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A class of weakly Integrable semtgroups on locally convex spaces IS mtroduced 
and studted. The results are tllustrated by examples of semrgroups of unbounded 
operators on a Banach space, which mclude fractional powers of a closed operator 
and spectral local semtgroups. ’ 1986 Academx Pre\> Inc 

1. INTRODUCTION 

The connection between Markov processes and semigroups of con- 
tinuous linear operators is now well established. However, early in the 
development of the theory W. Feller observed that the use of strongly con- 
tinuous semigroups is not always appropriate [33. The purpose of this note 
is to introduce a class of semigroups of operators on locally convex spaces 
which is well adapted to the study of Markov processes and other areas of 
analysis where the assumption of strong continuity for the semigroups con- 
cerned fails to hold. It turns out that a surprising amount of information 
about general semigroups is easily deduced from very few conditions. 

The approach suggested here is based on a number of principles com- 
mon to many problems in analysis. Weak (Pettis-type) integration is the 
most appropriate tool for this situation, as opposed to the strong 
(Bochner) integrals used in the standard theory [4]. Moreover, even to 
utilize the weak integral it is often necessary to weaken the topology of the 
underlying vector space: a feature in common with the spectral theory of 
operators [lo]. Another aspect of the present approach is that the 
“infinitesimal generator” of the semigroup is defined directly in terms of the 
resolvent instead of the conventional deiinition by differention. In the usual 
theory it makes no difference which definition one chooses; they agree. 
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However, in the present context the resolvent approach has the advantage 
of substituting integral operators and equations for differential ones: a 
time-honoured and successful method in analysis. 

Much of the existing work extending parts of the Hille-Yosida-Phillips 
theory of strongly continuous semigroups on Banach spaces to the locally 
convex space setting appeals to conditions which limit its applicability to, 
say, Markov processes. The approach followed here is closest to those of 
H. Komatsu [8] and S.-Y. Shaw [13] in certain respects. 

The paper is organized as follows. Section 2 deals with the definition and 
basic properties of Fsemigroups on a locally convex space E, where F is a 
subspace of the continuous dual E’ of E. Section 3 treats some special 
cases, and examines the relationship between various “generators.” In Sec- 
tion 4, the inductive limit of weakly integrable semigroups is defined, and 
applied in Section 5 to examples of semigroups of unbounded operators on 
a Banach space treated by R. J. Hughes [S]. One example is the semigroup 
of fractional powers of a closed operator, and another is the spectral local 
semigroup associated with a Klein-Landau system of operators [7]. 

An application to diffusion processes is given elsewhere [6]. A charac- 
terization of those operators which act as generators of a large class of 
weakly integrable semigroups will be given in a later paper. 

2. DEFINITION AND PROPERTIES 

Let E be a locally convex space with continuous dual E’. Denote the 
family of continuous linear operators on E by L(E). The identity map on E 
is denoted by I. 

A semigroup of continuous linear operators on E is a map 
S: (0, ‘;o) + L(E) such that S(s + t) = S(s) S(t) for all s, t > 0. 

Given an operator A E L(E), the adjoint A’: E’ --) E’ of A is defined by 
(Ax, 5) = (x, A’(), x E E, r E E’. The adjoint of A is continuous for the 
weak topology L~(EI, E) on E’. For a semigroup S: (0, CG) --) L(E), set 
S’(r) = S(t)’ for each t > 0. We say that a subspace X of E (resp. of E’) is S- 
invariant (resp., S’-invariant) if for each t >O it is left invariant by the 
operator S(r) (resp., by S(t)‘). 

Now suppose that F is a subspace of E’ separating points in E. 

DEFINITION 2.1. A semigroup S: (0, cc ) + L(E) is said to be an F- 
semigroup if the following two conditions are satisfied. 

(Sl) There exists an y-invariant subspace of F separating points in 
E. 

(S2) There exists os k 0 such that for all 1> ws and x E E, the map 
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t + e pA’( S( t) X, c), t > 0 is integrable on (0, x, ) for every 5 E F, and there 
exists R(A) x E E such that 

<R(l) x, 5 ) = JOT e -“‘(s(f) .Y, 4) dr 

for all < E F. 

Condition (Sl) is equivalent to the requirement that the set of all 4 E F 
such that S( t)‘r E F for every t > 0 is a(F, E)-dense in F. 

The linear map R(A): E + E is well defined for every A> ws because F 
separates points in E. It is convenient to write R(A) = 1: e -“‘S(t) dt. 
,I > ws, with the understanding that the integral exists in the sense of (S2). 
It is called the resoluent of S. 

In the case that E is a Banach space and F= E’, condition (S2) is similar 
to the familiar notion of the Pettis integrability of the E-valued function 
t-e-“‘S(t)x, t>O for each ?ceE and A>w, [l]. 

Recent progress [ 143 towards a better understanding of Pettis integrals 
can be brought to bear on the verification of condition (S2). For the 
moment we note that whenever e-(Usr S(t), t > 0, is a bounded family of 
continuous linear operators on a Banach space E, and the function 
t H (S(t) x, 5 >, t > 0 is Lebesgue measurable for every .Y E E and { E E’, 
then it is consistent with ZFC to assume that (S2) holds with F= E’ [2]; 
at least for bounded semigroups on a Banach space, it appears that the 
conditions of Definition 2.1 are truly “minimal.” 

Let S be an F-semigroup on E with R( 1) = j; e --“S( t) dt, A > Q~, its 
resolvent. Set F,= (r~F:S(t)‘<~Ffor all 1>0).. 

LEMMA 2.2. R(A)- R(v)= (v-1) R(1) R(v).for all i. v>uI.~. 

Proqf: Let x E E, 5 E F, and A > v > os. Then 

(R(A) R(v)x, 4)= IOx eC”‘S(t) R(v)xdt, ;> 

~ ‘“S(s) xds, S( t )‘{ 
> 

dt. 

Because r E F,, we have for each t > 0 
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e -‘“S(s) xds, S(r)‘[ S(s) x, S( t)‘c ds 

= 

Take a change of variables u = t + s, s > 0. Then 

ds. 

so we have 

(R(l)R(v)x,()=joE e-f~~~v)r[I:,~‘“(S(u).K,:)du]dr. 

Now integrate by parts to get 

(R(A)R(v)x,<)=(A-v)-’ [oEep”u(S(u)x,5>du 
[ 

I 

x 
- e-“(S(t) x, C) dt 

0 1 =(~-v)~'([R(V)-R(~)]x,i'). 
To see that (R(1) R(v) x, <) = (R(v) R(A) x, <), observe that the 

function (t, s) + (S( I + s) x, < ), t, s > 0 is measurable and 

e-‘“I(S(t+s)x, t)lds dr 1 
cc 

= 
5 

e-‘“-“’ 
0 f 

cc e--Y” I<S(u)x, 5>ldudf 
I 

s 
a3 < e-‘“-“’ 

0 I zc e--w I(S(u)-x, t)ldudt. 
0 

By the Fubini-Tonelli theorem, 

(S(t+s,x, t) ds dt 1 
ep”‘(S(t+s)x, <) dt 1 ds, 

which means that (6!(1)R(v)x,i)=(R(v)R(I)x,5). 
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Since F, separates points in E, the desired relation holds. 

The resolvent relation of Lemma 2.2 implies that the ranges of the 
operators R(I), I > os are all the same, and if one of them is injective then 
they all are. In this case there exists a linear map G,: 9(G,) -+ E such that 
R(I) = (AZ- G,))‘, 9(G,) = R(A) E for all A > ws. The operator G,, when 
it exists, is called the E-generator of S. 

LEMMA 2.3. For each t > 0, 2 > ws, S(t) R(I) = R(n) S(t). 

Proof Let x E E and 5 E Fs. Then 

I 

cc 
= eeAs(S(s) x, S(t)‘(f) ds 

0 

= (R(A) x, s(t)‘t) = (S(t) R(l) x, 5 > 

Since F, separates points in E, R(I) S(t) = S(t) R(1). 

COROLLARY 2.4. Suppose that that E-generator Gs of S exists; that is, 
each operator R(1), 1~ os is injective. Then for all t > 0, 

s(t) NG,) = SC,), Gss(t) x = s(t) Gsx for all x E 9(G,). 

Proof 9(G,) = R(a) E for every A> ws, so Lemma 2.3 immediately 
implies that S(t) 9(G,) c 9(G,). 

If x E 9(G,), then for some y E E and A> ws, x = R(A) y. But 

G,S(t)x=G,S(t)R(~)y=G,R(;1)S(t)J?=~”R(I?)S(t)y-S(t)y 

=S(t)[AR(n)-Z] y=,!?(t) G,R(l)y=S(t) Gsx. 

PROPOSITION 2.5. Let A: 9(A) + E he a linear map with domain 
9(A) c E. 

Iffor some ,I > ws, R(A)(,IZ- A) x=x for all XE 9(A), then 

for all XE~(A), <EFand t>O. 
Conversely, iffor every x E D(A) the set of all 5 E Ffor which (1) holds for 

almost t > 0 separates points in E, then R(I)(II- A) x=x for all x E 9(A). 
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Proof. First, let A be an operator such that for some 1 >o,, 
R(A)(U- A) x = x for all x E 9(A). By Lemma 2.2, the equation is valid for 
all values of A> oS. 

Let XE~(A), 5EFand A>o,. Then 

<~(~)W-~)x, r>=p, -“‘(S(t)(iZ- A) x, 5) dt = (x, c), 

nj-e -“‘(S(t)x, 5) dt-jam e -“‘W) Ax, 5) dt= (x, t), 
0 

(2) 

I 
00 

0 

e-“‘(~(t)x,~)dt-Jbs~-~‘j~(S(~)Ax,~)dsdt=Jbo~e-i’(x,r>dt. 

(3) 

Here we have integrated by parts and noted that 

I,-“[; (S(s)Ax, 5) dsJ <e-“‘[‘I(S() <)lds 
0 

<e-(“-P)’ &s 
s I(W)& t>lds 

0 

<e-(“-@)’ O” e-p’“l(S(s)Ax, <)lds 
s 0 

for all oS -CP < 1 and all t > 0, so that 

(S(s)Ax, 5) ds=O. 

Now (3) is true for all ;1>w,, so the uniqueness property of Laplace 
transforms implies that 

<S(r)x,C)=(x,~)+J’gr(S(S)Ax,i’)ds 

for almost all t > 0. 
The equality (1) holds for all values of t > 0 because 9(A) c R(A) E, 

I > wS, and for every y E E 

(s(t)R(L)y,5)=(R(1)S(t)y,C)=lo,e-A~(S(s+t)y,5)ds 

=eAl O” e-“” 
5 <S(u) Y, 5 > du 
I 

so (S( . ) x, < ) is continuous on (0, cc ). 
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Assume that the set of all 5 E F for which (1) holds for almost all t > 0 
separates points in E. Then for ws < p < I 

cc 

1 II 

e 
0 

--I’ ~(S(s)Ax,r)ds(dri%e-‘;-“‘dt~~e~“l(S(s)Ax,i)lds 

< co. 

Thus on integrating (1) with respect to e -‘ldt we obtain (3). Integration by 
parts now gives (2), which is just a reformulation of the desired equation. 

COROLLARY 2.6. Suppose that the E-generator Gs of S exists. Then the 
function (G,S( . )x, 5) is integrable on [0, t] and 

<s(t)x,5)=(~,5>+J*I(GsS(~)x,5)ds 
0 

for all x E g(G,), 5 E F and t > 0. 

An operator A: 9(A) + E, 9(,4)c E with the property that 
R(IZ)(IZI- A) x = x for all x E 9(A) and d > os is called a subgenerator of S. 

3. SOME SPECIAL CASES 

To obtain comparisons with standard semigroup theory, additional con- 
tinuity conditions need to be imposed upon F-semigroups. 

First of all we note that for any subgenerator A: 9(A) -+ E of S, if 
XE B(A) then S(t) x + x in o(E, F) as t + O+ and the E-valued function 
S( . ) x is a( E, F)-continuous on (0, cc ). 

PROWSITION 3.1. Let A: 9(A) + E be a subgenerator of S. Let p be a 
locally convex topology on E with a fundamental system of o(E, F)-closed 
convex neighborhoods of zero. 

Zf for all ye E, the E-valued function S( . ) y is p-bounded in a 
neighborhood of t = 0, then S(t) x -+x in p as t--+0+ for every XE~(A). 

Furthermore, tf 9(A) is p-dense in E and S is p-equicontinuous in a 
neighborhood of t = 0, then S(t) x -+ x in p as t -+ 0 + for all x E E. 

Proof: Let U be an arbitrary o(E, F)-closed, disked neighborhood of 
zeroofp.Let~={~~F:~(x,~)~~lforallx~U}bethepolarofUinF. 
Then p= {xEE: 1(x, 5)/G 1 for all TV v”} = U [lo, IV, 1.51. 

The claims now follow from Proposition 2.5 and the estimate 

;“I& I(s(t)x-x, 01 <y&j; I(S(s) Ax, olds, t > 0. (4) E E 
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PROPOSITION 3.2. Suppose that there exists a o(F, E)-dense subspace M 
of F such that S(t) x + x in a( E, M) as t + 0 + for each x E E. 

Then for all A > os, R(1) = jr e-” S(t) dt is injective and R(1) E is 
a(E, M)-dense in E. 

Proof: For each x E E, 5 E M and ,I> os 

Given E > 0, choose 6 > 0 such that I (S(t) x - x, 5 ) I< E for all t E (0,6). 
Then 

I(AR(l)x-x, 01 ~~~~~e~“dt+~~~~P”‘l(S(t)x-x, 5>1 dt. 

Now for 1 sufficiently large, the function ,JHA~-” is decreasing for 
each t > 6 and lim,, o. le-” = 0, so by monotone convergence 
lim 2-m I<JR(A)x-x, <>I <a, proving that AR(A) x + x in o(E, M). The 
conclusions follow immediately. 

Under the above assumptions the E-generator Gs exists and its domain 
9(G,) is a(E, M)-dense in E. 

Suppose that p is some locally convex topology on E with a fundamental 
system of a(E, F)-closed convex neighbourhoods of zero. Then estimates of 
the form (4) yield conclusions similar to those of Proposition 3.2 for the 
topology p whenever S(t) x + x in p as t --f 0 + for each x E E; namely, 
9(G,) is p-dense in E and i R(A) x+x in p as A.+co for every xEE. 

Now let 9(Ds) be the set of all x E E for which (S(t) x - x)/t converges 
in o(E, F) as t + O+ and define D,x as its limit. 

PROPOSITION 3.3. Suppose that for each t > 0, S(t) is a(E, F)-continuous. 
Then S(t) 9(D,) cg(D,) and S(t) Dsx= D,S(t)x for all XEJ%(D,) and 
t > 0. 

If, furthermore, for each x E E, S(t) x + x in a(E, F) as t + O+, then the 
E-generator G, of S exists and Gs= Ds. 

Proof. The first part follows from the definition of D, and the a(E, F)- 
continuity of each operator S(r), t > 0. 

The E-generator G, of S exists by Proposition 3.2, and according to 
Proposition 2.5 

(s(t)x, t> = -lx, t> +( <s(s) Gsx, 5) ds 
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for all XE g(G,), 5 E F and t > 0. The convergence of (S(s) G,x, t) to 
(G,x, 5) as s + O+ implies that 

lim (s(t)x-x, 5)/t= (G,x, 4). 
1-o+ 

Therefore g(G,) c g(D,) and G,x = D,x for all x E g(G,). Now we show 
that 9?(Ds) c 9(G,). 

If x E 9(Ds), 5 E F, then the function (S( . ) x, 5) has a right derivative 
equal to (s(t) D,x, 5) at each point t > 0. Since (S( . ) D,x, [) is con- 
tinuous on (0, co), we have 

(s(t)x, t>= (x, 5>+Jl: (G)D,x,t) 4 t > 0; 

the right derivatives of both sides of the equation are equal. Another appeal 
to Proposition 2.5 yields the inclusion 9(D,) c 9(G,). 

Similar results can also be deduced for the topology p. As before D,x is 
defined as the limit lim I--1 o + (s(t) x - x)/t in p for every x E E for which it 
exists. If S(t) is p-continuous for each t > 0, then of course S(t) commutes 
with D,. Combined with the estimate (4), the proof above shows that 
G, = D, whenever, in addition, for each x E E, S(t) x -+ x in p as t -+ O+. 

The last condition is implied by the assumptions of Proposition 3.1. Vir- 
tually all “weak” = “strong” properties of semigroups are proved in this 
manner by appealing to equicontinuity about t = 0. 

The term “E-generator” was introduced because it may happen that the 
operators R(A), ,J > os are not injective on E, but there exists an invariant 
subspace H of E on which they are. Naturally one would then speak of an 
“H-generator” if the restriction of R(1) to H determined R(A) by, say, con- 
tinuity. However, no continuity assumptions have been made for R(A) in 
general. 

An important example of this phenomonon is provided by diffusion 
processes on [Wd. There E is the space of bounded Bore1 measurable 
functions on [Wd and F is the space of (signed) Bore1 measures on Rd. The 
resolvent R(1), A > o, will not be injective on E (e.g., R(1) maps the 
characteristic function of a single point to zero), but it is injective when 
restricted to the continuous functions. 

The resolvent R(I), 2 > ws in general only partially determines S in the 
sense that if S, is another F-semigroup with resolvent R,(n), 2 > w, and 
RI(A) = R(l) for all A> max(o,, oi), then for each XE E and 5 E F, 
(S(t) x, 4 ) = (S, (t) x, 5 ) for almost all t > 0: a consequence of uniqueness 
for Laplace transforms. The set for which equality holds may of course 
depend on x and <. An example of R. S. Phillips [9] shows that the right- 
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hand side of the equation may in fact be identically zero for all t > 0, 
without S itself being the zero semigroup. 

LEMMA 3.4. Suppose that the resolvent R(l), 1> ws of the F-semigroup S 
has dense range in E. 

If S1 is another F-semigroup with resolvent R,(l), 2 >ol, and 
RI (A) = R(1) for all 1> max(o,, wl), then S, = S, 

Proof: According to Lemma 2.3, for each x E E, t E F, A> us, t > 0, 

(S(t) R(1) x, 5) = (R(1) S(t) x, 5) = iba, e-““(S(s+ t) x, 5) ds 

=e It m 
s emAU(S(u) x, 5) du, 
f 

so for all x E E belonging to the common range of R(1) and R, (A), the 
E-valued functions S( . )x, S,( . )x are continuous for the topology 
a(E, F). Therefore S(t) x = S, (t) x for all t > 0. By assumption, R(A) E is 
dense in E, so equality holds everywhere. 

Another possibility is that there may exist a dense subspace H of E and a 
subspace J of F separating points in E such that the functions (S( . ) x, 5 ), 
(S, ( . ) x, 5) are continuous on (0, co ) for every x E H and 5 E J. Then of 
course the equality S= Sr also holds. 

Similarly, the E-generator, when it exists, only determines S up to 
equivalence in general. In applications to diffusion processes, the equality 
of subgenerators on subspaces much smaller than their respective domains 
can yield the equality of the semigroups; that is, a subgenerator may 
“generate” a semigroup with additional properties. Such examples are 
treated elsewhere [6]. 

A familiar technique of the standard theory of continuous semigroups on 
a Banach space is to restrict an arbitrary uniformly bounded semigroup to 
the subspace on which it is continuous, and to study its properties there. 
Next we deal with this method in the present setting. 

Let T: (0, co) + L(E) be a semigroup of continuous linear operators on 
the locally convex space E. Let H be some T-invariant subspace of E’ and 
let J be a subspace of E’ containing H. Set 

E,={x~E:,ty+ (S(t)x,5)=(~,5)forall<oH), 

EO,={<oE’: (x,5)=OforallxoEH}, 

JH = J/U% n J), H, = HIEO, n H). 
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Furthermore it is assumed that H separates points in E, and J separates 
points in the closure E, of En in E. It could be supposed for example, that 
H c JC E’ and H is b(E’, E)-dense in E. 

The space E, is endowed with relative topology of E. Since H is 
r-invariant, En is a T-invariant subspace of E. The restriction of T to the 
subspace E, is denoted by TH. 

PROPOSITION 3.5. Suppose that for each x E E and 5 E J the function 
( T( . ) x, 5) is Lebesgue measurable. Furthermore, suppose that there exists 
o 2 0 such that for all x E E, there exists a o(i?,, J,)-compact convex sub- 
set K, of .i?,, such that for almost all t > 0, eP”‘T(t) x E K,. 

Then TH is a JMsemigroup on E, such that for each x E E,, T,(t) x + .Y 
in a(E,, HE) as t -+O+. The domain of the Ergenerator of T, is 
o(E,, H,)-dense in E,. 

Proof: It is readily seen that T, satisfies condition (Sl ), because H is a 
T-invariant subspace of J separating points in E,. 

To verify (S2), take x E E, and ;I > o. If r E J and 1 (u, 01 < 1 for all 
~EK,, then 

I 
30 

ee”I(T(t)x,C)Idt<(A-o)-’ 
0 

By the bipolar theorem [ 12, IV, 1.51 and the compactness of K,, there 
exists R(I) x E E such that for all such 5 

Furthermore, R(A) x is uniquely defined. 
To establish that R(A) x E E,, let 4 E H. Then 

(T(t)R(l)x-R(i)x,5)=fo~e -“‘(T(s+t)x&ds-(R(A)x,l) 

00 
=e -ir e-““( T(u) x, 5) du 

-5 

cc 

eC”“( T(u) x, 5) du. 
0 

Here the assumption that H is a T-invariant subspace of J has been used. 
Taking t+O+, we see that R(A) XE E,. 

The remaining properties of the semigroup TH follow from the 
definitions and the remark following Proposition 3.2. 
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For the case that E is a banach space and H = J= E’, the conditions of 
Propostion 3.5 are satisfied whenever lim supl+ o. ~~‘11 T(tll < co for some 
o 2 0, because the set {e-“‘7’(t) x: t > 0} is then a relatively weakly com- 
pact subset of E for each x E Eo and 1, > CD. 

In this respect, the following remarkable result of W. Feller [3] is per- 
tinent. Given a measurable function f: (0, co) + R, set lim ess. 
sw,,,f(t)=lim,,, (inf{a:f(t) <a for almost all t > Y)). 

PROPOSITION 3.6. (Feller). Let X be a Banach space and Y a norming 
subspace of X’. Let T: (0, 00) + L(X) be a semigroup such that 

(i) the function ( T( . ) x, y ) is Lebesgue measurable for every x E X 
and yE Y; 

(ii) for each y E Y, T(t)‘y E Y for almost all t > 0. 

Then there exists w > 0 such that for all x E X and y E Y, 

limesssupe-“‘I(T(t)x,y)l 6 IIxlI llyll. I-00 

Thus, whenever E is a Banach space, an F-semigroup on E is essentially 
bounded at infinity in the above sense. 

4. INDUCTIVE LIMITS OF WEAKLY INTEGRABLE SEMIGROUPS 

To deal with semigroups of unbounded operators, the inductive limit of 
a collection of weakly integrable semigroups needs to be considered. A 
resolvent will no longer be associated with the semigroup, but a meaning 
can still be given to its “generator;” the whole real line may be part of its 
spectrum. 

Let X be a locally convex space. Suppose that (A, 5) is a directed set 
and E,, c1 E A is a family of locally convex spaces such that E, is con- 
tinuously included in E, whenever CI 5 /I, a, p E A, and for each c1 E A, E, is 
continuously included in X. Furthermore, suppose that the space lJaEA E is 
dense in X. Set E = l&E, the inductive limit of E,, tx E A [ 12, II, 61 and put 
F= X’. 

The polar e of E, in F is the set of all < E F such that (x, g) = 0 for all 
x E E,. Let F, denote the quotient space F/e for each c( E A. 

DEFINITION 4.1. A semigroup S of continuous linear operators on E is 
called the inductive limit of the F,-semigroups S,, u E A, if for each a E A, 
E, is an S-invariant subspace of E and S, = S( * )I E, is an F,-semigroup on 
Ea. 
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Only the dual F of the space X plays a role in the definition, but it has 
been formulated in terms of X for motivation. 

The following fact follows easily from the properties of inductive limit 
topologies [ 10, II, 6 J. 

LEMMA 4.2. Let H = QH, be the inductive limit of an increasing family 
{H, : a E A} of locally convex spaces, For each a E A, suppose that J, is a 
subspace of H:, separating points in H,, such that (J, : a E A} forms a pro- 
jective system of vector spaces via the adjoints of the inclusion maps 
associated with the inductive limit H. Furthermore, suppose that JfI is mapped 
onto J, whenever a, p E A and a 5 /?. 

Let X be the set H endowed with the topology a(H, !&J,). 
Iffor each a E A, S, is a J,-semigroup on H, and S, ( )I H, = S, for every 

asp, then there exists a unique semigroup li1&9, of continuous linear 
operators on H such that lhS, is the inductive limit of the J,-semigroups S,, 
MEA. 

As a consequence of Definition 4.1, condition (Sl ) of Section 2 holds; 
that is, there exists an S’-invariant subspace of F separating points in E. 
However, condition (S2) holds only “locally.” 

Let S be the inductive limit of F,-semigroups S,, a E A, with R, (1) = 
SF e -‘lSa(t)dt, A>co, for each SEA. 

Suppose that P: 9(P) -+ E is a linear operator with domain g(P) c E. If 
for each x E 9(P) there exists a E A such that ,Y, px E E, and 
R,(i)(lI- P) x=x for all J. >w,, then P is called a subgenerator of S. 
When A is a singleton set, the term agrees with that previously defined. 

The next assertion is a direct consequence of Proposition 2.5. 

PROPOSITION 4.3. Suppose that P: 9(P) -+ E is a linear operator with 
domain 9(P) c E. 

If P is a subgenerator of S, then for every x E 9(P), r E F and t > 0 

S(r)x,5)=(x,~)+!^gI(S(S)Px,5)d~s. (5) 

Conversely, iffor every x E 9(P) the set of all 5 E Ffor which (5) holds for 
almost all t > 0 separates points in E, then P is a subgenerator of S. 

Now assume that each operator R,(n), 1” > o,, a E A is injective. Let 
G,:s(G,)-+Ebe the Em-generator of S,, aEA. Since RB(d)JE=R,(i) for 
as/?, we have the inclusion G, c G, also. Define the E-generator 
G,: 9(G,) -+ E of S by 

g(Gs)= u WG,), Gsx=G,x for x~g(G,), ~GA. 
aLE.4 



360 BRIAN JEFFERIES 

It is easily verified that G, commutes with S(t) for each t > 0. The proofs 
of the various properties of F-semigroups established in Section 3 go over 
by localization to inductive limits. In particular, the following analogues of 
Propositions 3.1 and 3.2 are worth mentioning. 

Let p be a locally convex topology on E with a fundamental system of 
a(E, F)-closed convex neighbourhoods of zero. 

PROPOSITION 4.4. Let P: 9(P) + E be a subgenerator of S. If for all 
y E E, the E-valued function S( * ) y is p-bounded in a neighbourhood oft = 0, 
then S(t)x+x in p as t+Of for every XE~(P). 

Furthermore, tf 9(P) is p-dense in E and S is p-equicontinuous in a 
neighbourhood of t = 0, then S(t) x + x in p as t + 0 + for all x E E. 

PROPOSITION 4.5. If S(t) x --t x in p as t --+ O+ for every XEE, then the E- 
generator, Gs of S exists and D(G,) is p-dense in E. 

The E-generator of S can be compared with the “differential” generator 
of S by an argument along the lines of the proof of Proposition 3.3. To 
treat semigroups of unbounded operators on a Banach space, it is essential 
not to assume that each of the operators S(t), t > 0 is p-continuous. That 
condition can be avoided in the following manner. 

Define Dg x to be the limit lim, j 0+ (S(t) x - x)/t for all x E E for which 
the limit exists in p, and for which the function S( . ) x is p-differentiable in . . 
E; that is, hm, +0 (S( t + h) x - S(t) x)/h exists in the topology p for all 
t>o. 

PROPOSITION 4.6. Suppose that for each x E E, S(t) x + x in p as t + 0 + 
and S( . ) x is p-continuous. 

Then the E-generator Gs of S exists and Gs = 0;. 

Proof We know that G, exists by Proposition 4.5. First, consider the 
case of p = o(E, F). 

By Proposition 4.3, 9(G,) c 9(D$), and G, and DpS agree on 9(G,). It 
remains to prove that 9(DpS) c g(G,). 

According to the remark after Lemma 4.2, there exists an S-invariant 
subspace H of F separating points in E. Take x E 9(DP,) and c E H. Then 
for each t > 0 

<(S(t+h)x-S(t) x)/h, t> = (S(t)(W)-0 x/h, t’> 

= <(S(h) - 0 x/h, S(t)> 

-+ (DA S(t)‘i > = <S(t) Dsx, i> 

as h+O+. 
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By the definition of DpS, S( . ) x is even p-differentiable in E, so its 
derivative at the point t > 0 is precisely S(t) D,x, because H separates 
points in E. 

An appeal to the fundamental theorem of calculus gives 

for every x E 9(D,), t E F and t > 0. Finally, Proposition 4.3 shows that 
WDs) c g(G,). 

The case for general p follows from estimates of the form (4). 

It is not hard to see that the projectioe limit of F-semigroups can also be 
defined in such a way that the preceding properties are still valid, but we 
have no need of this fact at present. 

5. SEMIGROUPS OF UNBOUNDED OPERATORS ON A BANACH SPACE 

The approach of R. J. hughes [S] to semigroups of unbounded linear 
operators on a Banach space will be adapted to the purpose of illustrating 
the properties of weakly integrable semigroups and their inductive limits. 
To this end, Hughes’ method is particularly suitable because in [S] the 
“infinitesimal generator” is defined directly in terms of resolvents. 

Let (X, /( . I/ ) be a Banach space. For each t > 0, suppose that the linear 
operator T(t): 9( T( t)) -+ X on X is given. Denote by 9 the collection of all 
XE n,,,,, 9(T(s) T(t)) for which: T(s) T(t) x = T(s + t) x for all s, t > 0, 
the X-valued function r( . ) x is strongly continuous on (0, co), and 
I/ T(t)x-xl1 +O as t+O+. 

If 9 # {0}, then {T(t): t >O} is called a semigroup of unbounded 
operators on X. 

For IZ = 0, l,..., XE ndwvh let 
N,(x) = sup{e-“‘II T(t) x 11: t > 0}, 

set E, = {x E 9: N,,(x) < cc } and equip E, with the topology defined by the 
norm N,. 

It is readily shown (see [S] for the details) that E, c E, + , , T(t) E, c E, 
for t > 0 and n = 0, l,,..., and that the inductive limit E = 1imE 
med. The locally convex space E is continuously includedin i. 

can be for- 

Put TE(t) x = T(t) x for every x E E and t > 0. Now assume that E is 
dense in X. We want to show that T, is the inductive limit of weakly 
integrable semigroups. Some conditions additional to those of [IS] are 
needed. 

580’66 3-h 
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For each t > 0, the adjoint of T(t) for the topology of x is denoted by 
T(t)*. Because Ecg(T(t)) is assumed to be dense in X, T(t)* is well 
defined. 

LetF=X’,~={~~F(x,~)=Oforallx~E,},andF,,=F/~foreach 
n = 0, l,.... 

The following result is to be compared with Proposition 3.5; the basic 
difference is that the number w 2 0 there now depends on x E E. 

PROPOSITION 5.1. Let {T(t): t > 0} be a semigroup of closed unbounded 
operators on X. Suppose further that the space E is dense in X and 
ntzO B(T(t)*) separates points in E. 

Then T, is the inductive limit of I;,-semigroups on E,, n = 0, l,.... 
Moreover, the E-generator G, of TE exists and D(G,) is dense in X. 

Proof By virtue of [S, Theorem 2.81, for each n = 0, l,..., and XE E, the 
Bochner integral R, (A) x = sr e -“‘T(t) xdt, I > n converges in X and 
R,(1) E, c E,,. Condition (S2) is therefore satisfied by the semigroup 
T, = T( * )I E,, on E, for each n = 0, l,.... 

That condition (Sl) is satisfied by T,, follows from the assumption that 
the set n,,,, 9(T(t)*) separates points in E; obviously it must also 
separate points in each space E,,, n = 0, l,... . An appeal to Lemma 4.2 and 
Proposition 4.5 completes the proof. 

Under the above assumptions, many of the results of [S] now follow 
from the general approach presented here. In particular, we note that 
Proposition 4.6 provides the equality between the E-generator of TE (which 
corresponds to the “infinitesimal operator” of [S] Delinition2.10) and 
various “infinitesimal operators” defined by differentiation. The exact 
statements may be gleaned from [S]. 

It is readily seen that the same procedure works for any sequentially 
complete locally convex space X, provided the norm II . )I is replaced by a 
collection of seminorms defining the topology of X. 

Fractional powers of certain closed operators offer a wide class of exam- 
ples of inductive limits of weakly integrable semigroups. 

Let A be a closed linear operator acting in a Banach space X, and sup- 
pose that the resolvent of A satisfies 

II W4 A III G M, il > 0. 

For n = 1, 2,..., and a E @ with n - 1 < Re c1< n, define the linear operator 
J” on 9(A”), the domain of the operator A”, by 

yx- sm a7-c s m I”-“R(A; A) A”xd1, x E 9(A”). 
71 0 

The principal value of 1” is taken so that I” > 0 for a > 0. 
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Set $@(A”) = n;= 1 9(A”). For CI = 1,2,..., (-A)” denotes the ath power 
of the operator (-A) defined in the usual sense. For ct E C with 
n - 1 < Re c1< n = 1, 2,..., let (-A)” denote the closure of the operator J”. 
Then for cr,flE@ with Recc, Re/?>O and x~g(A”), 

(-A)*(-A)Px=(-A))“+cx 

(see [S] for the references). 
Now suppose that A is the infinitesimal generator (X-generator) of a 

C,-semigroup on X. Then 9(A”) is dense in X and OF= 1 g((A”)*) is weak 
*-dense in X’; that is, it separates points in X. Replacing the space X by the 
closure of E (defined previously) in X if necessary, the semigroup 
(( -A)‘: a > 0} satisfies the conditions of Proposition 5.1, so ( -A), is the 
inductive limit of weakly integrable semigroups. 

Another class of examples of the inductive limit of weakly integrable 
semigroups are the spectral local semigroups associated with Klein-Lan- 
dau systems of unbounded linear operators on a Banach space X (briefly, 
KL-systems); for the terminology and references, see [7]. 

Given a KL-system {T(t): t > 0) for which the associated local 
semigroup TE defined previously is a spectral local semigroup, then there 
exists a scalar-type operator G with 

T,(t) = ,-“l E, t > 0. 

Here eetG is defined by means of the operational calculus for scalar-type 
spectral operators. The adjoint G* of G is also a scalar-type spectral 
operator for the weak*-topology. It follows that T,(t)* = e-‘“‘, t > 0 and 
r),,O g(T,(t)*) separates points in X. 

According to Propostion 5.1, the semigroup T, on E is therefore the 
inductive limit of F,-semigroups on E,, n = 1, 2,..., with F = x’. It turns out 
that the E-generator GE of T, agrees with G on D(G,). 

Conditions for which a KL-system on an arbitrary Banach space defines 
a spectral local semigroup, and so an inductive limit of weakly integrable 
semigroups are given by W. Ricker [ 111. 

Finally, we remark that in the example of fractional derivatives (D(l)X,,I 
discussed by Hughes [5], n,,O g((D*)*) = (0); the condition imposed in 
Proposition 5.1 that n, , 0 9( T( t)*) should separate points in E is therefore 
a severe restriction, and the treatment given in [S] is more general than 
ours, at least for applications to semigroups of unbounded operators on a 
Banach space. 
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