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Abstract

In this paper, we study Coxeter systems with two-dimensional Davis–Vinberg complexes. We
show that for a Coxeter groupW, if (W, S) and(W, S′) are Coxeter systems with two-dimensional
Davis–Vinberg complexes, then there existsS′′ ⊂ W such that(W, S′′) is a Coxeter system which is
isomorphic to(W, S) and the sets of reflections in(W, S′′) and(W, S′) coincide. Hence, the Coxeter
diagrams of(W, S) and(W, S′) have the same number of vertices, the same number of edges and
the same multiset of edge-labels. This is an extension of the results of A. Kaul and N. Brady, J.P.
McCammond, B. Mühlherr and W.D. Neumann.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction and preliminaries

The purpose of this paper is to study Coxeter systems with two-dimensional Davis–Vinberg
complexes. ACoxeter groupis a groupW having a presentation

〈S | (st)m(s,t) = 1 for s, t ∈ S〉,
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Fig. 1. Two distinct Coxeter diagrams forD6.

whereS is a finite set andm : S × S → N ∪ {∞} is a function satisfying the following
conditions:

(1) m(s, t) = m(t, s) for eachs, t ∈ S,
(2) m(s, s) = 1 for eachs ∈ S, and
(3) m(s, t)�2 for eachs, t ∈ S such thats �= t .

The pair(W, S) is called aCoxeter system. For a Coxeter groupW, a generating setS′ of W
is called aCoxeter generating set for Wif (W, S′) is a Coxeter system. In a Coxeter system
(W, S), the conjugates of elements ofSare calledreflections. We note that the reflections
depend on the Coxeter generating setSand not just on the Coxeter groupW. Let (W, S) be
a Coxeter system. For a subsetT ⊂ S, WT is defined as the subgroup ofWgenerated byT,
and called aparabolic subgroup. If T is the empty set, thenWT is the trivial group.

A diagram is an undirected graph� without loops or multiple edges with a map
Edges(�) → {2,3,4, . . .} which assigns an integer greater than 1 to each of its edges.
Since such diagrams are used to define Coxeter systems, they are calledCoxeter diagrams.

Let (W, S) and(W ′, S′) be Coxeter systems. Two Coxeter systems(W, S) and(W ′, S′)
are said to beisomorphic, if there exists a bijection� : S → S′ such that

m(s, t) = m′(�(s),�(t))

for eachs, t ∈ S, wherem(s, t) andm′(s′, t ′) are the orders ofst in W and s′t ′ in W ′,
respectively.

In general, a Coxeter group does not always determine its Coxeter system up to isomor-
phism. Indeed some counterexamples are known.

Example 1 (Bourbaki[1, p. 38, Exercise 8], Brady et al.[2] ). It is known that the Coxeter
groups defined by the diagrams inFig. 1are isomorphic andD6.

Example 2 (Mühlherr [11] , Brady et al.[2] ). In [11], Mühlherr showed that the Coxeter
groups defined by the diagrams inFig. 2are isomorphic.

Here there exists the following natural problem:

Problem (Brady et al.[2] , Charney and Davis[4] ). When does a Coxeter group determine
its Coxeter system up to isomorphism?
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Fig. 2. Coxeter diagrams for isomorphic Coxeter groups.

Recently, Mühlherr and Weidmann proved that skew-angled Coxeter systems are reflec-
tion rigid up to diagram twisting[12].

It is known that each Coxeter system(W, S) defines a CAT(0) geodesic space�(W, S)

called the Davis–Vinberg complex[5–7,10]. Here dim�(W, S)�1 by definition, and
dim �(W, S) = 1 if and only if the Coxeter groupW is isomorphic to the free product
of someZ2. Hence if dim�(W, S) = 1, then the Coxeter groupW is rigid, i.e.,W deter-
mines its Coxeter system up to isomorphism. In this paper, we investigate Coxeter systems
with two-dimensional Davis–Vinberg complexes.

Remark. Let (W, S) be a Coxeter system. We note that dim�(W, S)�2 if and only if
WT is infinite for eachT ⊂ S such that|T |>2. It is known that for{s1, s2, s3} ⊂ S if

(1) m(si, sj )�3 for eachi, j ∈ {1,2,3} such thati �= j , or
(2) m(si, sj ) = ∞ for somei, j ∈ {1,2,3},

then the parabolic subgroupW{s1,s2,s3} is infinite (see[1]). Hence, for example, if

(1) (W, S) is of typeKn (cf. [9]),
(2) all edge-labels of the Coxeter diagram of(W, S) are odd,
(3) all edge-labels of the Coxeter diagram of(W, S) are greater than 2 (i.e.(W, S) is

skew-angled), or
(4) the Coxeter diagram of(W, S) is true,

then dim�(W, S)�2.

We first recall some basic properties of Coxeter groups and Davis–Vinberg complexes
in Section 2. After some preliminaries in Section 3, we prove the following theorem in
Section 4.

Theorem 1. Let (W, S) and (W ′, S′) be Coxeter systems with two-dimensional Davis–
Vinberg complexes. Suppose that there exists an isomorphism� : W → W ′. For each
s ∈ S, if �(s) is not a reflection in(W ′, S′), then there exist unique elementst ∈ S and
s′, t ′ ∈ S′ such that for somew′ ∈ W ′,

(1) m(s, t) = 2,
(2) m(s, u) = ∞ for eachu ∈ S\{s, t},
(3) �(W{s,t}) = w′W ′

{s′,t ′}(w
′)−1,

(4) m′(s′, t ′) = 2,
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(5) m′(s′, u′) = ∞ for eachu′ ∈ S′\{s′, t ′},
(6) �(s) = w′s′t ′(w′)−1 and
(7) �(t) = w′t ′(w′)−1.

Here we can define an automorphism� of W as follows: for eachs ∈ S,

(1) if �(s) is a reflection in(W ′, S′), then�(s) = s, and
(2) if �(s) is not a reflection in(W ′, S′), then�(s) = st , wheret is a unique element ofS

such thatm(s, t) = 2.

Then the Coxeter systems(W, S) and (W,�(S)) are isomorphic and by Theorem 1 the
isomorphism� : W → W ′ maps reflections in(W,�(S)) onto reflections in(W ′, S′).
Thus we obtain the following theorem.

Theorem 2. Let (W, S) and(W, S′) be Coxeter systems with two-dimensional Davis–
Vinberg complexes. Then there existsS′′ ⊂ W such that(W, S′′) is a Coxeter system
which is isomorphic to(W, S) and the sets of reflections in(W, S′′) and(W, S′) coincide.

This implies the following corollary which is an extension of the results of Kaul[9] and
Brady et al.,[2, Lemma 5.3].

Corollary 3. For a Coxeter group W, if (W, S) and(W, S′) are Coxeter systems with two-
dimensional Davis–Vinberg complexes, then the Coxeter diagrams of(W, S) and (W, S′)
have the same number of vertices, the same number of edges and the same multiset of
edge-labels.

Here amultiset is a collection in which the order of the entries does not matter, but
multiplicities do. Thus the multisets{1,1,2} and {1,2,2} are different. In Corollary 3,
we cannot omit the assumption “with two-dimensional Davis–Vinberg complexes” by
Example 1.

2. Basics on Coxeter groups and Davis–Vinberg complexes

In this section, we introduce some basic properties of Coxeter groups and Davis–Vinberg
complexes.

Definition 2.1. Let (W, S) be a Coxeter system andT ⊂ S. The subsetT is called a
spherical subset of S, if the parabolic subgroupWT is finite.

Definition 2.2. Let (W, S) be a Coxeter system andw ∈ W . A representationw = s1 · · · sl
(si ∈ S) is said to be reduced, if�(w) = l, where�(w) is the minimum length of a word in
Swhich representsw.

The following lemmas are known.
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Lemma 2.3(Bourbaki [1] , Brown [3] , Davis [5] , Hymphreys[8] ). Let (W, S) be a
Coxeter system.

(i) Letw ∈ W and letw = s1 · · · sl be a representation. If �(w)< l, thenw = s1 · · · ŝi · · ·
ŝj · · · sl for some1� i < j � l.

(ii) Letw ∈ W and letw = s1 · · · sl be a representation. Then the length�(w) is even if
and only if l is even.

(iii) For eachw ∈ W , there exists a unique subsetS(w) ⊂ S such thatS(w)={s1, . . . , sl}
for every reduced representationw = s1 · · · sl (si ∈ S).

(iv) Letw ∈ W andT ⊂ S. Thenw ∈ WT if and only ifS(w) ⊂ T .
(v) For each subsetT ⊂ S, (WT , T ) is a Coxeter system.

(vi) For all subsetsT1, T2 ⊂ S, WT1 = WT2 if and only ifT1 = T2.
(vii) If W is finite, then there exists a unique elementw0 ∈ W of longest length.

Lemma 2.4(Bourbaki[1] , Davis[5, Lemma 7.11]). Let (W, S) be a Coxeter system, let
T ⊂ S and letw ∈ WT . Then the following statements are equivalent:

(1) WT is finite and w is the element of longest length inWT ;
(2) �(wt)< �(w) for eacht ∈ T .

Lemma 2.5(Bourbaki[1, p. 12, Proposition 3]). Let (W, S) be a Coxeter system and let
s, t ∈ S. Then s is conjugate to t if and only if there exists a sequences1, . . . , sn ∈ S such
that s1 = s, sn = t andm(si, si+1) is odd for eachi ∈ {1, . . . , n − 1}.

Lemma 2.6(Brady et al.[2, Results 3.7 and 3.8]). Let (W, S) and (W, S′) be Coxeter
systems. Then

(1) if S ⊂ RS′ thenRS = RS′ , and
(2) if RS = RS′ then|S| = |S′|,

whereRS andRS′ are the sets of all reflections in(W, S) and(W, S′), respectively.

By Results 1.8, 1.9 and 1.10 in[2], we obtain the following theorem.

Theorem 2.7(cf. Brady et al.[2] ). Let (W, S) and(W ′, S′) be Coxeter systems. Suppose
that there exists an isomorphism� : W → W ′.Then for each maximal spherical subsetT ⊂
S, there exists a unique maximal spherical subsetT ′ ⊂ S′ such that�(WT )=w′W ′

T ′(w′)−1

for somew′ ∈ W ′.

We introduce a definition of the Davis–Vinberg complex of a Coxeter system.

Definition 2.8 (Davis [5–7]). Let (W, S) be a Coxeter system and letWSf denote the
set of all left cosets of the formwWT , with w ∈ W and a spherical subsetT ⊂ S. The set
WSf is partially ordered by inclusion. The Davis–Vinberg complex�(W, S) is defined
as the geometric realization of the partially ordered setWSf [5,6]. Here it is known that
�(W, S) has a structure of a PE (i.e. piecewise euclidean) cell complex whose 1-skeleton
is the Cayley graph ofW with respect toS [7]. Then the vertex set of each cell of the PE
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cell complex�(W, S) is wWT for somew ∈ W and some spherical subsetT of S. The
Coxeter groupW acts properly, discontinuously and cocompactly as isometries on the PE
cell complex�(W, S) with the natural metric[5,7].

Remark. For a Coxeter system(W, S), by the definition of�(W, S),

dim �(W, S) = max{|T | : T is a spherical subset ofS}.
Theorem 2.7 implies the following lemma.

Lemma 2.9. Let (W, S) and (W ′, S′) be Coxeter systems with two-dimensional Davis–
Vinberg complexes. Suppose that there exists an isomorphism� : W → W ′.

(i) For each two elementss, t ∈ S such thatm(s, t)<∞, there exist unique two elements
s′, t ′ ∈ S′ such that�(W{s,t})=w′W ′

{s′,t ′}(w
′)−1 (hencem(s, t)=m′(s′, t ′)) for some

w′ ∈ W ′.
(ii) The multisets of edge-labels of the Coxeter diagrams of(W, S) and(W ′, S′) coincide.

3. Lemmas on Coxeter groups

We show some lemmas needed later.

Lemma 3.1. Let (W, S) be a Coxeter system and letw ∈ W . Suppose thatw2 = 1 and
�(w)=min{�(vwv−1) : v ∈ W }. ThenWS(w) is finite and w is the element of longest length
in WS(w), whereS(w) is the subset of S defined in Lemma2.3(iii).

Proof. Let w = s1 · · · sl be a reduced representation. Sincew2 = 1,

s1 · · · sl = w = w−1 = sl · · · s1.

Hence�(ws1)< �(w). By Lemma 2.3(i),

ws1 = (s1 · · · sl)s1 = s1 · · · ŝi · · · sl
for somei ∈ {1, ..., l}. Suppose that 1< i� l. Then

s1ws1 = s2 · · · ŝi · · · sl,
and�(s1ws1)< �(w). This contradicts the assumption

�(w) = min{�(vwv−1) : v ∈ W }.
Thusi = 1 andws1 = s2 · · · sl . Hencew = (s2 · · · sl)s1 is reduced.

By iterating the above argument,

w = (si+1 · · · sl)(s1 · · · si)
is reduced for eachi ∈ {1, ..., l − 1}. Hence�(wsi)< �(w) for eachi ∈ {1, ..., l}, i.e.,
�(ws)< �(w) for eachs ∈ S(w). By Lemma 2.4,WS(w) is finite andw is the element of
longest length inWS(w). �
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Fig. 3. Isometryv on the 2-cellC.

Remark. Let(W, S)and(W ′, S′)be Coxeter systems with two-dimensional Davis–Vinberg
complexes. Suppose that there exists an isomorphism� : W → W ′. Let s ∈ S. Since
(�(s))2 = 1, by Lemma 3.1, either

(1) �(s) is a reflection in(W ′, S′), or
(2) �(s)=w′(s′t ′)m′

(w′)−1 for somew′ ∈ W ′ ands′, t ′ ∈ S′, wherem′(s′, t ′) is even and
m′ = m′(s′, t ′)/2.

Lemma 3.2. Let (W, S) be a Coxeter system with two-dimensional Davis–Vinberg com-
plex, let s, t, a, b ∈ S and letw, x ∈ W . Suppose thatm(s, t) is even, m(a, b) is finite and
w(st)mw−1 ∈ xW {a,b}x−1, wherem = m(s, t)/2. ThenwW {s,t}w−1 = xW {a,b}x−1 and
{s, t} = {a, b}.

Proof. Suppose thatm(s, t) is even,m(a, b) is finite andw(st)mw−1 ∈ xW {a,b}x−1, where
m = m(s, t)/2. Letv = w(st)mw−1 and letC andD be the 2-cells in�(W, S) such that

C(0) = wW {s,t} and D(0) = xW {a,b}.

Thenv is an isometry of�(W, S) and the barycenter ofC is the unique fixed point ofv
becausem(s, t) = 2m and dim�(W, S) = 2 (cf. Fig. 3). Since

v = w(st)mw−1 ∈ xW {a,b}x−1,

there existsu ∈ W{a,b} such thatv = xux−1. Then

v(xW {a,b}) = xux−1(xW {a,b}) = x(uW {a,b}) = xW {a,b}.

HencevD = D. In general, for each cellE of �(W, S) and eachy ∈ W , if yE = E then
the isometryy fixes the barycenter ofE by the definition of�(W, S). Thus, the barycenter
of D is a fixed point ofv. On the other hand, the barycenter ofC is the unique fixed point
of v. HenceC = D and

wW {s,t} = C(0) = D(0) = xW {a,b}.
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Sincex−1wW {s,t} = W{a,b}, we have that

x−1w ∈ x−1wW {s,t} = W{a,b}.

Hence,W{s,t} = W{a,b} and{s, t} = {a, b} by Lemma 2.3(vi). Since

x−1w, (x−1w)−1 ∈ W{s,t} = W{a,b},

x−1wW {s,t}w−1x = W{a,b}. Hence, we obtain thatwW {s,t}w−1 = xW {a,b}x−1. �

Lemma 3.3. Let (W, S) and (W ′, S′) be Coxeter systems with two-dimensional Davis–
Vinberg complexes such that there exists an isomorphism� : W → W ′, let s ∈ S, let
s′, t ′ ∈ S′ and letw′ ∈ W ′. Suppose thatm′(s′, t ′) is even and�(s) = w′(s′t ′)m′

(w′)−1,
wherem′ = m′(s′, t ′)/2. Then there exists a unique elementt ∈ S such that

(1) �(W{s,t}) = w′W ′
{s′,t ′}(w

′)−1,
(2) �(t) is a reflection in(W ′, S′), and
(3) m(s, t) = m′(s′, t ′) = 2.

Proof. Suppose thatm′(s′, t ′) is even and�(s)=w′(s′t ′)m′
(w′)−1, wherem′=m′(s′, t ′)/2.

By Lemma 2.9, there existr, t ∈ S andx ∈ W such that

�−1(W ′
{s′,t ′}) = xW {r,t}x−1.

Here we note thatm(r, t) = m′(s′, t ′).
We first show that we may supposer = s.
Since�(s) = w′(s′t ′)m′

(w′)−1,

(�−1(w′))−1s�−1(w′) = �−1((s′t ′)m′
) ∈ �−1(W ′

{s′,t ′}) = xW {r,t}x−1.

Hence, (�−1(w′))−1s�−1(w′) = xyx−1 for some y ∈ W{r,t}. Since the length of
(�−1(w′))−1s�−1(w′) is odd, the length ofy is also odd. Hence,y is conjugate to ei-
ther r or t becausey ∈ W{r,t}. Here we may suppose thaty is conjugate tor. Thens is
conjugate tor, since(�−1(w′))−1s�−1(w′) = xyx−1.

Now we show thats = r. If s �= r, then there existsa ∈ S\{s} such thatm(s, a) is odd by
Lemma 2.5. By Lemma 2.9, there exista′, b′ ∈ S′ such that�(W{s,a}) = x′W ′

{a′,b′}(x
′)−1

for somex′ ∈ W ′. Here we note thatm(s, a) = m′(a′, b′). Then

w′(s′t ′)m′
(w′)−1 = �(s) ∈ �(W{s,a}) = x′W ′

{a′,b′}(x
′)−1.

Hence{s′, t ′} = {a′, b′} by Lemma 3.2 andm′(a′, b′) = m′(s′, t ′). Then

m(s, a) = m′(a′, b′) = m′(s′, t ′).

Herem(s, a) is odd. This contradicts the assumptionm′(s′, t ′) = 2m′ is even. Thuss = r.
Then�−1(W ′

{s′,t ′}) = xW {s,t}x−1, and

w′(s′t ′)m′
(w′)−1 = �(s) ∈ �(W{s,t}) = (�(x))−1W ′

{s′,t ′}�(x).
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By Lemma 3.2,(�(x))−1W ′
{s′,t ′}�(x) = w′W ′

{s′,t ′}(w
′)−1. Hence

�(W{s,t}) = w′W ′
{s′,t ′}(w

′)−1.

Here we note that sucht ∈ S is unique by Lemma 2.9.
Next we show that�(t) is a reflection. Here�(t) is a reflection if and only if the length

�(�(t)) is odd, because�(t) ∈ �(W{s,t}) = w′W ′
{s′,t ′}(w

′)−1. Now we suppose that the

length �(�(t)) is even. Then the lengths of�(s) = w′(s′t ′)m′
(w′)−1 and�(t) are even

and the set{�(s),�(t)} generates�(W{s,t}) = w′W ′
{s′,t ′}(w

′)−1. In general, forf, g ∈ W

if �(f ) and �(g) are even, then the length�(fg) is even by Lemma2.3(ii). Hence the
length of each element of�(W{s,t}) is even. On the other hand, the length ofw′s′(w′)−1 ∈
w′W ′

{s′,t ′}(w
′)−1 = �(W{s,t}) is odd. This is a contradiction. Thus, the length of�(t) is odd

and�(t) is a reflection.
Since�(t) is a reflection,�(t) = w′(s′t ′)ks′(w′)−1 for some 0�k <2m′. Then

�(s)�(t) = (w′(s′t ′)m′
(w′)−1)(w′(s′t ′)ks′(w′)−1)

= w′(s′t ′)m′
(s′t ′)ks′(w′)−1

= w′(s′t ′)m′+ks′(w′)−1.

Hence�(s)�(t) is a reflection and(�(s)�(t))2=1, i.e.,(st)2=1. This means thatm(s, t)=
m′(s′, t ′) = 2. �

Lemma 3.4. Let (W, S) be a Coxeter system and lets, t ∈ S. Suppose thatm(s, t) = 2
andm(s, u) = ∞ for eachu ∈ S\{s, t}. LetS′ = (S\{s}) ∪ {st}. Then(W, S′) is a Coxeter
system which is isomorphic to(W, S).

Proof. The map� : S → S′ defined by�(s)= st and�(u)=u for eachu ∈ S\{s} induces
an automorphism� : W → W , and(W, S) and(W, S′) are isomorphic. �

4. Proof of the main results

Using some lemmas in Sections 2 and 3, we prove the main results.

Theorem 4.1. Let (W, S) and (W ′, S′) be Coxeter systems with two-dimensional Davis–
Vinberg complexes. Suppose that there exists an isomorphism� : W → W ′. For each
s ∈ S, if �(s) is not a reflection in(W ′, S′), then there exist uniquet ∈ S and s′, t ′ ∈ S′
such that for somew′ ∈ W ′,

(1) m(s, t) = 2,
(2) m(s, u) = ∞ for eachu ∈ S\{s, t},
(3) �(W{s,t}) = w′W ′

{s′,t ′}(w
′)−1,

(4) m′(s′, t ′) = 2,
(5) m′(s′, u′) = ∞ for eachu′ ∈ S′\{s′, t ′},
(6) �(s) = w′s′t ′(w′)−1 and
(7) �(t) = w′t ′(w′)−1.
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Proof. Suppose thats ∈ S and�(s) is not a reflection in(W ′, S′). Sinces2=1,(�(s))2=1.
By Lemma 3.1, there existw′, v′ ∈ W ′ such that�(s) = w′v′(w′)−1 andv′ is the element
of longest length inW ′

S′(v′). Since�(s) is not a reflection,v′ /∈ S′, i.e., |S′(v′)|>1. Hence
|S′(v′)|=2 because dim�(W ′, S′)=2. LetS′(v′)={s′, t ′}. Sincev′ is the element of longest
length inW ′

S′(v′) =W ′
{s′,t ′} andv′ is not a reflection,m′(s′, t ′) is even andv′ = (s′t ′)m′

, where

m′ = m′(s′, t ′)/2. Hence�(s) = w′(s′t ′)m′
(w′)−1. By Lemma 3.3, there exists a unique

elementt ∈ S such that

(i) �(W{s,t}) = w′W ′
{s′,t ′}(w

′)−1,
(ii) �(t) is a reflection in(W ′, S′), and

(iii) m(s, t) = m′(s′, t ′) = 2.
Then�(s) = w′s′t ′(w′)−1 by (iii).
Now �(t) is a reflection by (ii) and

�(t) ∈ �(W{s,t}) = w′W ′
{s′,t ′}(w

′)−1

= {1, w′s′(w′)−1, w′t ′(w′)−1, w′s′t ′(w′)−1}.
Hence, either�(t) = w′s′(w′)−1 or �(t) = w′t ′(w′)−1. Here we may suppose that

�(t) = w′t ′(w′)−1.

Finally we show thatm(s, u) = ∞ for eachu ∈ S\{s, t} andm′(s′, u′) = ∞ for each
u′ ∈ S′\{s′, t ′}.

We suppose that there existsu ∈ S\{s, t} such thatm(s, u)<∞. By Lemma 2.9,
�(W{s,u}) = x′W ′

{a′,b′}(x
′)−1 for somex′ ∈ W ′ anda′, b′ ∈ S′. Then

w′s′t ′(w′)−1 = �(s) ∈ �(W{s,u}) = x′W ′
{a′,b′}(x

′)−1.

By Lemma 3.2,x′W ′
{a′,b′}(x

′)−1 = w′W ′
{s′,t ′}(w

′)−1. Hence

�(W{s,u}) = x′W ′
{a′,b′}(x

′)−1

= w′W ′
{s′,t ′}(w

′)−1

= �(W{s,t}).

ThusW{s,u} = W{s,t} and{s, u} = {s, t} by Lemma 2.3(vi). Henceu = t . This contradicts
the assumptionu ∈ S\{s, t}. Thusm(s, u) = ∞ for eachu ∈ S\{s, t}.

We note that

�(st) = (w′s′t ′(w′)−1)(w′t ′(w′)−1) = w′s′(w′)−1

and

�−1(s′) = (�−1(w′))−1st�−1(w′).

By applying the above argument to�−1 : W ′ → W , we can prove thatm′(s′, u′) = ∞ for
eachu′ ∈ S′\{s′, t ′}. �
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We obtain the following theorem from Theorem 4.1.

Theorem 4.2. Let (W, S) and (W, S′) be Coxeter systems with two-dimensional Davis–
Vinberg complexes. Then there existsS′′ ⊂ W such that(W, S′′) is a Coxeter system which
is isomorphic to(W, S) andRS′ = RS′′ .

Proof. Let

S0 = {s ∈ S : s is not a reflection in(W, S′)} = {s1, . . . , sn}.
For eachi ∈ {1, ..., n}, there exists a unique elementti ∈ S\S0 such thatm(si, ti) = 2 by
Theorem 4.1. Thensi ti is a reflection in(W, S′) by Theorem 4.1. Let

S′′ = (S\S0) ∪ {s1t1, ..., sntn}.
Then (W, S′′) is a Coxeter system which is isomorphic to(W, S) by Lemma 3.4. Since
S′′ ⊂ RS′ by the construction ofS′′, RS′′ = RS′ by Lemma 2.6(1). �

Theorem 4.2 implies the following corollary.

Corollary 4.3. For a Coxeter groupW, if (W, S) and(W, S′) are Coxeter systems with two-
dimensional Davis–Vinberg complexes, then the Coxeter diagrams of(W, S) and (W, S′)
have the same number of vertices, the same number of edges and the same multiset of
edge-labels.

Proof. By Lemma 2.9, the Coxeter diagrams of(W, S) and(W, S′) have the same number
of edges and the same multiset of edge-labels. By Theorem 4.2, there existsS′′ ⊂ W such
that (W, S′′) is a Coxeter system which is isomorphic to(W, S) andRS′ = RS′′ . Hence
|S| = |S′′| = |S′| by Lemma 2.6(2). �

The main results of this paper have been announced at the Topology Symposium in Japan
on July 20, 2003.
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