1)2)

p
2 in p−2

p y1 < y2 < y1.

This is an easy application of Proposition 10:

(β + 1)p−1
[β − p + 1] = G(β, 1) =

1
y3

G(y1 + y2, y1 − y2)

= (2y1)
p−1

[−(p − 2)y1 + py2] > 0.

Before we can compute the signs of My1 y1 , My2 y2 , My3 y3 and D1 we need a technical lemma.

Lemma 16. If 1 < p < ∞ and τ ∈ R, then

g(β) := −p(p − 2)ωβ−3(β + 1)p−3
[(τ 2

+ p − 1)β2
− τ 2(p − 3)β + τ 2

]

satisfies sign g(β) = − sign(p − 2) in Case (12).
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Proof. The only terms controlling the sign in g are (p − 2) and the quadratic part, which we
will denote q(β). So we need to simply figure out the sign of q . The discriminant of q is
τ 2(p − 1)[τ 2(p − 5) − 4].

If p ≤ 5 then the discriminant of q is negative and so q(β) > 0. If p > 5, and
τ 2(p − 5) − 4 < 0 then q(β) > 0 once again.

The only case left to consider is if p > 5 and τ 2(p − 5) − 4 ≥ 0. The zeros of q are given

by β =
τ 2(p−3)±|τ |

√
p−1

√
τ 2(p−5)−4

2(τ 2+p−1)
. Let β1, β2 be the zeros such that β2 ≥ β1. We claim that

max{p − 1, β2} = p − 1. Indeed, p − 1 − β2 > 0

⇐⇒ (p + 1)τ 2
+ 2(p − 1)2 > |τ |


p − 1


τ 2(p − 5) − 4

⇐⇒ 4(p − 1)4
+ 4τ 2(p + 1)(p − 1)2

+ τ 4(p + 1)2 > τ 2(p − 1)(τ 2(p − 5) − 4)

⇐⇒ (p − 1)4
+ τ 2 p2(p − 1) + τ 4(2p − 1) > 0,

which is obviously true for all τ ∈ R. Now that we have proven the claim, recall that β > p − 1,
as shown in Remark 15. Therefore, β > β2, so q(β) > 0 in this case. �

Lemma 17. D1 > 0 in Case (12) for all τ ∈ R.

Proof. We use the partial derivatives of G computed in the proof of Lemma 14 to make the
computations of Φ′ and Φ′′ easier.

Φ(ω) = G(β, 1)

Φ′(ω) = pω[β + 1]
p−2

[1 − (p − 2)β−1
] (2.5)

Φ′′(ω) = p(β + 1)p−2
[1 − (p − 2)β−1

]

+ p(p − 2)ω2β−1
[β + 1]

p−3
[1 − (p − 2)β−1

]

+ p(p − 2)ω2β−3
[β − 1]

p−2

Λ = (p − 1)Φ′
− ωΦ′′

= p(p − 2)ωβ−1(β + 1)p−2
[1 − (p − 2)β−1

]

− p(p − 2)ω3β−3(β + 1)p−3
[β(β − p + 2) + β + 1]

= p(p − 2)ωβ−2(β + 1)p−3
[β − p + 2]{β(β + 1) − ω2

}

− p(p − 2)ω3β−3(β + 1)p−2

= p(p − 2)ωβ−3
[β(β − p + 2)(β − τ 2) − ω2(β + 1)]

= −p(p − 2)ωβ−3(β + 1)p−3
[(τ 2

+ p − 1)β2
− τ 2(p − 3)β + τ 2

]. (2.6)

So we can see that sign Λ = sign g(β) = − sign(p − 2), by Lemma 16. Therefore, sign D1 =

sign H ′′ sign Λ = [− sign(p − 2)]2 by (2.4) and Lemma 14. �

Since D1 > 0, then all that remains to be checked, for the restrictive concavity of M , is
that Myi yi (for i = 1, 2) and My3 y3 have the appropriate signs. But, it turns out that only for
2 < p < ∞, will these have the appropriate signs.

Lemma 18. sign My1 y1 = sign My2 y2 = sign My3 y3 = − sign(p − 2) in Case (12) for all τ ∈ R.
Therefore, M is a partial Bellman function candidate for 2 < p < ∞ but not for 1 < p < 2,
since it does not satisfy the required restrictive concavity.
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(a) y2 ≥ 0. (b) y2 ≤ 0.

Fig. 3. Sample characteristic of the Monge–Ampère solution in Case (21).

Proof. By (2.2),

My3 y3 =
pωp−2 R2

1 H2

y3
3


Λ
Φ′


.

Remark 15 gives Φ′ > 0. From Lemma 16, sign My3 y3 = sign Λ = sign g(β) = − sign(p − 2).
By (2.3), for i = 1 or 2,

Myi yi =
pωp−2 R1

y3


(ωR2 + (p − 1)R1)(H ′)2

+ ωy3 H ′′


=

pωp−2

y3(Φ′)3


Λ(H ′)2

+ ωy3 H ′′(Φ′)2

,

giving sign My2 y2 = − sign(p − 2). �

The previous two lemmas established that the partial Bellman function candidate, from Case
(12) satisfies the restrictive concavity property, for 2 < p < ∞. The candidate was constructed
using the remaining Bellman function properties, so it is in fact a partial candidate. Now we will
turn our attention to Case (2). As it turns out, Case (22) also gives a partial Bellman function
candidate, which, as luck would have it, is the missing half of the partial Bellman candidate just
constructed.

2.1.2. Case (22) for 2 < p < ∞

We can obtain a Bellman candidate from Case (2) without having to separately fix y1 or y2.
Let us compute the solution in this case. (Figs. 3 and 4)

Lemma 19. In Case (2) we obtain

M(y) = (1 + τ 2)
p
2 [y2

1 + 2γ y1 y2 + y2
2 ]

p
2 + c[y3 − (y1 − y2)

p
] (2.7)

as a Bellman function candidate, where c > 0 is some constant and γ =
1−τ 2

1+τ 2 .

Proof. In Case (2), on the characteristic yi dti +y3dt3+dt0 = 0, y1 and y2 are fixed. Furthermore,
on the characteristic, t0, ti , t3 are fixed, so we have
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Fig. 4. Sample characteristic of the Monge–Ampère solution for Case (22).

M(y) = yi ti + y3t3 + t0
= (yi ti + t0) + y3t3
= c1(y1, y2) + c2(y1, y2)y3.

Then My3 y3 = 0 and My3 yi = ∂yi c2. Recall that Di ≥ 0 by Proposition 5, so ∂yi c2(y1, y2) = 0.
This implies that c2 is a constant. Using the boundary data from Proposition 6 gives ((y1 + y2)

2
+

τ 2(y1 − y2)
2)

p
2 = M(y1, y2, (y1 − y2)

p) = c1(y1, y2) + c2(y1 − y2)
p. Solving for c1(y1, y2)

gives the result. To see that c2 > 0, just notice that as y3 → ∞, M(y) → ∞. �

It is not possible to determine if this Bellman function candidate satisfies restrictive concavity,
unless we know the value of the constant c in Lemma 19. This constant can be computed by using
the fact that (2.7) must agree with the partial candidate in Case (12) at y2 =

p−2
p y1, if (2.7) is in

fact a candidate itself.

Lemma 20. In Case (22), the value of the constant in Lemma 19 is c = ((p − 1)2
+ τ 2)

p
2 for

2 < p < ∞.

Proof. If M(y) = (1 + τ 2)
p
2 [y2

1 + 2γ y1 y2 + y2
2 ]

p
2 + c[y3 − (y1 − y2)

p
] (where γ =

1−τ 2

1+τ 2 ) is

to be a candidate, or partial candidate, then it must agree at y2 =
p−2

p y1, with the solution M

given implicitly by the relation G(y1 + y2, y1 − y2) = y3G(
√

ω2 − τ 2, 1), from Proposition 10.
At y2 =

p−2
p y1,

(


ω2 − τ 2 + 1)p−1
[


ω2 − τ 2 − p + 1] = G(


ω2 − τ 2, 1)

=
1
y3

(2y1)
p−1

[−(p − 2)y1 + (p − 2)y1]

= 0.

Since
√

ω2 − τ 2 + 1 ≠ 0 then
√

ω2 − τ 2 = p − 1, which implies ω = ((p − 1)2
+ τ 2)

1
2 . So,

((p − 1)2
+ τ 2)

p
2 y3 = ωp y3

= M


y1,

p − 2
p

y1, y3





N. Boros et al. / Advances in Mathematics 230 (2012) 2198–2234 2213

Fig. 5. Characteristics of Bellman candidate for 2 < p < ∞.

=


2

p − 1
p

y1

2

+ τ 2


2
p

y1

2
 p

2

+ c


y3 −

 p

2
y1

p
.

Now just solve for c. �

2.1.3. Gluing together partial candidates from cases (12) and (22)

It turns out that the Bellman function candidate obtained from Case (22) is only valid on
part of the domain Ξ+, since it does not remain concave throughout (for example at or near
(y1, y1, y3)). As luck would have it, the partial candidate has the necessary restrictive concavity
on the part of the domain where the candidate from Case (12) left off, i.e. in −y1 < y2 <

p−2
p y1.

This means that we can glue together the partial candidate from Cases (12) and (22) to get a
candidate on Ξ+ for 2 < p < ∞. The characteristics for this solution can be seen in Fig. 5.

Proposition 21. For 2 < p < ∞, γ =
1−τ 2

1+τ 2 and τ ∈ R, the solution to the Monge–Ampère
equation is given by

M(y) = (1 + τ 2)
p
2 [y2

1 + 2γ y1 y2 + y2
2 ]

p
2 + ((p − 1)2

+ τ 2)
p
2 [y3 − (y1 − y2)

p
]

when −y1 < y2 ≤
p−2

p y1 and is given implicitly by

G(y1 + y2, y1 − y2) = y3G(
√

ω2 − τ 2, 1) when p−2
p y1 ≤ y2 < y1, where G(z1, z2) =

(z1 + z2)
p−1

[z1 − (p − 1)z2] and ω =


M(y)

y3

 1
p
. This solution satisfies all properties of the

Bellman function.

We already know that the implicit part of the solution has the correct restrictive concavity
property of the Bellman function, as shown in Section 2.1.1. However, the restrictive concavity
still needs to be verified for the explicit part. Since the explicit part of the solution satisfies
My3 yi = My3 y3 = 0, then Di = 0, for i = 1, 2. So all that remains to be verified for the
restrictive concavity of the explicit part is checking the sign of Myi yi , for i = 1, 2. Observe that
the explicit part can be written as

M(y) = [(y1 + y2)
2
+ τ 2(y1 − y2)

2
]

p
2 + C p,τ [y3 − (y1 − y2)

p
]. (2.8)

It is easy to check that My2 y2 ≤ My1 y1 on −y1 < y2 ≤
p−2

p y1 for 2 < p < ∞. So we only need
to find the largest range of τ ’s such that My1 y1 ≤ 0.
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Lemma 22. In Case (22), My1 y1 ≤ 0 on −y1 < y2 ≤
p−2

p y1 for all τ ∈ R.

Proof. Changing coordinates back to x will make the estimates much easier. So we would like
to show that, on 0 ≤ x2 ≤ (p − 1)x1, we have,

My1 y1 ≤ 0, (2.9)

where C p,τ = ((p − 1)2
+ τ 2)

p
2 and

1
p

My1 y1 = (p − 2)(x2
2 + τ 2x2

1)
p−4

2 (x2 + τ 2x1)
2
+ (1 + τ 2)

× (x2
2 + τ 2x2

1)
p−2

2 − (p − 1)C p,τ x p−2
1 .

First, consider 4 ≤ p < ∞. If p ≠ 4, then showing (2.9) is equivalent to

(p − 2)(p − 1 + τ 2)2
+ (1 + τ 2)((p − 1)2

+ τ 2) − (p − 1)((p − 1)2
+ τ 2)2

≤ 0,

which can be verified using direct calculations, for all τ . Let s =
x2
x1

, then (2.9) simplifies to
showing,

F(s) = (p − 2)(s + τ 2)2
+ (1 + τ 2)(s2

+ τ 2) − C p,τ (p − 1)(s2
+ τ 2)

4−p
2 ≤ 0,

where 0 ≤ s ≤ p − 1. For p = 4, F is a quadratic function that is increasing on (−2τ 2

τ 2+3
, p − 1).

Since F(3) ≤ 0, then F(s) ≤ 0 on (0, 3).
Now we will consider 2 ≤ p < 4. Note that F(s) = 0 at p = 2, so we can assume that p ≠ 2.

Breaking up the domain of F will make things easier. For s ∈ (1, p − 1), we have the following
estimate, (s + τ 2)2

≤ (s2
+ τ 2)2. Let t = s2

+ τ 2, then

1
t

F(s) ≤ (p − 2)t + 1 + τ 2
− C p,τ (p − 1)t

2−p
2 := g1(t).

Observe that g1 is increasing on 1 + τ 2
≤ t ≤ (p − 1)2

+ τ 2 and g1((p − 1)2
+ τ 2) ≤ 0.

Therefore, F(s) ≤ 0 on (1, p − 1).

For s ∈ (0, 1−τ 2

2 ), we have the estimate (s + τ 2)2
≤ s2

+ τ 2. Let t = s2
+ τ 2, then

1
t

F(s) ≤ p − 1 + τ 2
− C p,τ (p − 1)t

2−p
2 := g2(t).

Since g2 is increasing on (τ 2,
(1−τ)2

4 +τ 2) and g2(
(1−τ)2

4 +τ 2) ≤ 0, then F(s) ≤ 0 on (1, p −1)

and on (0, 1−τ 2

2 ).

All that remains is to show that F(s) ≤ 0 on ( 1−τ 2

2 , 1). If we estimate in the crudest possible
way, on this interval, then we obtain:

1
p − 1

F(s) ≤ (1 + τ 2)2
− ((p − 1)2

+ τ 2)
p
2


(1 − τ 2)2

4
+ τ 2

 4−p
2

≤ 0,

for all |τ | ≤ 1 and 3 ≤ p ≤ 4, by direct calculations. So we need to estimate a little more

carefully. On ( 1−τ 2

2 , 1), let t = s2
+ τ 2. So t must be in the range (1−τ)2

4 − τ 2
≤ t ≤ 1 + τ 2.
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Fig. 6. Characteristics of Bellman candidate for 1 < p < 2 and |τ | ≤
1
2 .

Then,

F(s) = (p − 2)(


t − τ 2 + τ 2)2
+ (1 + τ 2)t − C p,τ (p − 1)t

4−p
2

= (p − 2)(t − τ 2
+ 2τ 2


t − τ 2 + τ 4) + (1 + τ 2)t − C p,τ (p − 1)t

4−p
2

≤ (p − 2)(t + τ 2
+ τ 4) + (1 + τ 2)t − C p,τ (p − 1)t

4−p
2 =: g3(t).

One can see that g3 is decreasing for 2 ≤ p < 3.95 and g3


(1−τ 2)2

4 + τ 2


≤ 0, for all |τ | ≤ 1,

by direct calculations. Thus, F(s) ≤ 0 on ( 1−τ 2

2 , 1). �

We have now verified that the explicit part of the Bellman function candidate, from Case (22),
has the appropriate restrictive concavity. So we have proven Proposition 21, by Lemmas 17, 18
and 22. Now that we have a Bellman candidate for 2 < p < ∞, we will turn our attention to
p-values in the dual range 1 < p < 2.

2.2. The Bellman function candidate for 1 < p < 2

In order to get a Bellman function candidate for 1 < p < 2 we just need to glue together
candidates from Cases (22) and (32) in almost the same way as we did for 2 < p < ∞ in
Section 2.1. Refer to Addendum 1 (Section 5) for full details.

Proposition 23. Let 1 < p < 2 and γ =
1−τ 2

1+τ 2 . If |τ | ≤
1
2 , then a solution to the Monge–Ampère

equation is given by

M(y) = (1 + τ 2)
p
2 [y2

1 + 2γ y1 y2 + y2
2 ]

p
2 +


1

(p−1)2 + τ 2
 p

2
[y3 − (y1 − y2)

p
] when

2−p
p y1 ≤ y2 < y1 and is given implicitly by

G(y1 − y2, y1 + y2) = y3G(1,
√

ω2 − τ 2) when −y1 < y2 ≤
2−p

p y1, where ω =


M(y)

y3

 1
p
.

This solution satisfies all of the properties of the Bellman function.

Most of the remaining cases do not yield a Bellman function candidate. If we fix y2 then the
Monge–Ampère solution from Cases (1) and (3) does not satisfy the restrictive concavity needed
to be a Bellman function candidate. Case (2) yields the same partial solution if we first fix y1 or
y2, since restrictive concavity is only valid on part of the domain. So, all that remains is Case (4).
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However, we do not know whether or not Case (4) gives a Bellman function candidate. For
τ = 0, it was shown in [19] that Case (4) does not produce a Bellman function candidate, since
some simple extremal functions give a contradiction to linearity of the Monge–Ampère solution
on characteristics. However, for τ ≠ 0 these extremal functions only work as a counterexample
for some p-values and some signs of the martingale transform. Case (4) could give a solution
throughout Ξ+ or could yield a partial solution that would work well with the characteristics from
Case (21). Since Case (4) does not provide a Bellman candidate for τ = 0, we expect the same
for small τ . The picture probably changes most drastically for large τ . But it does not matter,
since we will now show that our Bellman candidate is actually the Bellman function (which we
would have to check anyways because of the added assumption). The details for the remaining
cases that do not yield a Bellman function candidate are in Addendum 2 (Section 6).

3. The Monge–Ampère solution is the Bellman function

We will now show that the Monge–Ampère solution obtained in Propositions 21 and 23 is
actually the Bellman function. To this end, let us revert back to the x-variables. We will denote
the Bellman function candidate as Bτ and use Bτ to denote the true Bellman function. Extending
the function G on part of Ω+ to Uτ on all of Ω , appropriately, makes it possible to define the
solution in terms of a single relation.

Definition 24. Let v(x, y) := vp,τ (x, y) = (τ 2
|x |

2
+|y|

2)
p
2 −((p∗

−1)2
+τ 2)

p
2 |x |

p, u(x, y) :=

u p,τ (x, y) = p(1 −
1
p∗

)p−1


1 +
τ 2

(p∗−1)2

 p−2
2

(|x | + |y|)p−1
[|y| − (p∗

− 1)|x |] and

U (x, y) := Up,τ (x, y) =


v(x, y) : |y| ≥ (p∗

− 1)|x |

u(x, y) : |y| ≤ (p∗
− 1)|x |.

for 1 < p < 2. For 2 < p < ∞ we interchange the two pieces in U .

Proposition 25. For 1 < p < 2 and |τ | ≤
1
2 or 2 < p < ∞ and τ ∈ R the Bellman function

candidate is the unique positive solution given by

U (x1, x2) = U


x

1
p

3 ,


B

2
p

τ − τ 2x
2
p

3


.

Furthermore, U is C1-smooth on Ω .

Proof. First consider 2 ≤ p < ∞. It is clear that

U (x1, x2) = U


x

1
p

3 ,


B

2
p

τ − τ 2x
2
p

3


, (3.1)

by comparing the solution obtained in Proposition 21 and using the symmetry property in

Proposition 6. The constant αp,τ = p(1 −
1
p∗ )p−1


1 +

τ 2

(p∗−1)2

 p−2
2

was determined so that

Ux = Uy at |y| = (p∗
− 1)|x |. The partial derivatives are given by,

ux = αp,τ (p − 1)x ′(|x | + |y|)p−2(|y| − (p∗
− 1)|x |) − αp,τ (p∗

− 1)x ′(|x | + |y|)p−1,

vx = pτ 2x(τ 2
|x |

2
+ |y|

2)
p−2

2 − px ′((p∗
− 1)2

+ τ 2)
p
2 |x |

p−1,
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Fig. 7. Location of Implicit (I) and Explicit (E) part of Bτ for 2 ≤ p < ∞.

Fig. 8. Sample characteristic of the Monge–Ampère solution in Case (32).

u y = αp,τ (p − 1)y′(|x | + |y|)p−2(|y| − (p∗
− 1)|x |) + αp,τ y′(|x | + |y|)p−1,

vy = py(τ 2
|x |

2
+ |y|

2)
p−2

2 ,

where x ′
=

x
|x |

and y′
=

y
|y|

. U is C1-smooth, except possibly at gluing and symmetry lines. It is
easy to verify that ux is continuous at {x = 0}, Ux and Uy are continuous at {|y| = (p∗

− 1)|x |}

and vy is continuous at {y = 0}. This proves that U is C1-smooth on Ω .
Observe that Uy > 0 for y ≠ 0 and Ux < 0 for x ≠ 0. This is enough to show that

Bτ is the unique positive solution to (3.1). Indeed, if x ∈ Ω such that |x1| = x
1
p

3 , then
B

2
p

τ − τ 2x
2
p

3 = |x2| by the Dirichlet boundary conditions. This gives us (3.1) uniquely at

Bτ (x). Fix x1, such that |x1| < x
1
p

3 , then U


x

1
p

3 ,


B

2
p

τ − τ 2x
2
p

3


< U


x1,


B

2
p

τ − τ 2x
2
p

3


.

Since x1 is fixed, then


B

2
p

τ − τ 2x
2
p

3 > |x2|, so U


x1,


B

2
p

τ − τ 2x
2
p

3


strictly decreases to

U (x1, x2), as


B

2
p

τ − τ 2x
2
p

3 decreases to |x2|, giving us a unique Bτ (x) for which (3.1) holds.

Now consider 1 < p < 2. U is C1-smooth on Ω , since vx is continuous at {x = 0}, u y is
continuous at {y = 0} and Ux and Uy are continuous at {|y| = (p∗

−1)|x |}. This is easily verified
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since the partial derivatives are computed above (just switch the two pieces of each function).
Observe that for x ≠ 0 and y ≠ 0, Ux < 0 and for y ≠ 0, Uy > 0. Then the argument above

showing U (x1, x2) = U


x

1
p

3 ,


B

2
p

τ − τ 2x
2
p

3


uniquely determines Bτ also holds for this range

of p-values as well, except maybe at x1 = x2 = 0. Suppose U (0, 0) = U


x

1
p

3 ,


B

2
p

τ − τ 2x
2
p

3


,

then Bτ (x) = ((p∗
− 1)2

+ τ 2)
p
2 x3. So Bτ (x) is uniquely determined by the fixed x-value. �

Corollary 26. Bτ is continuous in Ω (Figs. 7 and 8).

Proof. In this proof, only we will revert back to the notation Up,τ , rather than U , to make clear
the distinction when τ = 0 or τ ≠ 0. We only consider 2 < p < ∞ as the dual range is
handled identically. By Proposition 25, we have that Bτ is the unique positive solution to (3.1).

Since this is true for all τ ∈ R, then B0 =


B

2
p

τ − τ 2x
2
p

3

 p
2

on |x2| ≥ (p∗
− 1)|x1|, since

Up,τ =


1 +

τ 2

(p∗−1)2

 p−2
2

Up,0. Equivalently, we have

Bτ =


B

2
p

0 + τ 2x
2
p

3

 p
2

. (3.2)

Since B0 was shown to be continuous in [19, p. 26] then Bτ is also continuous on |x2| ≥

(p∗
− 1)|x1|, using the relation. This takes care of the implicit part of Bτ . The explicit part

of Bτ is clearly continuous on |x2| ≤ (p∗
− 1)|x1|. �

Lemma 27. Let 1 < p < ∞. Then, Bτ |L is C1-smooth on Ω , where L is any line in Ω .

Proof. Since Bτ |L is C2-smooth on Ω+, all that remains to be checked is the smoothness at
the gluing and symmetry lines, i.e. at {x1 = 0}, {x2 = 0} and {|x2| = (p∗

− 1)|x1|}. Let
L = L(t), t ∈ R be any line in Ω passing through any of the planes in question, such that
L(0) is on the plane. Now plug L(t) into (3.1) and differentiate with respect to t . Let t → 0+

and t → 0− and equate the two relations. This gives

d

dt
Bτ (L(t))


t=0−

=
d

dt
Bτ (L(t))


t=0+

. �

Proposition 28 (Restrictive Concavity). Let 1 < p < 2 and |τ | ≤
1
2 or 2 ≤ p < ∞ and τ ∈ R.

Suppose x±
∈ Ω such that x = α+x+

+ α−x−, α+
+ α−

= 1. If |x+

1 − x−

1 | = |x+

2 − x−

2 | then
Bτ (x) ≥ α+ Bτ (x+) + α− Bτ (x−).

Proof. Recall that Propositions 21 and 23, together with the symmetry property of Bτ ,
establish this result everywhere, except at {x1 = 0}, {x2 = 0} and {|x2| = (p∗

− 1)|x1|}.
Let f (t) = Bτ |L(t), where L is any line in Ω , such that L(0) ∈ {x1 = 0}, {x2 = 0} or
{|x2| = (p∗

− 1)|x1|}. Since f ′′ < 0 for t < 0 and t > 0 and f is C1-smooth (by Lemma 27),
then f is concave. �
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Proposition 29. Let 1 < p < ∞. If a function B has restrictive concavity andBτ (x1, x2, |x1|
p) ≥ (τ 2x2

1 + x2
2)

p
2 , then Bτ ≥ Bτ . In particular, Bτ ≥ Bτ .

Proof. This was proven in [19] for B0 (Lemma 2 on page 29). The same proof will apply here
to Bτ . �

Proposition 30. For 1 < p < ∞, Bτ ≤ Bτ .

Proof. For 1 < p < 2 there is a direct proof, which will be discussed first. By (3.2) we know that

B0 =


B

2
p

τ − τ 2x
2
p

3

 p
2

on {|x2| ≤ (p∗
−1)|x1|}. Consider, B0 =


B

2
p
τ − τ 2x

2
p

3

 p
2

. It suffices to

show that B0 ≤ B0. But, B0 = B0 (as Burkholder showed), so without suprema we can reduce
to simply showing

⟨|g|
p
⟩

2
p
I + τ 2

⟨| f |
p
⟩

2
p
I ≤ ⟨(τ 2

| f |
2
+ |g|

2)
p
2 ⟩I .

Apply Minkowski:


I (A, C)


l
2
p

≤


I ∥(A, C)∥
l

2
p

. Choosing A = |g|
p and C = |τ f |

p proves

the result. So we have shown that Bτ ≤ Bτ on {|x2| ≤ (p∗
− 1)|x1|}.

Now we would like to show that Bτ ≤ Bτ on {|x2| ≥ (p∗
− 1)|x1|}. Let H1(x1, x2, x3) =

Bτ (x1, x2, x3) − Bτ (0, 0, 1)x3. Lemma 34, in the next section, proves that H1(x1, x2, ·)

is an increasing function starting at H1(x1, x2, |x1|
p) = vτ (x1, x2) and increasing toUp,τ (x, y) := supt≥|x |p {Bτ (x, y, t) − Bτ (0, 0, 1)t}. The same proof works for H2(x1, x2, x3) =

Bτ (x1, x2, x3) − Bτ (0, 0, 1)x3. So

H2(x1, x2, x3) ≥ vτ (x1, x2) = Bτ (x1, x2, x3) − Bτ (0, 0, 1)x3.

Since Bτ (0, 0, 1) ≤ Bτ (0, 0, 1), then Bτ ≤ Bτ on {|x2| ≥ (p∗
− 1)|x1|}.

Now we consider 2 < p < ∞. Let ε > 0 be arbitrarily small and consider the following
extremal functions

f (x) =


−c : 1 < x < ε

γ f


t − ε

1 − 2ε


: ε < x < 1 − ε

c : 1 − ε < x < 1,

g(x) =


d− : 1 < x < ε

γ g


t − ε

1 − 2ε


: ε < x < 1 − ε

d+ : 1 − ε < x < 1,

where c, d± and γ are defined so that f and g are a pair of test functions at (0, x2, x3). We can
use f and g to show, just as in [19, Lemma 3, p. 30], that

Bτ (0, x2, x3) ≤ Bτ (0, x2, x3). (3.3)

Now we need to take care of the estimate when x1 ≠ 0. Making a change of coordinates from
x to y we only need to consider y ∈ Ξ+, by the symmetry property of the Bellman function and
Bellman function candidate. So far we have that Mτ (y1, y1, y3) ≤ Mτ (y1, y1, y3) by (3.3). The
Dirichlet boundary conditions give that M(y1, y2, (y1 − y2)

p) = M(y1, y2, (y1 − y2)
p). On any

characteristic in {
p−2

p y1 ≤ y2 ≤ y1} (see Fig. 5) Mτ is linear (since it is the Monge–Ampère
solution) and Mτ is concave (by Proposition 4). Therefore, Mτ (y1, y2, y3) ≤ Mτ (y1, y2, y3) on
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{
p−2

p y1 ≤ y2 ≤ y1}. For the remaining part of Ξ+, we can use the same proof as for 1 < p < 2

to get Mτ (y1, y2, y3) ≤ Mτ (y1, y2, y3) on {−y1 ≤ y2 ≤
p−2

p y1}. �

Now that we have proven B = B, we will mention another surprising fact.

Definition 31. We define Bl
= Bl(x1, x2, x3) as the least restrictively concave majorant of

(x2
2 + τ 2x2

1)
p
2 in Ω .

Proposition 32. For 1 < p < 2 and τ ≤
1
2 or 2 ≤ p < ∞ and τ ∈ R we have B = B = Bl .

This is proven in [3].

4. Proving the main result

Now that we have the Bellman function, the main result can be proven without too much
difficulty. But first, we will find another relationship between U and v. Quite surprisingly, U is
the least zigzag-biconcave majorant of v.

Definition 33. A function of (x, y) that is biconcave in (x + y, x − y) we call zigzag-biconcave.

Lemma 34. Let 1 < p < ∞ and U (x, y) = supt≥|x |p {Bτ (x, y, t) − Bτ (0, 0, 1)t}. Fix (x, y).
The function H(x, y, t) = Bτ (x, y, t) − Bτ (0, 0, 1)t is increasing in t from H(x, y, |x |

p) =

v(x, y) := (τ 2
|x |

2
+ |y|

2)
p
2 − ((p∗

− 1)2
+ τ 2)

p
2 |x |

p to Up,τ (x, y).

Proof. Recall that Bτ is continuous in Ω and for (x, y) fixed, Bτ (x, y, ·) is concave. Then
H(x, y, ·) is also concave. Since Up,τ (x, y) = supt≥|x |p {Bτ (x, y, t)−Bτ (0, 0, 1)t}, then it either
increases to U (x, y), or there exists t0 such that H(x, y, t0) = U (x, y) and H is decreasing for
t > t0. If H is decreasing for t > t0, then H −→ −∞ as t −→ ∞ by concavity. Then there
exists ε > 0 and t ′ > t0 such that H(x, y, t ′) < εt ′. So we have, lim supt→∞

H(x,y,t)
t < −ε. But,

lim
t→∞

H(x, y, t)

t
= lim

t→∞


Bτ


x

t
1
p

,
y

t
1
p

, 1


− Bτ (0, 0, 1)


= 0,

by continuity of Bτ at (0, 0, 1). This gives us a contradiction. Therefore, H(x, y, t) ≥ −εt , for all
t and all ε > 0, i.e. H is non-negative concave function on [|x |

p, ∞). So H(x, y, ·) is increasing
and H(x, y, |x |

p) = vp,τ (x, y) by the Dirichlet boundary conditions of Bτ in Proposition 6. �

Proposition 35. For 1 < p < 2 and |τ | ≤
1
2 or 2 ≤ p < ∞ and τ ∈ R, Up,τ (x, y) =Up,τ (x, y).

Proof. Suppose 2 ≤ p < ∞ and |y| ≥ (p − 1)|x |. ThenU0(x, y) = lim
t→∞

(B0(x, y, t) − B0(0, 0, 1)t)

= lim
t→∞

B0


x

t
1
p
,

y

t
1
p
, 1


− B0(0, 0, 1)

1/t

=
d

du
B0(u

1
p x, u

1
p y, 1)


u=0

.
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Now we repeat the same steps and obtain

Uτ (x, y) = lim
t→∞

(Bτ (x, y, t) − Bτ (0, 0, 1)t)

=
d

du


B

2
p

0 (u
1
p x, u

1
p y, 1) + τ 2

 p
2


u=0

=

B
2
p

0 (u
1
p x, u

1
p y, 1) + τ 2

 p−2
2

B
2−p

p
0

× (u
1
p x, u

1
p y, 1)

d

du
B0(u

1
p x, u

1
p y, 1)


u=0

=


1 +

τ 2

(p − 1)2

 p−2
2 U0(x, y)

=


1 +

τ 2

(p − 1)2

 p−2
2

U0(x, y),

where the last equality is by [8]. Therefore, Uτ (x, y) = Uτ (x, y).
Now suppose |y| ≤ (p − 1)|x |. Looking at the explicit form of Bτ in the region,

note that Bτ (x, y, ·) is linear. So Uτ (x, y) = supt≥|x |p {Bτ (x, y, t) − Bτ (0, 0, 1)t} =

supt≥|x |p {Bτ (x, y, 0)} = vτ (x, y) = Uτ (x, y).

We can apply the same proof to show that Uτ (x, y) = Uτ (x, y) for 1 < p < 2. �

Proposition 36. U is the least zigzag-biconcave majorant of v.

Refer to [3] for the proof.
We now have enough machinery to easily prove the main result, in terms of the Haar expansion

of an R-valued L p function.

Theorem 37. Let 1 < p < 2, |τ | ≤
1
2 or 2 ≤ p < ∞, τ ∈ R. Let f, g : [0, 1] → R.

If |⟨g⟩[0,1]| ≤ (p∗
− 1)|⟨ f ⟩[0,1]| and |( f, h J )| = |(g, h J )| for all J ∈ D, then ⟨(τ 2

| f |
2

+

|g|
2)

p
2 ⟩[0,1] ≤ ((p∗

− 1)2
+ τ 2)

p
2 ⟨| f |

p
⟩[0,1], where ((p∗

− 1)2
+ τ 2) is the sharp constant and

p∗
− 1 = max


p − 1, 1

p−1


.

Proof. Suppose that 2 ≤ p < ∞ and τ ∈ R. The proof relies on the fact that the B = B
(Propositions 29 and 30) and U (x, y) = supt≥|x |p {B(x, y, t) − B(0, 0, 1)t} (Proposition 35).

Since |y| ≤ (p∗
− 1)|x | on Ω , then

U (x, y) = v(x, y) = (|y|
2
+ τ 2

|x |
2)

p
2 − ((p∗

− 1)2
+ τ 2)

p
2 |x |

p
≤ 0.

Then,

sup
t>|x |p

|y|≤(p∗−1)|x |

{B(x, y, t) − B(0, 0, 1)t} ≤ 0.
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But, U (0, 0) = 0, therefore

sup
t>|x |p

|y|≤(p∗−1)|x |

B(x, y, t)

t
= B(0, 0, 1) = ((p∗

− 1)2
+ τ 2)

p
2 . (4.1)

Observing the relationship B = B gives the desired result.
For 1 < p < 2, |τ | ≤

1
2 and |y| ≤ (p∗

− 1)|x |,

U (x, y) = p


1 −

1
p∗


1 +

τ 2

(p∗ − 1)2

 p−2
2

(|x | + |y|)p−1
[|y| − (p∗

− 1)|x |] ≤ 0,

so we have (4.1) by the same reasoning as for 2 ≤ p < ∞. �

Remark 38. Note that Minkowski’s inequality together with Burkholder’s original result gives
the same upper estimate for 2 ≤ p < ∞.

Indeed, if f ∈ L p
[0, 1] and g is the corresponding martingale transform then Minkowski’s

inequality gives,

∥g2
+ τ 2 f 2

∥

p
2

L
p
2

≤ (∥g2
∥

L
p
2

+ ∥τ 2 f 2
∥

L
p
2
)

p
2 = (∥g∥

2
L p + ∥τ f ∥

2
L p )

p
2

≤ ∥ f ∥
p
L p ((p∗

− 1)2
+ τ 2)

p
2 .

This is very surprising in the sense that the “trivial” constant ((p∗
− 1)2

+ τ 2)
p
2 is actually

the sharp constant.
Now we will prove the main result for Hilbert-valued martingales. The same ideas can be used

to extend the previous result to Hilbert-valued L p-functions as well. Let H be a separable Hilbert
space with ∥ · ∥H as the induced norm.

Theorem 39. Let 1 < p < ∞, (W, F , P) be a probability space and { fk}k∈Z+ , {gk}k∈Z+ :

W → H be two H-valued martingales with the same filtration {Fk}k∈Z+ . Denote dk =

fk − fk−1, d0 = f0, ek = gk − gk−1, e0 = g0 as the associated martingale differences. If
∥ek(ω)∥H ≤ ∥dk(ω)∥H, for all ω ∈ W and all k ≥ 0 and τ ∈ [−

1
2 , 1

2 ] then


n
k=0

ek, τ

n
k=0

dk


L p(W,H2)

≤ ((p∗
− 1)2

+ τ 2)
p
2

 n
k=0

dk


L p(W,H)

,

where ((p∗
− 1)2

+ τ 2)
p
2 is the best possible constant and p∗

− 1 = max{p − 1, 1
p−1 }. For

2 ≤ p < ∞, the result is also true, with the best possible constant, if τ ∈ R.

In the theorem, “best possible” constant means that if C p,τ < ((p∗
− 1)2

+ τ 2)
1
2 , then for some

probability space (W, G, P) and a filtration F , there exist H-valued martingales { f }k and {g}k ,
such that

∥(gk, τ fk)∥L p([0,1],H2) > C p,τ ∥ fk∥L p([0,1],H) .

Proof. We will prove the result for 2 ≤ p < ∞, since the result for 1 < p < 2 is similar.
Replace | · | with ∥ · ∥H, in Up,τ . Let fn =

n
k=0 dk and gn =

n
k=0 ek . Recall that U := Up,τ

is the least zigzag-biconcave majorant of v := vp,τ . As in [9, pp. 77–79],

Up,τ (x + h, y + k) ≤ Up,τ (x, y) + ℜ(∂xUp,τ , h) + ℜ(∂yUp,τ , k), (4.2)
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for all x, y, h, k ∈ H, such that |k| ≤ |h| and ∥x +ht∥H∥x +kt∥H > 0. The result in (4.2) follows
from the zigzag-biconcavity and implies that E[U ( fk, gk)] is a supermartingale. Lemma 34 gives
that v( fn, gn) ≤ U ( fn, gn). Therefore,

E[v( fn, gn)] ≤ E[U ( fn, gn)] ≤ E[U ( fn−1, gn−1)] ≤ · · · ≤ E[U (d0, e0)].

But, E[U (d0, e0)] ≤ 0 in both pieces of Uτ since 2 − p∗
≤ 0 and ∥e0∥H ≤ ∥d0∥H. Thus,

E[vτ ( fn, gn)] ≤ 0. The constant, in the estimate, is best possible, since it was attained in
Theorem 37. �

Remark 40. For 1 < p < 2 and |τ | > 1
2 , the “trivial” constant ((p∗

− 1)+τ 2)
p
2 in the main

result is no longer sharp because of a “phase transition”. In [3], there is an L p-function, f ,
constructed so that together with it’s martingale transform, g, we have ⟨(τ 2

| f |
2
+ |g|

2)
p
2 ⟩[0,1] >

((p∗
− 1)2

+ τ 2)
p
2 ⟨| f |

p
⟩[0,1] for large τ .

5. Addendum 1

Throughout this section, the arguments may seem brief in comparison to Section 2.1. The
reason for this is because we cover the exact same argument as in Section 2.1, only with slightly
different cases. So if any arguments are unclear, then returning to Section 2.1 should help to clear
up any difficulties. We will first consider Case (32) to get a partial Bellman function candidate.

5.1. Considering Case (32)

Proposition 41. For 1 < p < ∞ and −y1 < y2 <
2−p

p y1, M is given implicitly by the relation

G(y1 − y2, y1 + y2) = y3G(1,
√

ω2 − τ 2).

This is proven through a series of lemmas.

Lemma 42. M(y) = t2 y2 + t3 y3 + t0 on the characteristic y2dt2 + y3dt3 + dt0 = 0 can be

simplified to M(y) =

√
(y1+u)2+τ 2(y1−u)2

y1−u

p

y3, where u is the unique solution to the equation

y2+(1−
2
p )y1

y3
=

u+(1−
2
p )y1

(y1−u)p and −y1 < y2 <
2−p

p y1.

Proof. Any characteristic, in Case(32), goes from U = (y1, u, (y1 − u)p) to W = (y1, −y1, w).
Recall the properties of the Bellman function we derived in Proposition 6, as we will be using
them throughout the proof. Using the Neumann property and the property from Proposition 8,
we get My1 = −My2 = −t2 at W . By homogeneity at W we get

−py1t2 + pwt3 + pt0 = pM(W ) = y1 My1 + y2 My2 + py3 My3 = −2y1t2 + pwt3.

Now we follow the same idea as in Lemma 11, to get M(y) =

√
(y1+u)2+τ 2(y1−u)2

y1−u

p

y3,

where u = u(y1, y2, y3) is the solution to the equation

y2 +


1 −

2
p


y1

y3
=

u +


1 −

2
p


y1

(y1 − u)p . (5.1)

Fix u = −(1 −
2
p )y1, then we see that y2 = −( 2

p − 1)y1 = u is also fixed by (5.1). This
means that the characteristics must lie in the sector, shown in Fig. 9, since they go from U to
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Fig. 9. Range of characteristics in Case (32) for 1 < p < 2.

W ∈ {y2 = −y1}. The same argument as in Lemma 11 can be used to verify that Eq. (5.1) has a
unique solution in the sector −y1 < y2 <

2−p
p y1. �

Lemma 43. M(y) =

√
(y1+u)2+τ 2(y1−u)2

y1−u

p

y3 can be rewritten as G(y1 − y2, y1 + y2) =

y3G(1,
√

ω2 − τ 2) for −y1 < y2 <
2−p

p y1.

Proof. ω =


M(y)

y3

 1
p

=

√
(y1+u)2+τ 2(y1−u)2

y1−u ≥ |τ |.

Since y1 ± u ≥ 0 and ω2
− τ 2

≥ 0, then u =

√
ω2−τ 2−1

√
ω2−τ 2+1

y1 by inversion. Substituting u into

y2+(1−
2
p )y1

y3
=

u+(1−
2
p )y1

(y1−u)p gives

2p−1 y p−1
1 [py2 + (p − 2)y1] = y3(


ω2 − τ 2 + 1)p−1

[


ω2 − τ 2 − (p − 1)]

or (x1 + x2)
p−1

[(p − 1)x2 − x1] =

B
2
p −


τ x

1
p

3

2

+ x
1
p

3

p−1 
(p − 1)


B

2
p −


τ x

1
p

3

2

− x
1
p

3


. Thus, G(x1, x2) = G

x
1
p

3 ,


B

2
p −


τ x

1
p

3

2
 or G(y1 − y2, y1 + y2) = y3G

(1,
√

ω2 − τ 2). �

As before, we must verify that this partial Bellman function candidate has the restrictive
concavity property, so y1 is no longer fixed. To check restrictive concavity, we must show that
My1 y1 ≤ 0, My2 y2 ≤ 0, My3 y3 ≤ 0 and D1 ≥ 0 (note that D2 = 0 by assumption). These
estimates are verified in the following series of lemmas.

Lemma 44. In Case (32) we choose H(y1, y2) = G(y1−y2, y1+y2) because of how the implicit
solution is defined and obtain sign H ′′

= − sign(p − 2).

Proof. We already computed

H ′′
=


4Gz1z2 , α j = β j
0, α j = −β j
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in Lemma 14. Since, α1 = 1, α2 = −1, β1 = 1 and β2 = 1 then Gz1 z2
= −p(p − 1)(p −

2)(y1 + y2)(2y1)
p−3. �

Remark 45. In Case (32), β > 1
p−1 in the sector −y1 < y2 <

2−p
p y1, where β :=

√
ω2 − τ 2.

Equivalently, B(x1, x2, x3) ≥ ((p∗
− 1)2

+ τ 2)
p
2 x3 in −y1 < y2 <

2−p
p y1.

This is trivial since

(β + 1)p−1
[1 − (p − 1)β] = G(1, β) =

1
y3

G(y1 − y2, y1 + y2)

= (2y1)
p−1

[(p − 2)y1 + py2] < 0.

Now we have enough information to check the sign of D1. We will start limiting the values of
τ , since it will be essential for having the restrictive concavity of the partial Bellman candidate
from Case (22) (see Remark 50).

Lemma 46. D1 > 0 in Case (32) for all |τ | ≤ 1.

Proof. We use the partial derivatives of G computed in the proof of Lemma 14 to make the
computations of Φ′ and Φ′′ easier.

Φ(ω) = G(1, β)

Φ′(ω) = −p(p − 1)ω[β + 1]
p−2 (5.2)

Φ′′(ω) = −
p(p − 1)(1 + β)p−3

β


β(1 + β) + (p − 2)ω2


Λ = (p − 1)Φ′

− ωΦ′′

= −p(p − 1)2ω(β + 1)p−2
+

p(p − 1)ω(1 + β)p−3

β


β(1 + β) + (p − 2)ω2


=

p(p − 1)ω(1 + β)p−3

β


−(p − 1)(1 + β)β + β(1 + β) + (p − 2)ω2


= −

p(p − 1)(p − 2)ω(1 + β)p−3
[β − τ 2

]

β
. (5.3)

Now we need to determine the sign of β−τ 2 is for 1 < p < ∞. By Remark 45, β > 1
p−1 ≥ τ 2

for |τ | ≤ 1 and 1 < p < 2. But, what about p > 2? Using the form of the solution, M , in
Lemma 42 we obtain (y1 + u)2

+ τ 4(1 − τ 2)(y1 − u)2 > 0

⇐⇒
(y1 + u)2

+ τ 2(y1 − u)2

(y1 − u)2 ≥ τ 2(1 + τ 2)

⇐⇒ ω =


M(y)

y3

 2
p

> τ 2(1 + τ 2)

⇐⇒ β − τ 2 > 0,

where u is the unique solution to
y2+(1−

2
p )y1

y3
=

u+(1−
2
p )y1

y3
and |τ | ≤ 1. Thus, sign D1 =

sign H ′′ sign Λ = [− sign(p − 2)]2 by (2.4) and Lemma 44. �

The following lemma restricts the p-values for which our solution is a Bellman function
candidate to 1 < p < 2.
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Lemma 47. sign My1 y1 = sign My2 y2 = sign My3 y3 = sign(p − 2) in Case (32) for all |τ | ≤ 1.
Consequently, M is a Bellman function candidate for 1 < p < 2 but not for 2 < p < ∞, since
it would not satisfy the restrictive concavity needed.

Proof. By (2.2), (5.2), (5.3),

My3 y3 =
pωp−2 R2

1 H2

y3
3


Λ
Φ′


,

giving sign My3 y3 = (−1)[− sign(p − 2)]. By (2.3), for i = 1, 2,

Myi yi =
pωp−2 R1

y3


(ωR2 + (p − 1)R1)(H ′)2

+ ωy3 H ′′


=

pωp−2

y3(Φ′)3


Λ(H ′)2

+ ωy3 H ′′(Φ′)2

,

giving sign Myi yi = (−1)[− sign(p − 2)], since Φ′ < 0. �

Now that we have a partial Bellman function candidate for 1 < p < 2, from Case (32), satisfying
all of the properties of the Bellman function, including restrictive concavity, we can turn our
attention to Case (22). From Case (22) we will get a Bellman candidate on all Ξ+, or part of it,
depending on the τ - and p-values. The partial Bellman candidate, from Case (22), turns out to
be the missing half for Case (32). We already have the solution for Case (2) from Lemma 19, but
the value of the constant is needed before we can progress further.

5.2. Case (2) for 1 < p < 2

Lemma 48. If 1 < p < 2 then in Case (22), the value of the constant in Lemma 19 is

c =


1

(p−1)2 + τ 2
 p

2
.

Proof. If M(y) = (1 + τ 2)
p
2 [y2

1 + 2γ y1 y2 + y2
2 ]

p
2 + c[y3 − (y1 − y2)

p
] (where γ =

1−τ 2

1+τ 2 ) is

to be a candidate or partial candidate, then it must agree, at y2 =
2−p

p y1, with the solution M

given implicitly by the relation G(y1 − y2, y1 + y2) = y3G(1,
√

ω2 − τ 2), from Proposition 41.
At y2 =

2−p
p y1,

(


ω2 − τ 2 + 1)p−1
[1 − (p − 1)


ω2 − τ 2] = G(1,


ω2 − τ 2)

=
1
y3

(2y1)
p−1

[(2 − p)y1 + (p − 2)y1]

= 0.

Since
√

ω2 − τ 2 + 1 ≠ 0 then
√

ω2 − τ 2 =
1

p−1 , which implies ω =


1

(p−1)2 + τ 2
 1

2
. So,

1

(p − 1)2 + τ 2
 p

2

y3 = ωp y3

= M


y1,

2 − p

p
y1, y3


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Fig. 10. Splitting [−1, 1] × (1, 2) in the (τ × p)-plane into three regions A, B and C . The curves separating regions
A, B and C are where My2 y2 = 0 in Case (22).

=


2
p

y1

2

+ τ 2


2(p − 1)

p
y1

2
 2

p

+ c


y3 −


2(p − 1)

p
y1

p
.

Now just solve for c. �

In the following lemma, the value of τ has to be restricted to |τ | ≤ 1, so that restrictive
concavity is satisfied for our Bellman candidate. Actually, the τ -values play an even bigger role.
Depending on the value of (τ, p) ∈ [−1, 1] × (1, 2), there is either one or two Bellman function
candidates. For (τ, p) ∈ B, from Fig. 10, there is a partial Bellman candidate arising from Case
(22). So we can glue this together with the other partial candidate obtained in Case (32). This
gives a Bellman candidate, as before, having characteristics as in Fig. 6. For (τ, p) ∈ A ∪ C the
candidate obtained from Case (22) maintains restrictive concavity throughout Ξ+ and is therefore
requires no gluing. To avoid the difficulty of determining which candidate to choose and how to
determine the optimal constant from Case (2), we restrict (τ, p) to region B, or require that
|τ | ≤

1
2 . Recall that the partial Bellman candidate, M , obtained from Case (22), for 1 < p < 2,

satisfies Myi y3 = My3 y3 = 0 and hence Di = 0, for i = 1, 2. So all that still needs to be checked
for restrictive concavity is the sign of My1 y1 and My2 y2 . Since My1 y1 ≤ My2 y2 , then we just
need to show that My2 y2 ≤ 0 on 2−p

p y1 ≤ y2 ≤ y1 in Ξ+. This is considered in the following
lemmas.

Lemma 49. In Case (22), My2 y2(y1,
2−p

p y1, y3) ≤ 0 for |τ | ≤ 1 and 1 < p < 2.

Proof. The solution M that we get from (22), when 1 < p < 2, is obtained from Lemmas 19
and 48. Let γ =

1−τ 2

1+τ 2 , f1(y) = y2
1 + y2

2 + 2γ y1 y2, f2(y) = (p − 2)(y2 + γ y1)
2

+ f1(y) and

f3(y) = y1 − y2. Then

My2 y2 = p(1 + τ 2)
p
2 f

p−4
2

1 f2 − p(p − 1)


1

(p − 1)2 + τ 2
 p

2

f p−2
3 .

By direct calculations one can verify, My2 y2(y1,
2−p

p y1, y3) ≤ 0 when |τ | ≤ 1. �
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Remark 50. Note that Lemma 49 is false for p near 2 when |τ | larger than 1, so we cannot take
a larger value and still maintain the restrictive concavity.

Lemma 51. In Case (22), My2 y2(y1, cy1, y3) ≤ 0, for all c ∈


2−p

p , 1

.

Proof. Using My2 y2 from Lemma 49, we see that My2 y2 ≤ 0 is equivalent to

(1 + τ 2)
p
2 f 2−p

3
f2

f
4−p

2
1

− p(p − 1)


1

(p − 1)2 + τ 2
 p

2

≤ 0.

Observe that the function f2/( f
4−p

2
1 ) is strictly positive, has a horizontal asymptote at the y2-

axis, increases on (−∞, −γ ), and decreases on (−γ, ∞). As y2 increases from 2−p
p to 1, f 2−p

3

and f2

f
2

4−p
1

both decrease. Since My2 y2(y1,
2−p

p y1, y3) ≤ 0, as shown in Lemma 49, the result

follows. �

Lemma 52. The Monge–Ampère solution in Case (22) yields the following results for 1 < p <

2.My2 y2(y1, y1, y3) < 0 for |τ | ≤ 1 and My2 y2(y1, −y1, y3) > 0 for |τ | ≤
1
2 .

Proof. Let f1, f2 and f3 be as in Lemma 49 and

g = (1 + τ 2)
p
2 f 2−p

3 f2 − (p − 1)


1

(p − 1)2 + τ 2
 p

2

f
4−p

2
1 .

Note that My2 y2 and g have the same signs. It is clear that g(y1, y1, y3) < 0, proving the first
inequality. One can now verify that g(y1, −y1, y3) > 0 for |τ | ≤

1
2 which proves the second

inequality. �

Remark 53. One can see in the graph of 1
y p−2

1

g(y1, y1, y3) that g(y1, y1, y3) < 0, in regions

A and C , (see Fig. 10). This tells us that the Bellman candidate from Case (22) will maintain
restrictive concavity throughout the domain in for (τ, p) ∈ A ∪ C . Furthermore, there will be
an improvement in the constant ((p∗

− 1)2
+ τ 2)

p
2 that can still be used to maintain restrictive

concavity in A ∪ C .

By Lemmas 51 and 52, we obtain a partial Bellman candidate from Case (22), when
1 < p < 2 and |τ | ≤

1
2 . As before, we will glue this partial candidate from Case (22) to

the partial candidate in Case (32) to obtain the Bellman candidate for 1 < p < 2.

6. Addendum 2

Now that we have particular cases in which the Monge–Ampère solution gives a Bellman
function candidate, we would like to discuss the remaining cases. It can be shown that all
remaining cases do not yield a Bellman function candidate, except for Case (4) which is still
not determined.

6.1. Case (12) for 1 < p < 2 and Case (32) for 2 < p < ∞ do not lead to a Bellman candidate

It was shown in Lemmas 18 and 47 that the Monge–Ampère solution obtained in each case
does not have the appropriate restrictive concavity property to be a Bellman function candidate.
We mention this here again simply for clarity.
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(a) Case (11). (b) Case (31).

Fig. 11. Sample characteristic for the Monge–Ampère solution in Cases (11) and (31).

6.2. Case (11) does not give a Bellman candidate

We can consider Cases (11) and (31) simultaneously, for part of the calculation, since the same
argument will work in both cases. In both cases, y2 is fixed and the Monge–Ampère solution is
given by M(y) = t1 y1 + t3 y3 + t0 on the characteristics dt1 y1 + dt3 y3 + dt0 = 0. As shown
in Fig. 11, y2 ≥ 0 in case (12) and y2 ≤ 0 in Case (32), since if not then the characteristics go
outside of the domain Ξ+.

Lemma 54. In Cases (11) and (31), the solution to the Monge–Ampère can be written as,

M(y) =


(u + y2)2 + τ 2(u − y2)2

u − y2

p

y3

where u = u(y1, y2, y3) is the solution to the equation
y1+


2
p −1


|y2|

y3
=

u+


2
p −1


|y2|

(u−y2)
p .

Proof. Any characteristic, in Cases (11) and (31), go from U = (u, y2, (u − y2)
p) to W =

(|y2|, y2, w). Throughout the proof, we will use the properties of the Bellman function derived
in Proposition 6. Using the Neumann property and the property from Proposition 8 we get
y2 My2 = y1 My1 = |y2|t1 at W . By homogeneity at W we get

p|y2|t1 + pwt3 + pt0 = pM(W ) = y1 My1 + y2 My2 + py3 My3 = 2t1|y2| + pwt3.

Following the same argument as in Lemma 11, gives M(y) =

√
(u+y2)

2+τ 2(u−y2)
2

u−y2

p

y3,

where u = u(y1, y2, y3) is the solution to the equation

y1 +


2
p − 1


|y2|

y3
=

u +


2
p − 1


|y2|

(u − y2)p . (6.1)

Since the solution, M , does not satisfy the restrictive concavity property necessary to be the
Bellman function (as we will soon show), we are not concerned about the existence of the
solution u in Eq. (6.1). �
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Lemma 55. If ω =


M(y)

y3

 1
p
, then in Cases (11) and (31), the solution u to Eq. (6.1) can be

expressed as u =

√
ω2−τ 2+1

√
ω2−τ 2−1

y2 and Eq. (6.1) can be rewritten as

2p
|y2|

p−1
[py1 + (2 − p)|y2|] = y3|β − 1|

p−1
[p(β + 1) + (2 − p)|β − 1|], (6.2)

where β =
√

ω2 − τ 2. Furthermore, sign y2 = sign(β − 1).

Proof. Let us show that u =

√
ω2−τ 2+1

√
ω2−τ 2−1

y2 first. This follows from inverting

ω =


(u + y2)2 + τ 2(u − y2)2

u − y2
,

and using the properties ω ≥ |τ | and u ± y2 ≥ 0. Now that we have u =

√
ω2−τ 2+1

√
ω2−τ 2−1

y2,

we can use it to get the next result. Note that u ≥ 0 and
√

ω2 − τ 2 ≥ 0, which implies that

sign y2 = sign(
√

ω2 − τ 2 − 1). To get (6.2), simply plug u =

√
ω2−τ 2+1

√
ω2−τ 2−1

y2 in Eq. (6.1). �

We can no longer discuss Cases (11) and (31) together, so for the remainder of the subsection the
focus will be on Case (11) only.

Lemma 56. In Case (11), the solution M from Lemma 54 can be rewritten in the implicit form
G(y2 + y1, y2 − y1) = y3G(

√
ω2 − τ 2, −1), where G(z1, z2) = (z1 + z2)

p−1
[z1 − (p − 1)z2].

Proof. Recall that for Case (11) we have y2 > 0.

y2 =
1
2
(x2 − x1) > 0 H⇒ x2 > x1

sign(


ω2 − τ 2 − 1) = sign y2 > 0 H⇒


ω2 − τ 2 > 1 H⇒ ω >


τ 2 + 1.

So, B(x) = M(y) > y3(τ
2
+ 1)

p
2 . Now (6.2) can be rewritten as

(x2 − x1)
p−1

[(p − 1)x1 + x2] =


B

2
p − τ 2x

2
p

3 − x
1
p

3

p−1

×


B

2
p − τ 2x

2
p

3 + (p − 1)x
1
p

3


.

Therefore,

G(x2, −x1) = G


B

2
p − τ 2x

2
p

3 , −x
1
p

3



or by factoring out x
1
p

3 on the right side we get

G(y2 + y1, y2 − y1) = y3G(


ω2 − τ 2, −1). �

Recall that the Monge–Ampère solution must satisfy the restrictive concavity conditions in
Proposition 5 to be a Bellman function candidate. We will show that the Monge–Ampère solution
obtained in Case (11) has D1 < 0 and therefore cannot be a Bellman candidate.
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Lemma 57. In Case (11) we choose H(y1, y2) = G(y1 + y2, −y1 + y2) because of how the
implicit solution is defined and obtain sign H ′′

= sign(p − 2).

Proof. We already computed

H ′′
=


4Gz1z2 , α j = β j
0, α j = −β j

in Lemma 14.
Since, α1 = 1, α2 = 1, β1 = −1 and β2 = 1 then Gz1 z2

= p(p − 1)(p − 2)(y1 −

y2)(2y2)
p−3. �

Lemma 58. If p ≠ 2 then D2 < 0 in Case (11) for all τ .

Proof. We use the partial derivatives of G from the proof of Lemma 14 to make the computations

of Φ′ and Φ′′ easier. Let αp =
p(p−1)ω(β−1)p−3

β3 and β =
√

ω2 − τ 2.

Φ(ω) = G(β, 1)

Φ′(ω) = p[β − 1]
p−2

[ω + (p − 2)ωβ−1
]

Φ′′(ω) = Gz1z2(β, −1)β−2ω2
+ Gz1(β, −1)[−ωβ−3

+ β−1
]

= p(p − 1)[β − 1]
p−3

[β + p − 3]
ω2

β2 − p
τ 2

β3 [β − 1]
p−2

[β + p − 2]

Λ = (p − 1)Φ′
− ωΦ′′

= αp[(β − 1)β3(β−1(p − 2) + 1) − ω2β(β + p − 3) + τ 2(β − 1)(β + p − 2)]

= αp[(β
2
+ τ 2)(β − 1)(β + p − 2) − ω2β(β + p − 3)]

= αpω
2
[β2

+ β(p − 2) − β − (p − 2) − β2
− β(p − 3)]

= −
p(p − 1)(p − 2)ω3(

√
ω2 − τ 2 − 1)p−3

(
√

ω2 − τ 2)3
.

From Lemma 55, sign(β − 1) = sign y2 > 0 and ω2 > τ 2 > 0. Therefore, by Lemma 57 and
(2.4) sign D2 = sign H ′′ sign Λ = −(sign(p − 2))2 < 0. �

Since D2 < 0 in Case (11) then we get the following result.

Proposition 59. Case (11) does not give a Bellman function candidate.

6.3. Case (31) does not provide a Bellman function candidate

Much of the work needed to show that the Monge–Ampère solution cannot be the Bellman
function, in Case (31), has already been started in Section 6.2. Let us finish the argument.

Lemma 60. In Case (31), the solution M from Lemma 54 can be rewritten in the implicit form
G(y2 − y1, −y1 − y2) = y3G(1, −

√
ω2 − τ 2), where G(z1, z2) = (z1 + z2)

p−1
[z1 − (p −1)z2].

Proof. Recall that in Case (32) we have that y2 < 0.

y2 =
1
2
(x2 − x1) < 0 H⇒ x2 < x1

sign(


ω2 − τ 2 − 1) = sign y2 < 0 H⇒


ω2 − τ 2 < 1 H⇒ ω <


τ 2 + 1.
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So, B(x) = M(y) < y3(τ
2
+ 1)

p
2 . Now (6.2) can be rewritten as

(x1 − x2)
p−1

[x1 + (p − 1)x2] =


x

1
p

3 −


B

2
p − τ 2x

2
p

3



×


(p − 1)


B

2
p − τ 2x

2
p

3 + x
1
p

3


.

Therefore,

G(x1, −x2) = G


x

1
p

3 , −


B

2
p − τ 2x

2
p

3


,

or by factoring out x
1
p

3 on the right side we get

G(y1 − y2, −y1 − y2) = y3G(1, −


ω2 − τ 2). �

Since y2 is fixed then D2 ≥ 0 must be true in order that the Monge–Ampère solution from
Case (31) is the Bellman function (see Proposition 5). However, the contrary is true: D2 < 0.

Lemma 61. In Case (31) we choose H(y1, y2) = G(y1 − y2, −y1 + y2) because of how the
implicit solution is defined and obtain sign H ′′

= sign(p − 2).

Proof. We already computed

H ′′
=


4Gz1z2 , α j = β j
0, α j = −β j

in Lemma 14.
Since, α1 = 1, α2 = −1, β1 = −1 and β2 = 1 then Gz1 z2

= p(p − 1)(p − 2)(y1 −

y2)(2y2)
p−3. �

Lemma 62. If p ≠ 2 then D2 < 0 in Case (31) for all τ .

Proof. We use the partial derivatives of G computed in the proof of Lemma 14 to make the
following computations of Φ′ and Φ′′ easier. Let β =

√
ω2 − τ 2.

Φ(ω) = G(1, −β)

Φ′(ω) = −p(p − 1)ω(1 − β)p−2

Φ′′(ω) = −p(p − 1)[(1 − β)p−2
− (p − 2)ω2β−1

]

Λ = (p − 1)Φ′
− ωΦ′′

= p(p − 1)ω(1 − β)p−3
[−(p − 1)(1 − β) + (1 − β) − (p − 2)ω2β−1

]

= −p(p − 1)ω(1 − β)p−3(p − 2)[1 − β + ω2β−1
]

= −p(p − 1)(p − 2)ω(1 − β)p−3


1 +
τ 2

β


.

From Lemma 55, 1 − β > 0 and ω2 > τ 2 > 0. Therefore, by Lemma 61 and (2.4)
sign D2 = sign H ′′ sign Λ = −(sign(p − 2))2 < 0. �
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(a) y2 ≥ 0. (b) y2 ≤ 0.

Fig. 12. Characteristic of the solution in Case (41).

Fig. 13. Characteristic for the solution from Case (42).

Having shown that D2 < 0 in Case (31) implies that the Monge–Ampère solution in that case
cannot be the Bellman function.

Proposition 63. Case (31) does not give a Bellman function candidate.

6.4. Case (21) gives a partial Bellman function candidate

Case (2) was considered without having to fix either y1 or y2 first, so there is nothing new to
do here. Refer to Sections 5.2 and 2.1.3 for more details.

6.5. Case (4) may or may not yield a Bellman function candidate

For τ = 0, it was shown in [21] that Case (4) does not produce a Bellman function candidate,
since some simple extremal functions give a contradiction to linearity of the Monge–Ampère
solution on characteristics. However, for τ ≠ 0 it is much more difficult to show this. Those same
extremal functions do contradict linearity for some p-values and some signs of the Martingale
transform. For the sign of the Martingale transform where we do not have a contradiction, a
new set of test of extremal functions would have to be found. Since the Bellman function has
already been constructed from other cases, this case has not been investigated any further than
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just described. So, for p and τ values not mentioned in the main result, Case (4) could give a
Bellman candidate throughout Ξ+ or we could get a partial Bellman candidate that may work
well with the characteristics from Case (21) Figs. 12 and 13.
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