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SUMMARY

Hemogenic endothelium (HE) has been recognized
as a source of hematopoietic stem cells (HSCs) in
the embryo. Access to human HE progenitors
(HEPs) is essential for enabling the investigation of
the molecular determinants of HSC specification.
Here, we show that HEPs capable of generating
definitive hematopoietic cells can be obtained
from human pluripotent stem cells (hPSCs) and iden-
tified precisely by a VE-cadherin+CD73�CD235a/
CD43� phenotype. This phenotype discriminates
true HEPs from VE-cadherin+CD73+ non-HEPs and
VE-cadherin+CD235a+CD41a� early hematopoietic
cells with endothelial and FGF2-dependent hemato-
poietic colony-forming potential. We found that
HEPs arise at the post-primitive-streak stage of
differentiation directly from VE-cadherin-negative
KDRbrightAPLNR+PDGFRalow/� hematovascular me-
sodermal precursors (HVMPs). In contrast, heman-
gioblasts, which are capable of forming endothelium
and primitive blood cells, originate from more
immature APLNR+PDGFRa+ mesoderm. The demar-
cation of HEPs and HVMPs provides a platform for
modeling blood development from endothelium
with a goal of facilitating the generation of HSCs
from hPSCs.
INTRODUCTION

Establishing a system for de novo generation of hematopoietic

stem cells (HSCs) from human pluripotent stem cells (hPSCs)

would provide a unique opportunity to study human HSC devel-

opment and provide a novel source of therapeutic cells for blood

disease. Achieving this goal requires a detailed understanding of

the cellular and molecular pathways that lead to blood formation
Cel
from hPSCs, and identification of the immediate precursors of

multipotential hematopoietic cells.

Avian, mouse, and human embryonic studies demonstrated

that definitive HSCs that give rise to all lineages of an adult hema-

topoietic system are generated in the aorta-gonad-meso-

nephros (AGM) region and are located at the ventral aspect of

the dorsal aorta (de Bruijn et al., 2002; Ivanovs et al., 2011; Par-

danaud et al., 1996; Taoudi and Medvinsky, 2007). In this area,

hematopoietic cells arise from a unique population of endothelial

cells known as hemogenic endothelium (HE) through an endo-

thelial-hematopoietic transition (EHT) (Boisset et al., 2010; Jaf-

fredo et al., 2000; Zovein et al., 2008). Dynamic tracing and

imaging studies conducted in vivo demonstrated that EHT repre-

sents a continuous process in which cells with endothelial char-

acteristics gradually acquire hematopoietic morphology and

phenotype (Bertrand et al., 2010; Boisset et al., 2010; Kissa

and Herbomel, 2010). Definitive hematopoiesis in the AGM

region is preceded by primitive hematopoiesis in the yolk sac,

which initially generates primitive erythrocytes, megakaryo-

cytes, and macrophages (Palis et al., 1999; Xu et al., 2001).

The second wave of yolk sac hematopoiesis, termed erythro-

myeloid hematopoiesis, is associated with an expansion of

erythroid precursors expressing adult b-globins and uni- and

multilineage myeloid precursors (Palis et al., 1999). Although

the concept of HE was developed based on observations of

blood formation within the aorta, it is also known that endothe-

lium lining nascent capillaries in the yolk sac (Ferkowicz et al.,

2003), and possibly vitelline and umbilical arteries (Yokomizo

and Dzierzak, 2010), has the capacity to generate blood as well.

The demonstrations of HSC formation from endothelium

emphasized the need to gain access to well-defined populations

of HE cells in hPSC cultures in order to develop technologies for

de novo generation of HSCs from human induced pluripotent

(hiPSCs) or embryonic stem cells (hESCs). In the embryo, defin-

itive HE can be identified based on anatomical location,

morphology, and expression of Runx1 (Jaffredo et al., 2010;

North et al., 1999, 2002). Because these criteria cannot be

entirely applied to cells differentiated in vitro, the precise identi-

fication of HE in hPSC cultures has remained a significant
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challenge. Although the VE-cadherin+CD41a� or CD45� pheno-

type is commonly used for detection and isolation of HE, it has

very limited utility in human PSC cultures because it covers the

entire population of endothelial cells, does not fully exclude

hematopoietic cells, and does not discriminate between endo-

thelial lineageswith primitive and definitive hematopoietic poten-

tials. In addition, the direct mesodermal precursor of HE with

definitive hematopoietic potential remains largely unknown.

In this study, we show that HE progenitors (HEPs) can be

generated from hPSCs and identified precisely based on

VE-cadherin (CD144) expression and the lack of CD73 and

CD235a/CD43 expression. We demonstrate that HEPs repre-

sent a transient population of cells with the stroma-dependent

capacity to generate the entire spectrum of myeloid progenitors,

including b-hemoglobin-producing erythroid cells and pan-

myeloid colony-forming cells–granulocyte, erythrocyte, macro-

phage, megakaryocyte (CFC-GEMM). In addition, we found

that the earliest VE-cadherin+CD73�CD43lowCD235a+CD41a�

blood cells retain endothelial potential and possess a unique

FGF2-dependent hematopoietic colony-forming activity. A

population of endothelial progenitors lacking hematopoietic

potential (non-HEPs) was distinctively recognized by the

expression of CD73 and a high level of CD117, i.e., a

VE-cadherin+CD73+CD235a/CD43�CD117high phenotype. VE-

cadherin+CD73�CD235a/CD43� HE cells originated from VE-

cadherin-negative KDRbrightAPLNR+PDGFRalow/� hematovas-

cular mesodermal precursors (HVMPs), which were highly

enriched in cells forming hematoendothelial clusters on OP9

stromal cells. These progenitors were distinct from the more

primitive APLNR+PDGFRa+ mesoderm, which contains a popu-

lation of hemangioblasts (HBs) that have the capacity to form

colonies composed of primitive-type blood cells through endo-

thelial intermediates in serum-free semisolid medium.

RESULTS

Identification of Functionally Distinct Progenitors
with Hematopoietic and/or Endothelial Potential
within Emerging Embryonic VE-Cadherin+ Cells
Based on Expression of CD73 and CD235a
To characterize the development of various mesodermal line-

ages, we employed an hPSC differentiation system in coculture

with OP9 (Choi et al., 2009a; Vodyanik et al., 2006, 2010). In this

culture, we previously identified CD43 as a marker for hPSC-

derived progenitors that have the potential to form hematopoi-

etic cytokine-dependent colonies in semisolid medium, and

demonstrated that CD43 expression separates hematopoietic

cells from endothelial cells (Choi et al., 2009a; Vodyanik et al.,

2006). To investigate the developmental steps immediately

preceding the formation of CD43+ blood cells, andmap the point

of divergence of hematopoietic and endothelial cell lineages, we

analyzed the kinetic expression of various endothelial markers

following H1 hESC differentiation in OP9 coculture. The first cells

that expressed the VE-cadherin endothelial marker (Breier et al.,

1996) were detected by day 4 of differentiation (Figures 1A and

S1A). Upregulation of VE-cadherin expression on differentiated

hESCs in OP9 coculture coincided with the expression of

another endothelial marker, CD31 (PECAM) (Figure 1A). Of
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interest, cells expressing CD235a (Glycophorin A), a hematopoi-

etic marker of erythroid lineage, could be detected within the first

emerging VE-cadherin+ cells (Figure S1B). On the next day of

differentiation (day 5), the number of VE-cadherin+ cells and

the proportion of CD235a+ cells within this population substan-

tially increased. All of the VE-cadherin+CD235a+ cells were

negative for CD41a (abbreviated as V+235+41� cells) on day 4

of differentiation. However, on day 5 of differentiation, a small

proportion of CD235a+ cells coexpressing CD41a (V+235+41+

cells) could be detected (Figures 1B and S1B). Although

V+235+41+ cells expressed a high level of CD43, which indicates

hematopoietic commitment (Vodyanik et al., 2006), expression

of CD43 in V+235+41� cells was relatively low and was best

detectable with antibodies conjugated with APC or PE (Fig-

ure S1C). Thus, we combined CD235a and CD43 antibodies in

our studies to achieve optimal pan-hematopoietic detection at

all stages of differentiation.

A phenotypic analysis of day 5 VE-cadherin+ cells revealed

almost uniform expression of CD31, KDR, CD34, CD201,

ESAM, and CD146 endothelial markers by these cells. However,

we noticed that another typical endothelial marker, CD73 (or

50-nucleotidase; Thomson et al., 1990), was expressed only in

20%–60% of total VE-cadherin+ cells almost exclusively within

the 235a/CD43� population (Figures 1B, S1B, and S1D). This

observation led us to identify three distinct major subsets

within emerging VE-cadherin+ cells: V+235+41�, V+73+, and

V+73�235� (Figure 1B; Table 1). A kinetic analysis revealed

that V+73�235�cells represent a transient population that

develops during the earliest stages of endothelial commitment

but is mostly lost within the next 3 days of differentiation. The

V+73+ population was minor at the onset of endotheliogenesis

but gradually increased with advanced differentiation. The

proportion of VE-cadherin+ cells expressing 235a and/or CD43

hematopoietic markers peaked on day 5 of differentiation and

then decreased (Figure S1B).

As demonstrated in Figure 1B, all three major VE-cadherin+

cell subsets had very similar endothelial phenotypes and were

capable of acetylated low-density lipoprotein (AcLDL) uptake,

indicative of endothelial function. However, we noticed that

expression of CD117 (c-Kit), a marker for early-stage angiohe-

matopoietic progenitors, was highest in V+73+ cells, and its

expression was almost undetectable in V+235+41� cells.

V+73�235� cells expressed an intermediate level of CD117

(Figure 1B). We also found that, in contrast to other day 5 VE-

cadherin+ subsets, V+73+ cells lacked the expression of CD226

(DNAM-1), a cell surface marker typically found on hematopoi-

etic cells (Kojima et al., 2003; Shibuya et al., 1996). Morpholog-

ically, the V+235+41� population consisted predominantly of

cells with a high nuclear/cytoplasmic ratio, which is typical for

immature hematopoietic cells. In contrast, almost all V+73+ cells

had a characteristic endothelial morphology. V+73�235� cells

had an intermediate morphology resembling those of both

V+235+41� and V+73+ cells, i.e., pale blue cytoplasm similar to

endothelial cells, and a higher nuclear/cytoplasmic ratio similar

to immature hematopoietic cells (Figure 1B).

To fully analyze the differentiation potential of the newly

discovered VE-cadherin+ cell subsets, we isolated each one by

fluorescence-activated cell sorting (FACS), cultured it in
s
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Figure 1. Characterization of Major Subsets of VE-Cadherin+ Cells Generated from hESCs after 5 Days of Coculture on OP9

(A) Kinetics of VE-cadherin and CD31 expression in differentiated H1 hESCs.

(B) Characterization of endothelial and hematopoietic CFC potentials of freshly isolated day 5 VE-cadherin+ subsets. Histograms represent the expression of

typical endothelial molecules by indicated cell subsets. AcLDL histograms show flow cytometric profiles of cells incubated with AcLDL at 37�C (AcLDL uptake;

black histogram) versus 4�C (AcLDL binding control; gray histogram). (i) Wright-stained cytospins demonstrate the morphology of isolated cells (bar = 20 mm).

Endothelial culture panels show (ii) phase-contrast images (bar = 400 mm), (iii) immunofluorescent analysis (bar = 100 mm), and (iv) tube formation (bar = 400 mm).

The hematopoietic CFC potential of sorted day 5 VE-cadherin+ subsets was evaluated in serum-free MethoCult (SF) supplemented with FGF2, SCF, IL6, IL3, and

EPO, and in standard serum-containing GF+ H4435 MethoCult. Error bars are means ± SE of three experiments.

See also Figures S1 and S3.
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Table 1. Phenotypic Features and Definition of Subsets with Endothelial and/or Hematopoietic Potential from hPSCs Analyzed and

Characterized in This Study

Abbreviation Phenotype Day of Isolationa Definition

V+73�235� HEP VE-cadherin+CD73�CD235a/
CD43�CD117intermediate

5 Hemogenic endothelial progenitors that have primary

endothelial characteristics and lack hematopoietic

CFC potential and surface markers, but are capable of

generating blood and endothelial cells upon coculture

with stromal cells

V+73+ Non-HEP VE-cadherin+CD73+ CD235a/

CD43�CD117high
5 Nonhemogenic endothelial progenitors that have all

of the functional and molecular features of endothelial

cells, and form endothelial colonies on OP9

V+235+41� AHP VE-cadherin+CD73�CD43low

CD235a+CD41a�CD117�
5 Angiogenic hematopoietic progenitors that possess

primary hematopoietic characteristics and FGF2 and

hematopoietic cytokine-dependent colony-forming

potential in serum-free medium, but are capable of

generating endothelial cells

V+235+41+ EMkP VE-cadherin+CD73�CD43+

CD235a+CD41a+
5 Hematopoietic cells that are enriched in

erythromegakaryocytic progenitors

MHP lin�CD34+CD43+CD45+CD38� 8 Multipotential hematopoietic progenitors that lack

expression of lineage-specific hematopoietic markers

(lin�) and form a full spectrum of myeloid colonies in

serum-containing semisolid medium supplemented

with hematopoietic cytokines

KbrA+P� HVMP EMHlin�KDRbrightAPLNR+

PDGFRalow/� b

4 Hematovascular mesodermal precursors that express

genes associated with lateral plate/extraembryonic

mesoderm and angiohematopoietic commitment, but

lack the expression of primitive streak genes. These

cells are highly enriched in bipotential cells that form

hematoendothelial clusters on OP9.

A+P+ PM EMHlin�APLNR+PDGFRa+ b 3 Primitive posterior mesoderm enriched in cells that

express a typical primitive streak and lateral plate/

extraembryonic mesoderm genes. These cells

have potential to form FGF2-dependent blast

(hemangioblast) colonies in serum-free medium.
a Day of isolation indicates the day of hPSC differentiation in coculture with OP9 on which the indicated cell subsets were optimally detected and iso-

lated from cultures.
b EMHlin� denotes lack of expression of CD31, VE-cadherin endothelial, CD73 and CD105mesenchymal/endothelial cell markers, and CD43 and CD45

hematopoietic cell markers. See also Figure S2.
endothelial conditions, and assayed it for hematopoietic colony-

forming activity (Figure S2). As shown in Figure 1B, the three

major day 5 VE-cadherin+ subsets (V+73�235�, V+235+41�,
and V+73+ cells), but not the minor V+235+CD41+ subset, formed

a monolayer of adherent cells with endothelial morphology when

cultured on fibronectin in endothelial growthmedium. Consistent

with their endothelial nature, these cells expressed VE-cadherin,

took up AcLDL, and formed vascular tubes in Matrigel matrix. In

contrast, hematopoietic CFC potential was detected almost

exclusively within V+235+41� and V+235+41+ cells. Although

the hematopoietic CFC potential of V+235+41� cells in standard

serum-based CFC medium was low and mostly restricted to

small CFC-E, we found that the number and spectrum of hema-

topoietic CFCs were markedly increased in serum-free medium

containing FGF2, SCF, EPO, IL-3, and IL-6. In the serum-free

conditions, day 5 V+235+41� cells formed large erythroid, mega-

karyocyte, myeloid, and mixed colonies composed of erythroid

cells, macrophages, and megakaryocytes, indicating that

emerging blood cells expressing the CD235a erythroid marker
556 Cell Reports 2, 553–567, September 27, 2012 ª2012 The Author
had multilineage potential (Figures S3A and S3B). To define

which growth factors are required for V+235+41� cells to form

hematopoietic colonies, we eliminated each cytokine individually

from clonogenic cultures. These experiments demonstrated that

both FGF2 and EPO were essential for the development of large

CFC-E and CFC-Mix (Figure S3C). The removal of SCF almost

entirely abrogated CFC-Mix, but had little effect on large CFC-

E. Myeloid colonies required IL-3 and FGF2 for optimal develop-

ment. The day 5 V+235+41+ cells formed predominantly CFC-E

and CFC-Mix; however, they had downregulated expression of

APLNR and TEK, and failed to grow into endothelial cells in

endothelial conditions, indicating that the acquisition of CD41a

expression was associated with the complete loss of endothelial

potential (Figures 1B and S1D).

The hemogenic potential of embryonic endothelial cells can be

identified in culture with bone marrow stromal cells (Nishikawa

et al., 1998; Oberlin et al., 2002); thus, we cultured day 5 VE-

cadherin+ subsets on OP9 separately. In these conditions, both

V+73�235� and V+235+41� cells generated CD31+CD43/45�
s
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Figure 2. Stroma-Dependent Hematopoietic and Endothelial Potential of Day 5 VE-Cadherin+ Subsets

(A) Phase-contrast images of cultures (bar = 400 mm), flow cytometric analysis and hematopoietic CFC potential (GF+ H4435 serum-containing MethoCult) are

shown. Error bars are means ± SE of three experiments. The numbers show mean counts for CFC-GEMM.

(B) A single-cell deposition assay to detect the frequency of endothelial, hematopoietic, and bipotential hematoendothelial progenitors. Immunofluorescent

staining of clusters formed by single cells after 10–12 days of culture on OP9 using CD43 and VE-cadherin antibodies is shown (bar = 100 mm). Graph shows the

frequency of each type of progenitor as a percentage of cluster-containingwells versus total cell-deposited wells. Error bars aremeans ±SE of three experiments.
endothelial cells and a significant amount of CD43+ blood cells

(Figure 2A). TheCD43+ cells consisted of CD235a/CD41a+ eryth-

romegakaryocytic cells and CD235a/CD41a�CD45+/� multipo-

tent hematopoietic progenitors (MHPs), which we typically

observe from hESCs differentiated on OP9 for 8–9 days (Vodya-
Cel
nik et al., 2006). These day 8–9 CD235a/CD41a�CD45+/� MHPs

express CD34 but lack CD38 and other hematopoietic lineage

markers, i.e., they have a lin�CD34+CD43+CD45+/�CD38�

phenotype (Vodyanik et al., 2006). Although both V+73�235�

and V+235+41� cells generated a broad range of hematopoietic
l Reports 2, 553–567, September 27, 2012 ª2012 The Authors 557



colonies in standard serum-containingCFCmedium after culture

on OP9, the V+73�235� cells formed a higher number of myeloid

colonies, including large multicentric pan-myeloid GEMM colo-

nies. In contrast, V+73+ cells formed mostly CD31+CD43/45�

endothelial cells with very few hematopoietic cells (Figure 2A).

To determine the frequency of progenitors with hematopoietic

and endothelial potential in each day 5 VE-cadherin+ subset, we

performed a single-cell deposition assay. As shown in Figure 2B,

V+73+ single cells generated only endothelial clusters on OP9

with a frequency of approximately one in five, and V+235+41�

cells formed predominantly hematopoietic cell clusters.

Although the majority of V+73�235� cells gave rise to either

hematopoietic or endothelial clusters, 2.5% of them had the

potential to form hematoendothelial clusters, indicating the pres-

ence of bipotential progenitors within this population.

Based on the functional and phenotypical properties of

each VE-cadherin+ subset, we defined them as follows: (1)

V+73�235� are HEPs that have primary endothelial characteris-

tics but lack hematopoietic CFC potential and surface markers,

express an intermediate level of CD117, and are capable of

generating blood and endothelial cells upon coculture with

stromal cells; (2) V+235+41� are angiogenic hematopoietic

progenitors (AHPs) that possess primary hematopoietic charac-

teristics but are capable of generating endothelial cells; and (3)

V+73+ are non-HEPs that have all the functional and molecular

features of endothelial cells, form endothelial colonies on OP9,

and express a high level of the early progenitor marker CD117

(see also Table 1).

Molecular profiling studies revealed a high similarity between

the day 5 VE-cadherin+ population subsets. All subpopulations

of these cells expressed the typical endothelial genes (TFP,

HIF1A, AAMP, F2R, EDF1, and PROCR) and the genes associ-

ated with angiohematopoietic and HSC development (FLI1,

TEK, LMO2, TAL1, RUNX1, CBFB, PBX1, PTEN, and TCEA1).

However, V+235+41� AHPs expressed higher levels of hemato-

poietic-specific genes and lower levels of the typical endothelial

(CAV1, CTGF, APOLD1, and AMOT) and endothelial junction

(CDH5, CDH2, and CLDN5) genes (Figure 3A). In contrast,

V+73�235� HEPs expressed higher levels of the endothelial

genes CLDN5, CAV1, andMMRN1N, and lacked the expression

of hematopoietic genes. In comparison with the HEPs, the V+73+

non-HEPs expressed higher levels of the endothelial genes

EMCN, CAV1, CXCR4, CLDN5, and COL15A1 (Figure S4A).

Genes that were found to be more highly expressed in HEPs

versus non-HEPs included NTS neurotensin; BMPER, an endo-

thelial regulator that controls BMP4-dependent angiogenesis

(Heinke et al., 2008); and SMAD6, a negative regulator of BMP

signaling (Ishida et al., 2000) and RUNX1 activity (Knezevic

et al., 2011).

Hemogenic Endothelial Cells Originate from a Unique
EMHlin-KDRbrightAPLNR+PDGFRalow/� Population
of Mesodermal Cells with Hematovascular Potential
To identify the direct mesodermal precursor of HE cells, we

analyzed the expression of the mesodermal markers APLNR

(D’Aniello et al., 2009; Vodyanik et al., 2010), KDR (Shalaby

et al., 1997), and PDGFRa (CD140a) (Kataoka et al., 1997) in

differentiated hESCs before the first VE-cadherin+ cells could
558 Cell Reports 2, 553–567, September 27, 2012 ª2012 The Author
be detected. This analysis revealed the population of KDRbright

APLNR+ cells that was initially detected on day 3.5 of differenti-

ation (Figure 4A) immediately preceding the formation of the first

VE-cadherin+ cells in hESC/OP9 coculture (Figure 1A). Emerging

day 3.5 KDRbrightAPLNR+ cells essentially lacked the typical

CD31, VE-cadherin endothelial, CD73, CD105 mesenchymal/

endothelial, and CD43, CD45 hematopoietic cell markers

(hereafter referred to as EMHlin� cells); however, the early

VE-cadherin+ cells became clearly detectable within this popula-

tion from day 4 of differentiation (Figure 4B). A flow cytometric

analysis of day 4 VE-cadherin�KDRbrightAPLNR+ cells revealed

that they maintained the EMHlin� phenotype (EMHlin�KDRbright

APLNR+). However, in contrast to the more-primitive day 2 and

day 3 APLNR+ (Vodyanik et al., 2010) and day 4 KDRdim meso-

dermal cells, day 4 EMHlin�KDRbrightAPLNR+ cells had downre-

gulated expression of PDGFRa (Figure 4B). Although these

day 4 EMHlin�KDRbrightAPLNR+PDGFRalow/� (KbrA+P�) cells

lacked the most specific endothelial markers, VE-cadherin and

CD31, they expressed other markers typically found on endothe-

lial cells, including TEK, CD34, CD201, and CD146 (Figures 4B

and S5A), suggesting that these mesodermal cells could be

direct precursors of endothelial progenitors in hESC cultures.

To confirm our hypothesis, we isolated day 4 KbrA+P�, KDRdim,

and KDR� cells using flow cytometry (Figure 4C) and cultured

them on OP9.

As shown in Figure 4C, after 5–6 days of culture on OP9,

only KbrA+P� cells generated both CD31+CD43/45� endothe-

lial cells and CD43/CD45+ hematopoietic cells, whereas KDRdim

cells predominantly generated CD146+CD31� mesenchymal

cells, few endothelial cells, and almost no blood cells. KDR� cells

lacked hematovascular potential completely. Of importance,

day 4 KbrA+P� cells generated the V+73�235�, V+235+41�, and
V+73+ subsets we observed on day 5 of primary hESC/OP9

coculture (Figure 4C). It should be also noted that KbrA+P� cells

were multipotential and capable of differentiating into CD146+

CD31� mesenchymal cells in addition to blood and endothelial

cells (Figure 4C). Double staining of KbrA+P� cells grown on

OP9 with VE-cadherin and CD43 antibodies revealed that they

formed HE clusters, i.e., sheets of endothelial cells generating

nonadherent blood cells (Figure 4D). Morphological examination

of HE clusters at different stages of development revealed that

endothelial cells within these clusters gradually transitioned

into hematopoietic cells. During the early stages of transition,

VE-cadherin+ cells had upregulated CD43 expression and trans-

formed from a cuboidal to a round cell morphology (Figure 4D;

Movie S1). Single-cell deposition experiments demonstrated

that KbrA+P� cells formed HE clusters at a high frequency

(approximately one in 10 cells), strongly indicating that these

cells represent the direct precursors of HE (Figure 4E).

To confirm that KbrA+P� cells are direct precursors of the

HEPs, we isolated these cells from day 3.5 of hESC/OP9

cocultures, before VE-cadherin+ cells became detectable (see

Figure 1A), and recultured them on OP9 for 2 days. A flow cyto-

metric analysis of these KbrA+P� secondary cultures revealed

that they had upregulated VE-cadherin expression and differen-

tiated into the V+73�235�, V+235+41�, and V+73+ subsets we

observed on day 5 of primary hESC/OP9 coculture (Figure S5B).

When we isolated these subsets from the secondary cocultures
s
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See also Figure S4.
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by FACS and analyzed them for endothelial and hematopoietic

potentials, we found that the V+73�235�, V+235+41�, and

V+73+ cells generated from isolated day 3.5 KbrA+P� cells had

the same hematopoietic and endothelial differentiation poten-

tials as the primary day 5 HEP, AHP, and non-HEP subsets,

respectively (Figure S5C).

Amorphologic analysis revealed that KbrA+P� cells were large,

blast-like cells that were noticeably different from KDRdim and

KDR� cells, which had a more abundant and vacuolated cyto-

plasm (Figure 4C). Molecular profiling studies revealed that in

KbrA+P� cells, expression of transcriptional regulators of hema-

topoietic and endothelial development (LMO2, TAL1, CBFB,

GATA2, and FLI1) was upregulated, whereas expression of the

primitive streak genes MIXL1, EOMES, T, and MESP1 was

downregulated (Figure 3A). However, these cells retained high

expression levels of genes representing lateral plate/extraem-

bryonic mesoderm (FOXF1, BMP4, andWNT5A). Based on their

phenotypic features, gene expression profile, morphology, and

functional properties, we designated KbrA+P� mesodermal cells

as HVMPs. These precursors may resemble embryonic angio-

blasts, which are defined as cells that have not yet formed

a lumen and express certain (but not all) endothelial markers.

They are committed to differentiate into endothelial cells and

give rise to vascular primordia (Risau and Flamme, 1995).

BL-CFCs Represent Angiohematopoietic Progenitors
with Primitive Hematopoietic Potential Originating
from EMHlin�APLNR+PDGFRa+ Mesoderm
Blast CFCs (BL-CFCs) were identified by the Keller group as

progenitors that generate blast colonies composed of cells

with hematopoietic and endothelial potential (Choi et al., 1998).

Widely referred to as HBs, BL-CFCs represent the earliest cells

with detectable hematopoietic potential in mouse and human

ESC differentiation systems (Choi et al., 1998; Kennedy et al.,

2007). However, the exact position of HBs (BL-CFCs) within

the hierarchy of human angiohematopoietic cells and their devel-

opmental potential remains unclear. Various studies have

described BL colonies from differentiated hESCs at early stages

of mesodermal development (Davis et al., 2008; Kennedy et al.,

2007), as well as from cells at more advanced stages of differen-

tiation, including cells already expressing endothelial markers

(Lu et al., 2008; Zambidis et al., 2008). Moreover, two types of

HB colonies (one with and one without myeloid potential) were

recently described (Kennedy et al., 2007).

We previously demonstrated that BL-CFCs arise from a

day 2–3 EMHlin�APLNR+PDGFRa+ (A+P+) mesodermal popula-

tion that expresses genes associated with primitive streak and

lateral plate/extraembryonic mesoderm development reminis-
(C) Endothelial and hematopoietic differentiation potential of indicated day 4

(bar = 20 mm). Endothelial culture panels show (ii) phase-contrast images (bar = 4

(bar = 400 mm) by KbrA+P� cells. (v) Phase-contrast image of KbrA+P� cell cultur

subsets after secondary OP9 coculture. Hematopoietic CFC potential of KDR su

GF+ serum-containing MethoCult. Error bars are means ± SE of three experimen

(D) Confocal images of hematoendothelial clusters to demonstrate the early stag

(E) A single-cell deposition assaywas used to detect the frequency of endothelial (E

KbrA+P� HVMPs. The graph shows the frequency of each type of progenitor as a

bars are means ± SE of three experiments.

See also Figure S5.

Cel
cent of primitive posterior mesoderm (PM) in the embryo (Vodya-

nik et al., 2010). We showed that BL-CFCs could be detected

using serum-free FGF2-containing clonogenic medium (Vodya-

nik et al., 2010). Here, we also found that we could increase

the number of BL-CFCs by adding the APLNR ligand apelin-12

to the clonogenic medium (Figure 5B). Although hematopoietic

cytokines are commonly added to BL-CFC clonogenic medium,

we avoided using them in our assay so that we could increase its

specificity by eliminating false-positive results due to the detec-

tion of hematopoietic progenitors. Using an optimized BL-CFC-

specific assay with FGF2 and apelin-12, we detected BL-CFC

activity almost exclusively in day 3 A+P+ cells (Figure 5F), indi-

cating that HBs (BL-CFCs) are distinct from day 4 HVMPs and

day 5 HEPs and AHPs.

To characterize the developmental potential of BL-CFCs, we

analyzed the mature BL colonies using flow cytometry and

hematopoietic CFC assay. As shown in Figure 5A, HB (BL)

colonies collected on day 12 of clonogenic culture consisted

almost entirely of CD235a and/or CD41a expressing cells with

erythroblast morphology. In contrast to erythroid colonies gener-

ated from V+73�235� HEPs, BL-CFCs expressed no adult

b hemoglobin (Figure 5C). The replating of 20 individual blast

colonies into serum-free hematopoietic clonogenic medium

demonstrated that they could give rise to erythroid, megakaryo-

cyte, and macrophage colonies, and mixed colonies composed

of all three cell types (Figures 5D and 5E). When a pool of 200

blast colonies was collected, we were able to detect the same

spectrum of hematopoietic CFCs. The spectra of hematopoietic

CFCs were similar when BL-CFCs were replated into standard

serum-containing hematopoietic CFC medium, although we

observed a reduction in the number of erythroid colonies and

a slight increase in macrophage colonies (not shown). These

results indicate that BL-CFC hematopoietic potential is mostly

restricted to primitive cells of erythromegakaryocytic andmacro-

phage lineages.

As previously demonstrated, BL-CFCs represent single-cell-

derived clonogenic progenitors that generate hematopoietic

cells through the formation of an endothelial intermediate (Lan-

crin et al., 2009; Vodyanik et al., 2010). This transitional interme-

diate appeared as a core-like structure that formed during the

first 3 days of clonogenic culture (Figure 5A) and distinguished

HB colonies from FGF2-dependent hematopoietic colonies

formed from day 5 AHPs (Figure S6A). HB cores were formed

by epithelioid cells, which stained positively for VE-cadherin.

However, in contrast to the membranous VE-cadherin expres-

sion typically seen in mature endothelial cells, VE-cadherin

expression in the HB core cells was predominantly cytoplasmic.

When HB cores were cultured in endothelial conditions, up to
mesodermal subsets. (i) Wright-stained cytospins of freshly isolated cells

00 mm), (iii) immunofluorescent analysis (bar = 100 mm), and (iv) tube formation

es on OP9. Flow cytometric analysis shows a developmental potential of KDR

bsets was evaluated after secondary coculture on OP9 using standard H4435

ts.

es of endothelial-hematopoietic transition; bar = 50 mm.

), hematopoietic (H), and bipotential hematoendothelial (HE) progenitors within

percentage of cluster-containing wells versus total cell-deposited wells. Error
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Figure 5. Characterization of BL-CFCs
(A) Hematopoietic and endothelial potential of HB colonies selected at day 3 (core stage; bar = 50 mm) and day 12 (mature blast colony; bar = 100 mm) of

clonogenic culture. Top panels show (i) Wright-stained cytospins (bar = 100 mm), (ii) VE-cadherin and AcLDL staining (bar = 50 mm), (iii) endothelial culture (bar =

100 mm), and (iv) OP9 coculture (bar = 100 mm) of HB cores. Left panels show (v) cytospins (bar = 20 mm) and (vi) flow cytometric analysis of mature HB colony.

(B) Effect of adding apelin-12 on BL colony formation. Error bars are means ± SE of six experiments.

(C) Flow cytometric analysis of expression of adult and embryonic hemoglobins in HB colonies and erythroid colonies derived from V+73�235� HEPs after

coculture on OP9.

(D) Morphology of typical hematopoietic colonies generated from day 12 BL colonies after they were replated into H4436 serum-free methylcellulose clonogenic

medium containing hematopoietic cytokines; bars = 200 mm.

(E) Frequency of formation of hematopoietic colonies after HB colonies were replated into serum-free hematopoietic CFCmedium. Left panel: Results of replating

20 individual colonies; error bars are means ± SE of three experiments. Right panel: Results of replating 200 blast colonies.

(F)BL-CFCpotential of the indicatedcell subsetsdetectedusingFGF2-andapelin12-containingclonogenicmedium.Errorbars representSEsof threeexperiments.

See also Figure S6.
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95% of them generated typical VE-cadherin+ endothelial clus-

ters that were capable of incorporating AcLDL efficiently.

When the HB cores were collected and cultured on OP9 with

hematopoietic cytokines, they generated hematoendothelial

clusters (Figure 5A).

Molecular profiling studies demonstrated that HB cores had

a gene expression profile very similar to that of day 5 HEPs,

although the HB cores had much lower expression of RUNX1

gene associated with definitive hematopoiesis compared with

day 5 HEPs (Figures 3A and S4B). Together, these studies

indicate that BL-CFCs originate from the more-primitive A+P+

PM and reflect the first wave of yolk sac hematopoiesis, which

proceeds through the endothelial intermediate stage with

restricted erythroid,megakaryocytic, andmacrophage potential.

To find out whether the hematopoietic potential of A+P+ PM is

restricted to primitive HB-derived hematopoiesis or these cells

contain precursors of definitive angiohematopoietic progenitors,

we isolated day 2.5 A+P+ cells and recultured them on OP9. At

this stage, KbrA+P� cells were not detected. As shown in Fig-

ure S6B, A+P+ cells rapidly expanded on OP9 and generated

the entire spectrum of angiohematopoietic and hematopoietic

progenitors, which we typically observed in primary hESC/OP9

coculture. These data indicate that A+P+ PM contains precursors

for both primitive and definitive hematopoiesis. Although matu-

ration of primitive angiohematopoietic progenitors was achieved

in serum-free semisolid medium in the presence of FGF2,

stromal factors were essential for the maturation of definitive

type angiohematopoietic progenitors from A+P+ PM.

Hematoendothelial Development from iPSCs
To determine whether other hPSC lines follow patterns of hema-

toendothelial differentiation similar to those observed with H1

hESC, we analyzed the development of newly identified subsets

of angiohematopoietic progenitors from transgene-free fibro-

blast-derived hiPSCs (Yu et al., 2009) and H9 hESCs. As shown

in Figure S7, all examined hPSC lines formed phenotypically and

functionally similar subsets of progenitors, including day 4

HVMPs, day 5 HEPs, AHPs, and non-HEPs.

DISCUSSION

During the last decade, investigators have made significant

progress in identifying the major stages of hematopoietic devel-

opment from hESCs/iPSCs (Kennedy et al., 2007; Vodyanik

et al., 2006; Zambidis et al., 2005) and their differentiation toward

particular blood lineages (Choi et al., 2009b; Lu et al., 2008; Oliv-

ier et al., 2006; Timmermans et al., 2009; Woll et al., 2005).

However, the development of cells with hematopoietic reconsti-

tution potential from ESC/iPSCs remains a challenge. Although

several studies showed bone marrow engraftment of differenti-

ated human ESCs and iPSCs, the engraftment rates were low

and mostly restricted to myeloid cells (Ledran et al., 2008; Lu

et al., 2009; Narayan et al., 2006; Risueño et al., 2012; Tian

et al., 2006; Wang et al., 2005). The most likely explanation for

these findings is that in vitro conditions do not support the forma-

tion of HSC from its direct HE precursor. Thus, it is essential to

access awell-defined population ofHE cells to develop an in vitro

system that will enable identification of the critical factors that
Cel
control the maturation of engraftable hematopoietic cells from

endothelium.

Previous studies demonstrated that cells expressing endothe-

lial molecules differentiated from mouse and human ESCs can

generate blood cells (Eilken et al., 2009; Hashimoto et al.,

2007; Nishikawa et al., 1998; Vodyanik et al., 2006; Wang

et al., 2004). It was also shown that HE can be prospectively

separated from non-HE in mouse ESC cultures based on the

activity of the Flk1 promoter/enhancer (Hirai et al., 2003). Here,

we demonstrate that the CD73 phenotypic marker can be used

to separate HE cells from non-HEPs prospectively. Of impor-

tance, we also found that the VE-cadherin+CD41a�CD45� pop-

ulation in hPSC cultures includes CD235a+ (Glycophorin A+)

hematopoietic progenitors, which retain angiogenic potential.

On the basis of these findings, we were able to further specify

the phenotype of HEPs as VE-cadherin+CD73�CD235a/CD43�

and demonstrate that HEPs represent a transient population

of endothelial cells that emerge immediately after the beginning

of endotheliogenesis in hPSC cultures and rapidly decline

within next 3 days of differentiation. These HEPs have the

potential to generate b-hemoglobin-producing red blood cells

and the entire spectrum of myeloid progenitors, including

pan-myeloid GEMM progenitors, which have been identified in

human embryonic tissues but not the yolk sac (Hann et al.,

1983; Huyhn et al., 1995). Although other investigators and

our group previously demonstrated that CD34+CD43+ progeni-

tors generated in hPSC/OP9 coculture have T and B lymphoid

potential (Carpenter et al., 2011; Timmermans et al., 2009;

Vodyanik et al., 2005, 2006), further studies will be required to

prove that CD34+CD43+ cells with lymphoid potential arise

directly from HEPs.

By analyzing the expression of mesodermal markers at stages

preceding endotheliogenesis, we identified EMHlin�KDRbright

APLNR+PDGFRalow/� HVMPs as the direct precursors of defini-

tive-type HEPs. The HVMPs and HEPs required stromal factors

for hematopoietic development and were distinct from HBs,

which arise from day 3 A+P+ PM cells and can be specifically de-

tected in serum-free semisolid medium in the presence of FGF2

and apelin-12. The hematopoietic potential of HB colonies

detected using these conditions was mostly restricted to cells

of erythromegakaryocytic lineage, reflecting the first wave of

hematopoiesis observed in the yolk sac. These results are also

consistent with mouse studies that demonstrated that Flk1-

positive hemangioblastic cells are mainly primitive hematopoi-

etic cells (Fehling et al., 2003). Hematopoietic cells within HB

colonies arise through core-forming VE-cadherin+ cells that, in

contrast to definitive angiohematopoietic progenitors, develop

in serum-free medium without stromal support. HB cores have

an endothelial gene expression profile and potential. However,

our finding that HB cores express intracellular rather than

membranous VE-cadherin indicates that they are different from

definitive HEPs, and may represent a distinct type of immature

cells of endothelial lineage that are more similar to angioblastic

mesodermal cells than to more mature endothelial cells that

line already established blood vessels. VE-cadherin+ cells that

coexpress CD31, CD34, CD105, and TEK endothelial markers

were previously identified within a subset of Flk1-positive cells

in the extraembryonic mesoderm region during gastrulation
l Reports 2, 553–567, September 27, 2012 ª2012 The Authors 563



and yolk sac blood islands in embryonic day 7.0–7.5 mouse

embryos (Ema et al., 2006; Yokomizo et al., 2007). These cells

were able to generate endothelial and primitive blood cells.

Because HB cores have similar phenotypic and functional

characteristics, they could be equivalent to the VE-cadherin+

cells detected within the Flk1+ extraembryonic compartment.

Our study reveals a unique population of AHPs that express

VE-cadherin and glycophorin A (CD235a) erythroid marker but

lack CD41a. These AHPs represent multipotential hematopoietic

progenitors that, similarly to BL-CFCs (HBs), require serum-free

conditions and FGF2 for colony formation. However, in contrast

to BL-CFCs, the development of colonies from AHPs depends

on hematopoietic cytokines and does not proceed through an

endothelial core stage. Another unique feature of AHPs is their

angiogenic capability, which is completely lost in CD235a+

CD41a+ cells that arise at later stages of differentiation. FGF2-

and hematopoietic cytokine-dependent colonies with and

without endothelial potential have been described in the mouse

yolk sac, fetal liver, and AGM (He et al., 2010; Yao et al., 2007),

indicating that AHPs may have in vivo counterparts. Given the

fact that AHP cells express a definitive hematopoiesis transcrip-

tional factor, RUNX1 (Figures 4 and S4B), and possess erythroid

and uni- and multilineage myeloid differentiation potential, they

may represent precursors for a transient wave of definitive eryth-

romyeloid hematopoiesis similar to the one described in mouse

yolk sac (Palis et al., 1999).

In addition, our studies provide important insight into endothe-

lial development from hESCs. Although one commonly held view

implies that all endothelial cells in PSC cultures originate from

HBs, our current and prior studies (Vodyanik et al., 2010) are in

agreement with other studies (Era et al., 2008) that indicate

that PSCs give rise to multiple types of endothelial progenitors.

Of importance, we demonstrated that emerging endothelial

progenitors are multipotent and are able to differentiate into cells

of other mesodermal lineages. The first progenitors with endo-

thelial potential, the mesenchymoangioblasts, arise from PSCs

on day 2 of differentiation and are capable of forming mesen-

chymal colonies (Vodyanik et al., 2010). HBs capable of gener-

ating primitive blood cells through endothelial intermediates in

semisolid medium arise 1 day later. Endothelial intermediates

that form HB colonies most likely resemble the yolk sac HE.

HEPs that develop by day 5 in hPSC/OP9 coculture express

RUNX1 and have the potential to generatemultipotential myeloid

cells and b-globin-producing erythroid cells, and thus resemble

definitive-type endothelial progenitors. Non-HEPs were distinc-

tively recognized by the expression of CD73 (Figure 6).

CD73 (also known as 50-ectonucleotidase) is a glycosylphos-

phatidylinositol (GPI)-linked 70 kDa glycoprotein that produces

extracellular adenosine and is abundantly expressed by endo-

thelial cells, mesenchymal stem cells, subsets of peripheral

blood lymphocytes, and a variety of other tissues (Delorme et al.,

2008; Thomson et al., 1990). CD73 is involved in the regulation of

vascular permeability and maintenance of the barrier function,

adaptation to hypoxia, ion and fluid transport, and regulation of

inflammatory responses in the extracellular milieu (Colgan

et al., 2006). Given the physiological significance of CD73, it is

likely that expression of this molecule reflects differences not

only in the developmental potential but also the functional prop-
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erties of HE and non-HE subsets. Other distinctive features of

CD73+ non-HEP were the lack of CD226 hematopoietic marker

expression and the strong expression of CD117 (c-KIT). CD117

is known to mark HSCs arising from the AGM, and is also found

in CD45�CD31+ circulating endothelial progenitors and cardiac

endothelial progenitors (Peichev et al., 2000; Sandstedt et al.,

2010; Tallini et al., 2009). The strong expression of CD117 and

the lack of hematopoietic potential in CD73+ endothelial cells

indicate that these cells represent a population of endothelial

progenitors that are distinct from blood-forming endothelial

progenitors and may resemble circulating or tissue-specific

endothelial progenitors. Whether these newly identified subsets

of endothelial cells possess distinct functional properties and

endothelial differentiation potential remains to be explored.

In conclusion, the identification of distinct subsets of cells with

angiohematopoietic potential in our studies provides an hPSC-

based platform for identifying molecular determinants of HSC

development with the goal of facilitating the generation of

HSCs from hPSCs.

EXPERIMENTAL PROCEDURES

The experimental procedures used in this study are briefly described below.

The Supplemental Information contains a complete description.

Maintenance of hPSCs

H1 and H9 hESC lines were obtained fromWiCell Research Institute (Madison,

WI). H9-EGFP (Xia et al., 2008) was kindly provided by Su-Chun Zhang (Univer-

sity of Wisconsin, Madison, WI). Transgene-free DF4-3-7T and DF19-9-7T

human iPSC cell lines were produced using episomal vectors (Yu et al.,

2009). All hESC/iPSC lines were maintained in an undifferentiated state on irra-

diated mouse embryonic fibroblasts as described previously (Yu et al., 2007).

hPSC Differentiation in OP9 Coculture

hESC/iPSCs were differentiated in coculture with OP9 stromal cells provided

by Dr. Toru Nakano (Osaka University, Osaka, Japan) and depleted of OP9

cells using anti-mouse CD29 antibodies (Serotec) as previously described

(Vodyanik et al., 2010).

Cell Sorting andAnalysis of Hematopoietic and Endothelial Potential

The approach and antibodies used to isolate distinct subsets of progenitors

with angiohematopoietic potential are summarized in Figure S2 and

Table S1. VE-cadherin+ or CD31+ cells were isolated from day 5 hESC/OP9

cocultures by positive MACS selection using the corresponding FITC-conju-

gated antibodies and anti-FITC magnetic beads (Miltenyi). MACS-separated

cells were stained with CD73-PE, CD235a-APC, and CD43-APC, and

CD41a-PECy7 antibodies and sorted using a FACSAria cell sorter (BD Biosci-

ences) to select subsets as depicted in Figures 1B and S2. To isolate day 4

subsets from hPSC/OP9 cocultures, KDR-positive cells were selected by posi-

tive MACS selection using KDR-PE antibody (R&D Systems) and anti-PE

magnetic beads (Miltenyi). After labeling with VE-cadherin-APC antibody,

KDRbrightVE-cadherin�, KDRdimVE-cadherin�, and KDR� cells were further

separated using the FACSAria sorter. APLNR+ cells were isolated from day 3

hESC/OP9 cocultures by MACS sorting with APLNR-APC antibodies and

APC-magnetic beads or FACSAria sorter after depletion of OP9 with anti-

mouse CD29 antibodies as previously described (Vodyanik et al., 2010). The

hematopoietic and endothelial potential of isolated cells was evaluated before

and after secondary coculture with OP9 via CFC assay, endothelial culture,

and flow cytometry (see Supplemental Information).

Statistical Tests

The significance of differences between the mean values was determined by

paired Student’s t test.
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Figure 6. Distinct Stages of Angiohematopoietic Differentiation from hPSCs in Coculture with OP9

Coculture of hESC with OP9 induces mesendodermal differentiation. The first cells with angiohematopoietic potential arise within EMHlin�APLNR+PDGFRa+

mesoderm. These cells have the potential to form BL (HB) colonies, which can be specifically detected in serum-free semisolid medium containing FGF2 and

apelin. Development of BL colonies proceeds through a core stage in which mesodermal cells form clusters of tightly packed endothelial intermediates (cores).

Subsequently, core-forming endothelial cells give rise predominantly to primitive erythromegakaryocytic cells. Advanced mesodermal commitment of hESCs

toward hematoendothelial lineage in coculture with OP9 is associated with upregulation of KDR and downregulation of PDGFRa within the APLNR+ population,

and the development of HVMPs. These cells are highly enriched in bipotential hematoendothelial cluster-forming cells. After gaining VE-cadherin expression, the

cells gradually acquire an endothelial or hematopoietic cell morphology and gene expression profile. The earliest hematopoietic progenitors emerging within the

VE-cadherin+ population, AHPs, display a CD43lowCD235a+ phenotype and possess endothelial and FGF2-dependent erythromyeloid potential. Expression of

CD73 within the VE-cadherin+CD235a/CD43� population discriminates non-HEPs and HEPs. HEPs do not form hematopoietic CFCs in semisolid medium, but

are capable of generating the entire spectrum of definitive myeloid cells and b-globin-producing red blood cells when cultured on OP9. Progressive hemato-

poietic differentiation is associated with upregulation of CD43 expression, acquisition of CD41a and/or CD45 markers, and loss of endothelial potential. A similar

pattern of hematoendothelial development is observed in hiPSCs. See also Figure S7.
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