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Abstract

In this paper, we study Coxeter systems with two-dimensional Davis—Vinberg complexes. We
show that for a Coxeter grou, if (W, §) and(W, S’) are Coxeter systems with two-dimensional
Davis-Vinberg complexes, then there existsc W such thaf W, S”) is a Coxeter system which is
isomorphic to(W, S) and the sets of reflections {#, S”) and(W, S’) coincide. Hence, the Coxeter
diagrams of(W, S) and (W, S") have the same number of vertices, the same number of edges and
the same multiset of edge-labels. This is an extension of the results of A. Kaul and N. Brady, J.P.
McCammond, B. Muhlherr and W.D. Neumann.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction and preliminaries

The purpose of this paper is to study Coxeter systems with two-dimensional Davis—Vinberg
complexes. ACoxeter groups a groupV having a presentation

(S|(s)"D =1 fors,r e S),
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Fig. 1. Two distinct Coxeter diagrams forg.

whereSis a finite set and: : § x S — N U {oo} is a function satisfying the following
conditions:

(1) m(s,t) =m(t, s) foreachs, r € S,
(2) m(s,s) =1foreachs € S, and
(3) m(s, 1) >2for eachs, r € S such that # ¢.

The pair(W, S) is called aCoxeter systeni-or a Coxeter grouy/, a generating set’ of W

is called aCoxeter generating set for W(W, S’) is a Coxeter system. In a Coxeter system
(W, S), the conjugates of elements $fire calledeflections We note that the reflections
depend on the Coxeter generatingSand not just on the Coxeter groWy Let (W, S) be

a Coxeter system. For a subgetc S, Wr is defined as the subgroup\&fgenerated by,
and called garabolic subgrouplf T is the empty set, theW is the trivial group.

A diagram is an undirected grapl™ without loops or multiple edges with a map
Edgesl’) — {2, 3,4, ...} which assigns an integer greater than 1 to each of its edges.
Since such diagrams are used to define Coxeter systems, they areCzededr diagrams

Let (W, S) and(W’, S) be Coxeter systems. Two Coxeter systéis S) and(W’, §)
are said to bésomorphig if there exists a bijectiogy : S — S’ such that

m(s, 1) =m'(Y(s), Y(1))

for eachs,t € S, wherem(s,t) andm’(s’, ') are the orders oftin W ands’t’ in W’,
respectively.

In general, a Coxeter group does not always determine its Coxeter system up to isomor-
phism. Indeed some counterexamples are known.

Example 1 (Bourbaki[l, p. 38, Exercise 8]Brady etal[2]). Itis known thatthe Coxeter
groups defined by the diagramshig. 1are isomorphic andg.

Example 2 (Mahlherr[11], Brady et al.[2]). In [11], MUhlherr showed that the Coxeter
groups defined by the diagramshig. 2are isomorphic.

Here there exists the following natural problem:

Problem (Brady et al[2], Charney and Davigl] ). When does a Coxeter group determine
its Coxeter system up to isomorphism?
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Fig. 2. Coxeter diagrams for isomorphic Coxeter groups.

Recently, Muhlherr and Weidmann proved that skew-angled Coxeter systems are reflec-
tion rigid up to diagram twisting 2].

It is known that each Coxeter systdiiv, S) defines a CAT(0) geodesic spakéWw, S)
called the Davis—Vinberg complefo—7,10] Here dimX (W, S)>1 by definition, and
dim X(W, S) = 1 if and only if the Coxeter groufV is isomorphic to the free product
of someZ,. Hence if dimX(W, S) = 1, then the Coxeter groly is rigid, i.e., W deter-
mines its Coxeter system up to isomorphism. In this paper, we investigate Coxeter systems
with two-dimensional Davis—Vinberg complexes.

Remark. Let (W, S) be a Coxeter system. We note that diraW, S) <2 if and only if
Wr is infinite for eachl’ C S such tha{T'| > 2. It is known that fof{s1, s2, s3} C S if

(1) m(s;, s;) =3 foreach, j € {1, 2, 3} such that # j, or
(2) m(s;, s;) = oo for somei, j € {1, 2, 3},
then the parabolic subgroufys, s, s is infinite (seg1]). Hence, for example, if

(1) (W, S)is of typeK, (cf.[9]),
(2) all edge-labels of the Coxeter diagram(#éif, S) are odd,
(3) all edge-labels of the Coxeter diagram (0¥, S) are greater than 2 (i.€W, S) is
skew-angled), or
(4) the Coxeter diagram @, S) is true,
then dimX(W, §)<2.

We first recall some basic properties of Coxeter groups and Davis—Vinberg complexes
in Section 2. After some preliminaries in Section 3, we prove the following theorem in
Section 4.

Theorem 1. Let (W, S) and (W', §’) be Coxeter systems with two-dimensional Davis—
Vinberg complexes. Suppose that there exists an isomorghismv — W’. For each

s € §,if ¢(s) is not a reflection in(W’, '), then there exist unique elememntg S and
s',t' € §" such that for some’ € W/,

(1) m@s,0) =2,

(2) m(s, u) = oo for eachu € S\{s, t},
3) ¢Wis) = w' W[, (w)7,

4) m'(s',t) =2,
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(5) m'(s’,u') = oo for eachu’ € S'\{s', 1},
(6) ¢(s)=w's’t'(w)*and
(7) ¢y =w't'(w) ™.

Here we can define an automorphignof W as follows: for each € S,

(1) if ¢(s) is areflection inW’, §’), theny(s) = s, and
(2) if ¢(s) is not a reflection ifW’, §’), theny(s) = sz, wheret is a unique element &
such thatn(s, t) = 2.

Then the Coxeter systenmid/, S) and (W, y(S)) are isomorphic and by Theorem 1 the
isomorphism¢ : W — W’ maps reflections ifW, y/(S)) onto reflections infW’, §’).
Thus we obtain the following theorem.

Theorem 2. Let (W, S) and W, S") be Coxeter systems with two-dimensional Davis—
Vinberg complexes. Then there exists ¢ W such that(W, S”) is a Coxeter system
which is isomorphic tgW, S) and the sets of reflections (i, S”) and (W, S’) coincide

This implies the following corollary which is an extension of the results of Kauand
Brady et al.[2, Lemma 5.3]

Corollary 3. For a Coxeter group Wf (W, S) and(W, S’) are Coxeter systems with two-
dimensional Davis—-Vinberg complexésen the Coxeter diagrams 6W, S) and (W, S’)

have the same number of verticéise same number of edges and the same multiset of
edge-labels

Here amultisetis a collection in which the order of the entries does not matter, but
multiplicities do. Thus the multisetgl, 1, 2} and {1, 2, 2} are different. In Corollary 3,
we cannot omit the assumption “with two-dimensional Davis—Vinberg complexes” by
Example 1.

2. Basics on Coxeter groups and Davis—Vinberg complexes

In this section, we introduce some basic properties of Coxeter groups and Davis—Vinberg
complexes.

Definition 2.1. Let (W, S) be a Coxeter system arll c S. The subsef is called a
spherical subset of, % the parabolic subgroup/y is finite.

Definition 2.2. Let (W, S) be a Coxeter system amde W. A representatiom =s1 - - - 5
(s; € S)is said to be reduced, #ilw) = I, wheret(w) is the minimum length of a word in
Swhich represente.

The following lemmas are known.
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Lemma 2.3 (Bourbaki [1], Brown [3], Davis [5], Hymphreys[8]). Let (W, S) be a
Coxeter system

() Letw € W and letw =s1 - - - 5; be a representatianf £(w) </, thenw =s1---5; - -
§j -5 for somel<i < j<I.
(i) Letw € W and letw = s1---s; be a representation. Then the lendttw) is even if
and only if | is even
(iif) Foreachw e W, there exists a unique subsitw) C S such thatS(w) = {s1, ..., s;}
for every reduced representation= sy - - - s; (s; € S).
(iv) Letw €e WandT c S. Thenw € Wr ifand only if S(w) C T.
(v) Foreach subset cC S, (Wr, T) is a Coxeter system
(vi) Forall subsetsly, T> C S, Wr, = Wy, if and only if Ty = To.
(vii) If W is finite then there exists a unique element e W of longest length

Lemma 2.4 (Bourbaki[1], Davis[5, Lemma 7.11]. Let(W, S) be a Coxeter systeret
T c S and letw € Wr. Then the following statements are equivalent

(1) wr is finite and w is the element of longest lengthin;
(2) €(wt) < £(w) foreachr € T.

Lemma 2.5 (Bourbaki[1, p. 12, Proposition 3]. Let(W, S) be a Coxeter system and let
s,t € S. Then s is conjugate to t if and only if there exists a sequence., s, € S such
thats; = s, s, =t andm(s;, s;+1) is odd foreach € {1,...,n — 1}.

Lemma 2.6 (Brady et al.[2, Results 3.7 and 3.8] Let (W, S) and (W, S") be Coxeter
systems. Then

(1) if S ¢ Ry thenRg = Ry, and
(2) if Rs = Ry then|S| = 15|,
whereRg and Ry are the sets of all reflections itW, S) and (W, S’), respectively

By Results 1.8, 1.9 and 1.10 j&], we obtain the following theorem.

Theorem 2.7(cf. Brady et al[2]). Let(W, S) and(W’, §’) be Coxeter systemSuppose
that there exists anisomorphispn W — W’. Then for each maximal spherical sub%et
S, there exists a unique maximal spherical sulget S’ such thaip(Wr)= u/W’T,(w’)‘l
for somew’ € W'.

We introduce a definition of the Davis—Vinberg complex of a Coxeter system.

Definition 2.8 (Davis [5-7]). Let (W, S) be a Coxeter system and 18t/ denote the

set of all left cosets of the formy W, with w € W and a spherical subs&tc S. The set
w7 is partially ordered by inclusion. The Davis—Vinberg compEW, S) is defined

as the geometric realization of the partially orderedvget”/ [5,6]. Here it is known that

2 (W, S) has a structure of a PE (i.e. piecewise euclidean) cell complex whose 1-skeleton
is the Cayley graph ofV with respect taS[7]. Then the vertex set of each cell of the PE
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cell complexX (W, S) is wW for somew € W and some spherical subseof S. The
Coxeter groupWV acts properly, discontinuously and cocompactly as isometries on the PE
cell complexX (W, S) with the natural metri¢5,7].

Remark. For a Coxeter systertW, ), by the definition o' (W, §),

dim X(W,S) =max{|T| : T is a spherical subset of}.
Theorem 2.7 implies the following lemma.

Lemma 2.9. Let (W, S) and (W', S") be Coxeter systems with two-dimensional Davis—
Vinberg complexesSuppose that there exists an isomorphismw — W',

(i) Foreachtwo elementst € S such thatn(s, ) < oo, there exist unique two elements
s, " € 8§ suchthaip(Wis 1) = w,W{/s’,t’}(w/)_l (hencen(s, t) =m'(s’, t")) for some
w e W,

(i) The multisets of edge-labels of the Coxeter diagrani®ofS) and(W’, ') coincide

3. Lemmas on Coxeter groups
We show some lemmas needed later.

Lemma 3.1. Let (W, S) be a Coxeter system and let e W. Suppose thai? = 1 and
Lw)=min{t(vwv™1) : v e WJ. ThenWg(y, is finite and w is the element of longest length
in Wsw), whereS(w) is the subset of S defined in Lemha(iii).

Proof. Letw =s1---s; be a reduced representation. Since= 1,

s1~-~s1:w:w_l:sl~-~s1.

Hencel(ws1) < £(w). By Lemma 2.3(i),
Ws1=(S1--8))S1 =515 -+-5

for somei € {1, ..., [}. Suppose that £ i <I. Then
SIWS1 =528 -5,

and¢(syws1) < £(w). This contradicts the assumption
£(w) = min{twwv™t) v e W}

Thusi =1 andws1 =s2---s5;. Hencew = (s2 - - - s7)s1 is reduced.
By iterating the above argument,

w=(sig1---85)(s1---5;)

is reduced for each € {1, ..., — 1}. Hencetl(ws;) < £(w) for eachi € {1, ...,1}, i.e.,
L(ws) < L(w) for eachs € S(w). By Lemma 2.4 Ws(,, is finite andw is the element of
longest length iWs(,,,. 0O
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w ws
wt wst
w ws
N B L
wt wst = wts wtst w(st)? = w(ts)?
In the case m(s,t) = 2 In the case m(s,t) =4

Fig. 3. Isometryv on the 2-cellC.

Remark. Let(W, S)and(W’, S’) be Coxeter systems with two-dimensional Davis—Vinberg
complexes. Suppose that there exists an isomorplismW — W'. Lets € S. Since
(¢(s))%2 =1, by Lemma 3.1, either

(1) ¢(s) is areflectioninWw’, §"), or
2) ¢(s)= w'(s't)™ (w')~L for somew’ € W’ ands’, ¢’ € S, wherem/(s', t') is even and
m =m'(s',t")/2.

Lemma 3.2. Let (W, S) be a Coxeter system with two-dimensional Davis—Vinberg com-
plex lets,z,a, b € S and letw, x € W. Suppose that(s, t) is evenm(a, b) is finite and
w(sH)"w 1l e xW{a’b}xfl, wherem = m(s, t)/2. ThenwW{s,t}w’l = xW{a,b}xfl and

{s, 1} ={a, b}.

Proof. Suppose thati(s, 1) is evenm(a, b) is finite andw (s)" w=1 € x W, pjx 1, where
m=m(s,1)/2. Letv = w(st)"w~ and letC andD be the 2-cells ir=(W, S) such that
cO = wWisn and DO = xWia by

Thenv is an isometry o2 (W, S) and the barycenter & is the unique fixed point of
becausen (s, t) = 2m and dimX (W, S) = 2 (cf. Fig. 3). Since

v=w(st)"w te xW{a,b}x_l,
there exists: € Wy, ) such that = xux~1 Then
v Wi py) = xux_l(x Wiany) =xuWqpy) =xWig py.

HencevD = D. In general, for each celt of 2(W, S) and eacty € W, if yE = E then
the isometryy fixes the barycenter @& by the definition of2 (W, S). Thus, the barycenter
of D is a fixed point ofv. On the other hand, the barycenterfs the unique fixed point
of v. HenceC = D and

wWis = c9_pO =xWian)-
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Sincex twW s ;) = W45}, we have that

xtwe x‘lwW{s,t} = Wia,p)-

Hence, W,y = Wi, ) and{s, ¢} = {a, b} by Lemma 2.3(vi). Since
xilw, ()c71w)71 € Wiy = Wiany,

x_lwW{m}w_lx = Wi4,5). Hence, we obtain thaDW{S,,}w‘l = xW{a‘h}x_l. O

Lemma 3.3. Let (W, S) and (W', S") be Coxeter systems with two-dimensional Davis—
Vinberg complexes such that there exists an isomorplismWw — W', lets € S, let
s',t" € §" and letw’ € W’'. Suppose that'(s’, t') is even andp(s) = w’(s’t’)m/(w’)_l,
wherem’ = m/'(s’, t')/2. Then there exists a unique elememt S such that

L) dWisp) =w' W, )7
(2) ¢() is areflection in(W’, §), and
3) m(s,r)=m'(s',t') = 2.

Proof. Supposethat’(s’, t') is even and(s) =w/'(s't")" (w') "L, wherem' =m’(s’, /2.
By Lemma 2.9, there existr € S andx € W such that

(ﬁ_l(W{/S/J/}) = xW{r’t}x_l.

Here we note thati(r, t) = m’(s', t').
We first show that we may suppose- s.
Sinceg(s) = w'(s't)" (w") "L,

@) g w) = ¢ € ¢TH W ) = xWirgxh

Hence, (¢ *(w’)) ts¢ 2(w') = xyx~1 for somey € W,.,. Since the length of
(¢~ rw))Ls¢L(w') is odd, the length of is also odd. Hencey is conjugate to ei-
therr or t becausey € W,.,;. Here we may suppose thats conjugate ta. Thens is
conjugate ta, since(¢p *(w’)) " Lsp H(w') = xyx~L.

Now we show that =r. If s # r, then there existg € S\{s} such thain(s, a) is odd by
Lemma 2.5. By Lemma 2.9, there exist b’ € S’ such thatp(Wi;, 4)) = x’W’a,’b,}(x’)‘l

for somex’ € W’. Here we note that(s, a) = m’(a’, b’). Then
w'(5"t)" (W)= Ps) € pWisap) ='Wy (&)L

Hence(s’, t'} = {a’, b’} by Lemma 3.2 andé:’(a’, b') = m/(s’, t"). Then
m(s,a) =m'(d’, b)) =m'(s', ).

Herem(s, a) is odd. This contradicts the assumptiaf(s’, t') = 2m’ is even. Thus =r.
Theng™ (W[, ) = xW(; nx %, and

{s’,t

/()" (W)= () € P(Wie)) = () Wy 1y d ().
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By Lemma 3.2,((]5(x))71W{’s,,[,}¢(x) =w'W/

(yr.y ()™t Hence

¢)(W{S,t}) = w/W{/S/’t/}(w/)_l.

Here we note that suahe S is unique by Lemma 2.9.

Next we show thatp(¢) is a reflection. Herep(¢) is a reflection if and only if the length
2(¢(1)) is odd, because(r) € ¢p(Wis ) = w/W{’S/J/}(w/)*l. Now we suppose that the
length £(¢(¢)) is even. Then the lengths @f(s) = w'(s't)" (w1t and ¢(t) are even
and the sef¢(s), ¢(t)} generategh(Wis 1) = w’W{/S,’t,}(w’)‘l. In general, forf, g € W
if £(f) and¢(g) are even, then the lengtl{ fg) is even by Lemma2.3(ii). Hence the
length of each element @f(W( }) is even. On the other hand, the lengthudf’ (w') "t €
w’W{’S,’t,}(w’)‘1 = (W) is 0dd. This is a contradiction. Thus, the lengthpaf) is odd
and¢(z) is a reflection.

Since¢ (1) is a reflectiong(r) = w'(s't’)*s’(w’)~* for some G<k < 2m’. Then

D(s)P(t) = (' (s't)™ (W)™ w' (st ) s’ (w') ™Y
_ w/(S/t/)m/ (S/t/)ks/(w/)_l

— w/(s/t/)m +ks/(w/)—1.

Hencep(s)p(r) is areflection andp (s)p(1))?>=1, i.e.,(s1)>=1. This means that (s, 1) =
m'(s',t)=2. O

Lemma 3.4. Let (W, S) be a Coxeter system and letr € S. Suppose thati(s, 1) = 2
andm(s, u) = oo for eachu € S\{s, r}. LetS’ = (S\{s}) U {st}. Then(W, §’) is a Coxeter
system which is isomorphic tav, S).

Proof. The map) : S — §’ defined by (s) =st andy(«) =u for eachu € S\{s} induces
an automorphisny : W — W, and(W, S) and(W, S’) are isomorphic. [

4. Proof of the main results

Using some lemmas in Sections 2 and 3, we prove the main results.

Theorem 4.1. Let (W, S) and (W', §’) be Coxeter systems with two-dimensional Davis—
Vinberg complexesSuppose that there exists an isomorphism W — W’. For each

s € S, if ¢(s) is not a reflection iNW’, S”), then there exist uniquee S ands’, 1’ € §’
such that for somea’ € W/,

(1) m(s, 1) =2,

(2) m(s, u) = oo for eachu € S\{s, t},

(3) ¢(W{S,t}) = w’W{’S,’t/}(w/)_l,

@) m'(s',t') =2,

(5) m'(s", u") = oo for eachu’ € S'\{s', t'},
(6) ¢(s) =w's't'(w) tand

() o) =w't' )™
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Proof. Suppose that € S and¢(s) is notareflectioninW’, §'). Sinces?=1, (¢(s))°=1.
By Lemma 3.1, there exist’, v' € W’ such thakp(s) = w'v/(w’) "t andv’ is the element
of longest length iV, .. Sinced(s) is not a reflectiony’ ¢ 5, i.e., |5’ (v")| > 1. Hence
|S"(v")|=2because dily(W’, §")=2. LetS’(v/)={s’, t'}. Sincev’ is the element of longest
lengthinWg, ., =W/, ,, and' is not areflectior’(s’, ') is even and’ = (s't)™ , where
m' =m'(s',1")/2. Henceg(s) = w'(s't)" (w1 By Lemma 3.3, there exists a unique
element € S such that

(I) d)(W{S,I}) = w/W{/S/,,/}(w/)_li
(i) ¢() is areflectioninWw’, §"), and
(i) m(s,t) =m'(s', 1) =2.
Theng(s) = w's't'(w') 1 by (iii).
Now ¢ (r) is a reflection by (ii) and
D) € P(Wis.)) = w' Wy (w) ™!
_ {1’ u)/s’(w/)fl, w/t/(w/)*l, w/S/t/(w/)il}.
Hence, eithetp(r) = w's’(w') L or ¢(r) = w't’(w") 1. Here we may suppose that
d(1) =w't' (wH™L
Finally we show thain(s, u) = oo for eachu € S\{s,} andm’(s’, u’) = oo for each
u' € S\{s',r'}.
We suppose that there exisis € S\{s,} such thatm(s, u) <oco. By Lemma 2.9,
S Wis.uy) :x/W’u/,b/}(x/)*l for somex’ € W’ anda’, b’ € §’. Then

w's't' (W)t = d(s) € p(Wisuy) = x/W(a,,b,}(x’)—l.

By Lemma 3.2x' W/, ,,,(x) "t = w'W/, ., (w) . Hence

d)(W{s,u}) = x/W{/a/’b/}(x/)il
= w/W{/S/’t/}(u)/)il
= dpWs.1))-

Thus Wi,y = Wi,y and{s, u} = {s, t} by Lemma 2.3(vi). Hence = ¢. This contradicts
the assumption € S\{s, t}. Thusm(s, u) = oo for eachu € S\{s, t}.
We note that

¢(St) — (w’s’t’(w’)_l)(w’t/(w’)_l) — w/s/(w/)—l
and
¢ = (¢ ) s THw).

By applying the above argumentdo X : W — W, we can prove that'(s’, u’) = oo for
eachu’ ¢ S'\{s’,¢'}. O
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We obtain the following theorem from Theorem 4.1.

Theorem 4.2. Let (W, S) and (W, §’) be Coxeter systems with two-dimensional Davis—
Vinberg complexes. Then there exiStsc W such that W, S”) is a Coxeter system which
is isomorphic taW, S) andRgy = Rg.

Proof. Let
So=1{s € S : s is not a reflection iNW, §)} = {s1, ..., sp}.

For each € {1, ..., n}, there exists a unique elemente S\Sp such thatn(s;, ;) = 2 by
Theorem 4.1. Thew; is a reflection inW, S) by Theorem 4.1. Let

S” = (S\So) U {5111, ..., Sutn}.

Then (W, §”) is a Coxeter system which is isomorphic @@, S) by Lemma 3.4. Since
S” C Rg by the construction of”, Rg» = Ry by Lemma 2.6(1). [

Theorem 4.2 implies the following corollary.

Corollary 4.3. Fora Coxeter group\Wf (W, S) and(W, S’) are Coxeter systems with two-
dimensional Davis-Vinberg complexésen the Coxeter diagrams oW, S) and (W, S’)

have the same number of verticéise same number of edges and the same multiset of
edge-labels

Proof. By Lemma 2.9, the Coxeter diagrams(@f, S) and(W, S’) have the same number
of edges and the same multiset of edge-labels. By Theorem 4.2, thereSéxist® such
that (W, S”) is a Coxeter system which is isomorphic @@, S) and R¢ = Rg». Hence
|S| =|S"| =1S5'| by Lemma 2.6(2). [

The main results of this paper have been announced at the Topology Symposium in Japan
on July 20, 2003.
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