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Abstract

Patterns are the key building blocks in the logical analysis of data (LAD). It has been observed in empirical studies and practical
applications that some patterns are more “suitable” than others for use in LAD. In this paper, we model various such suitability
criteria as partial preorders defined on the set of patterns. We introduce three such preferences, and describe patterns which are
Pareto-optimal with respect to any one of them, or to certain combinations of them.We develop polynomial time algorithms for
recognizing Pareto-optimal patterns, as well as for transforming an arbitrary pattern to a better Pareto-optimal one with respect to
any one of the considered criteria, or their combinations. We obtain analytical representations characterizing some of the sets of
Pareto-optimal patterns, and investigate the computational complexity of generating all Pareto-optimal patterns. The empirical
evaluation of the relative merits of various types of Pareto-optimality is carried out by comparing the classification accuracy
of Pareto-optimal theories on several real life data sets. This evaluation indicates the advantages of “strong patterns”, i.e. those
patterns which are Pareto-optimal with respect to the “evidential preference” introduced in this paper.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

This paper is devoted to a frequently encountered problem of data analysis, in which a set of “observations” is given, with each
of the observations being represented as a vector of binary attribute values. The observations in the data set are of two types, and
the type of each observation (e.g., positive or negative) is known. Typical data analysis problems related to such data sets include
classification (i.e., identification of the type of a new observation not included in the data set), determination of characteristic
properties of observations of the same type, analysis of the role of various attributes, etc.
The logical analysis of data (LAD)[22,13,4–8,21,19]is a methodology addressing the above kinds of problems. The mathe-

matical foundation of LAD is in discrete mathematics, with a special emphasis on the theory of Boolean functions.
Patterns are the key building blocks in LAD[22,13], as well as in many other rule induction algorithms (such as C4.5rules

[24], CN2 [10,9], AQ17-HCI [27], RISE[14], RIPPER[11] and SLIPPER[12]). Since a typical data set has an exceedingly
large number of patterns, all these algorithms are limited to the consideration of small subsets of patterns. In most algorithms,
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the choice of such a subset of patterns is not explicitly analyzed, in spite of the fact that it has been observed in empirical studies
and practical applications that some patterns are more “suitable” than others for use in data analysis. The goal of this paper is to
model various such suitability criteria as partial preorders defined on the set of patterns.
After providing some basic definitions and terminology in Section 2, we introduce in the following section the three basic

preferences of “simplicity”, “selectivity”, and “evidence”, as well as their combinations obtained by using intersections or
refinements. We describe then patterns which are Pareto-optimal with respect to the introduced preferences. In Section 4, we
develop polynomial time algorithms which transform an arbitrary pattern to a “better” Pareto-optimal one with respect to any
one of the considered criteria. Section 5 is devoted to the investigation of the computational complexity of generating all Pareto-
optimal patterns. In Section 6, we obtain analytical characterizations of various types of Pareto-optimal patterns as the solutions
of certain associated Boolean equations.
The empirical evaluation of the relative merits of various types of Pareto-optimality is carried out in Section 7 by comparing

the classification accuracy of Pareto-optimal theories on several real life data sets. This evaluation indicates the advantages of
“strong” patterns (i.e., those patterns which are Pareto-optimal with respect to the evidential preference introduced in this paper),
and ways of reducing the number of errors or unclassified observations through the use of those strong patterns which are also
“spanned” or “prime”, respectively (i.e., those patterns which are Pareto-optimal with respect to the refinement of the evidential
preference with respect to either simplicity or selectivity).

2. Notation and terminology

A Boolean functionf (x1, x2, . . . , xn) is a mapping{0,1}n → {0,1}. While the values of a Boolean function are defined in
every 0-1n-vector, in LAD these values are usually known only in very few of the 0-1n-vectors. Apartially defined Boolean
function(pdBf) is given by two disjoint sets ofn-dimensional 0-1 vectors, and is hereafter denoted by(T , F ), whereT ⊆ {0,1}n
is the set of “true” (or “positive”) vectors, andF ⊆ {0,1}n is the set of “false” (or “negative”) vectors. In line with the generally
accepted terminology in many practical studies, the vectors in(T , F ) will also be calledobservations. A Boolean function
f (x1, x2, . . . , xn) will be called anextensionof a pdBf(T , F ) iff

f (X) =
{
1 if X ∈ T ,

0 if X ∈ F.

A literal is either a binary variablexi or its negationxi , notationx
�
i
refers toxi if � = 1, and toxi if � = 0. A term is a

conjunction of distinct literals which does not contain both a variable and its negation. A term containingn literals will be called
aminterm. Note that minterms are in one-to-one correspondence with Boolean vectors. We shall say that a termC coversan
observationX iff C(X)= 1. The set of all Boolean vectorsX, not necessarily inT ∪ F , such thatC(X)= 1, will be denoted by
S(C). Clearly,S(C) is a subcube of{0,1}n.
LAD is built around two central concepts: (positive or negative) patterns and (positive or negative) theories. Following the

terminology of[22,13], a termC is called apositive (negative) patternof a pdBf(T , F ) if

1. C(X) = 0 for everyX ∈ F (X ∈ T ), and
2. C(X) = 1 for at least one vectorX ∈ T (X ∈ F ).

Notice that in the special case of Boolean functions, sinceT ∪ F = {0,1}n, condition 1 implies condition 2. In that case, a
term which satisfies condition 1 is called apositive (negative) implicantof that Boolean function. Clearly, in the case of Boolean
functions the concept of patterns reduces to that of implicants. Recall that aprime implicantof a Boolean function is defined as
an implicant having the property that the removal of any of its literals results in a term which is not an implicant.

Example 2.1. Let us consider the pdBf given inTable 1. In this table,a, b, c, d, andeare positive observations, andp, q, r, s,
andt are negative observations. It can be checked, for example, thatx1x2x3 is a positive pattern andx1x2x3 is a negative pattern.
It can also be seen thatx1x2 is neither a positive nor a negative pattern, since it covers both positive and negative observations.
On the other hand,x1x2x3 is neither a positive nor a negative pattern, since it does not cover any of the given observations.�

Terms can be geometrically interpreted as subcubes of then-dimensional cube{0,1}n. Then positive (negative) patterns
correspond to those subcubes that intersect the setT (respectively,F) but do not intersect the setF (respectively,T). Consider
again Example 2.1. The termC= x1x3x4 is a positive pattern. The set of those points whereC takes the value 1, or equivalently,
wherex1 = 0, x3 = 0, x4 = 1, is the subcubeQ = {(01011), (00011), (01010), (00010)}. Notice thatQ ∩ F = ∅. Whenever it
does not cause a confusion, we may refer to terms and corresponding subcubes interchangeably.
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Table 1
A pdBf (T , F )

x1 x2 x3 x4 x5

a 1 0 1 1 1
b 0 0 0 1 1

T c 1 1 1 1 1
d 1 1 1 0 1
e 1 1 1 0 0

p 1 0 0 1 0
q 0 0 1 0 1

F r 1 0 1 0 0
s 1 0 0 0 0
t 0 0 1 0 0

Since the properties of positive and negative patterns are completely symmetric, without loss of generality we will focus in
this paper on positive patterns. We will frequently refer to positive patterns simply as patterns.
In LAD, a (positive) theory (or simply theory)T of a pdBf (T , F ) is a collection of patternsP1, . . . , Pk with the property

that for everyX ∈ T there exists aPi ∈ T such thatPi(X)=1.A theoryT is associated with the Boolean function represented
by the disjunction of terms (DNF)

∨k
i=1Pi . This DNF can be used to predict whether a Boolean vector not inT ∪ F is true

or false. Obviously, every theory is an extension of(T , F ). Note that although every Boolean function can be represented by a
DNF, not every extension is a theory in the sense that there may exist an extension such that any DNF representing it includes
terms which are not patterns (i.e., do not cover any vectors inT).
In Example 2.1,T= {x1x3x4, x2x4, x4x5} is a theory, since its patterns cover all the vectors inT : x1x3x4 covers the point

b, x2x4 coversdande, whilex4x5 coversa, b, andc. This theory defines the extensionx1x3x4∨ x2x4∨ x4x5 of the pdBf given
in Table 1.

3. Preferences and Pareto-optimal patterns

In order to model various pattern suitability criteria as partial preorders, we shall need some definitions. First, we recall that
a binary relation� defined on a finite setS is called apartial preorderif it is

(i) reflexive, i.e.,x�x holds for anyx ∈ S, and
(ii) transitive, i.e., for anyx, y, z ∈ S, if both x�y andy�z hold, thenx�z also holds.

A partial preorder is called apartial order if it is also

(iii) antisymmetric, i.e., for anyx, y ∈ S, if x�y holds, theny�x cannot hold.

A partial preorder�′ is called arefinementof a partial preorder� if for any x, y ∈ S the relationx�y implies the relationx�′y.

Definition 3.1. Given a partial preorder� on the set of patterns, a patternPwill be calledPareto-optimalwith respect to�, if
there is no distinct patternP ′ such thatP ′�P .

Unfortunately, the concept of suitability does not have a unique definition. Among the many reasonable criteria of suitability,
we shall briefly discuss below the three (simplicity, selectivity, evidence) that look most important to us.
Since the earliest studies on LAD[22,13], it was realized thatsimplicitywas an important preference criterion in comparing

patterns. The criterion of simplicity, also known as thePrinciple of Occam’s Razor, is a widely accepted tenet in the sciences.
To formally define a simplicity-based partial preorder of patterns, let us denote by Lit(C) the set of literals in a termC.

Definition 3.2 (Simplicity preference). A patternP1 is simplicity-wise preferredto a patternP2 (denoted byP1��P2) if and
only if Lit (P1) ⊆ Lit (P2).
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In [22,13], a patternP was calledprime if the removal of any literal appearing in Lit(P) results in a termC which is not a
pattern. It is clear that a pattern is Pareto-optimal with respect to simplicity if and only if it is prime.

Example 3.3. It can be seen that the pdBf given inTable 1has among its prime patterns the following terms:

x2, x1x3, x1x4, x1x5, x3x4, x3x5, x4x5.

On the other hand, the patternx1x2 provides an example of a non-prime pattern.

It is easy to make an argument in favor of the simplicity preference. The simplest argument for simplicity simply states that
this criterion corresponds to the way in which human cognition works. It is natural to expect that the fewer variables a pattern
involves, the easier it is to comprehend its meaning. While this is a popular point of view, it is not universally accepted (for
a discussion, see[15,16]). Another argument used by some authors in favor of simplicity states that simplicity leads to higher
accuracy (see e.g., the computational learning theory model of Occam’s razor, which is proposed in[3]). This point of view
is again not universally accepted. Moreover, various theoretical and empirical arguments were made, stating that simplicity in
itself may even lead to lower accuracy (see e.g.,[15,16,25]). In particular, it was shown in[23] that a decrease in the simplicity
of patterns can result in higher accuracy.
In the special case of LAD, the simplicity preference favors short patterns.While an unknown point covered by a short pattern

is, of course, not necessarily a positive one, a point which isnot covered by any of the short patterns is quite likely a negative
one. Therefore, in our view, the use of the simplicity preference in LAD tends to reduce the number of “false negatives”, but
does not offerin itselfsafeguards against “false positives”.
A natural way of reducing the number of false positives is to favor more selective patterns. This can be achieved by reducing

the size of the subcubeS(P ) of a patternP.

Definition 3.4 (Selectivity preference). A patternP1 is selectivity-wise preferredto a patternP2 (denoted byP1��P2) if and
only if S(P1) ⊆ S(P2).

Two immediate remarks are in order. First, it is obvious thatP1��P2 if and only if P2��P1. Second, it is equally obvious
that the patterns which are Pareto-optimal with respect to selectivity are exactly the minterms corresponding to the positive
observations. Therefore, the exclusive use of patterns which are Pareto-optimal with respect to selectivity would allow LAD to
classify as positive exclusively the originally given set of positive points. Clearly, a theory based on such patterns would achieve
the goal of avoiding false positives at the expense of declaring every unknown point negative. It will be seen below that in spite of
this seemingly unproductive role of the selectivity preference, it can become extremely useful in combination with other criteria.
While previous theoretical LAD studies employed exclusively the simplicity preference, the implementation of LAD[6] took

into account another very natural suitability criterion. This criterion is related to the so-calledcoverageCov(P) of a patternP,
i.e. the set of vectorsX ∈ T for whichP(X)=1. Note that the second condition in the definition of a pattern guarantees that for
every patternP the coverage Cov(P ) �= ∅. The effect of|Cov(P )| on the accuracy of rule induction algorithms was investigated
within the framework of the so-called “problem of small disjuncts” (e.g.,[23,26]).
While the relation|Cov(P1)|> |Cov(P2)| could be interpreted as signifying that the patternP1 is more representative than the

patternP2, in fact, it only takes into account thenumberof elements in the two sets Cov(P1) andCov(P2). However, replacing the
above cardinality relation between these two sets with the stronger set inclusion relation allows to take into account the individual
observations covered by the two patterns. The observations in Cov(P) can be viewed as the “body of evidence” supporting the
patternP. This point of view leads to the following definition.

Definition 3.5 (Evidential preference). A patternP1 is evidentially preferredto a patternP2 (denoted byP1��P2) if and only
if Cov(P1) ⊇ Cov(P2).

Evidentially Pareto-optimal patterns will be calledstrong. Clearly, a patternP is strong if and only if there is no patternP ′
such thatCov(P ′) ⊃ Cov(P ).

Example 3.6. It can be seen that for the pdBf given inTable 1, the patternx3x4 is not strong; indeed,Cov(x4x5)= {a, b, c} ⊃
{a, c} = Cov(x3x4). It will be seen later that the following terms are among the strong patterns of this pdBf:

x2, x1x2, x2x3, x1x2x3, x1x5, x1x3x5, x4x5.

For any preference�, the simultaneous satisfaction of the relationsP1�P2 andP2�P1 will be denoted byP1 ≈ P2. Also,
the simultaneous satisfaction of the relationsP1�P2 andP2�P1 will be denoted byP1 � P2.
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It is easy to notice that the three preferences defined above are not independent of each other. First of all, as has been
remarked, the simplicity and the selectivity preferences are exactly the opposite of each other. More interestingly, the following
two implications can be easily seen to hold:

P1��P2 �⇒ P1��P2, (1)

P1��P2 �⇒ P2��P1. (2)

In order to define the most suitable types of patterns, we shall consider below combinations of the preferences introduced
above. The two most natural ways of combining a preference� with a preference� is to consider their intersection� ∧ �, or
their lexicographic refinement� |�, as defined below.

Definition 3.7. Given preferences� and� on the set of patterns, a patternP1 is preferred to a patternP2 with respect to the
intersection� ∧ � (denoted byP1��∧�P2) if and only if P1��P2 andP1��P2.

Definition 3.8. Given preferences� and� on the set of patterns, a patternP1 is preferred to a patternP2 with respect to the
lexicographic refinement� |� (denoted byP1�� | �P2) if and only if P1��P2 or (P1≈�P2 andP1��P2).

It is easy to notice that while the preferences� ∧ � and� ∧ � are identical, the preferences� |� and� |� are usually different.
Since each of the introduced preferences expresses a different aspect of the suitability of patterns, it seems reasonable to

analyze various combinations of them. In spite of the apparent abundance of combinations of the discussed preferences that can
be formally specified by using intersections and lexicographic refinements, it will be seen below that in fact only three of these
combinations are meaningful.
First of all, because of their opposite nature, any combination of the simplicity and selectivity preferences using either

intersection or lexicographic refinement makes no sense.
Second, since the evidential preference� is a refinement of the simplicity preference� (as stated by the condition (1)), the

intersection� ∧ � is identical to�.
Third, for any preference� which is a partial order, and for any preference�, the lexicographic refinement� |� is identical

to �. Note that each of the relationsP1≈�P2 andP1≈�P2 implies thatP1 = P2, meaning that the preorders of simplicity and
selectivity are actually partial orders. Therefore, the lexicographic refinements� | � and� | � coincide with� and�, respectively.
On the other hand, the evidential preference is not a partial order (since there can existdistinctpatternsP1 andP2 such that
P1≈�P2), and therefore the lexicographic refinements� |� and� |� introduce new preferences.
In conclusion, the only new preferences that can be obtained by applying intersection and lexicographic refinement are� ∧ �,

� |�, and� |�. We shall briefly examine these three preferences below. As far as terminology is concerned, we shall call the
patterns which are Pareto-optimal with respect to� ∧ � spanned. It should be remarked that, as can be deduced from Theorem
4.5 below, the concept of spanned patterns is essentially equivalent to that of “maximally specific disjuncts” introduced in[23]
(the only difference being the absence of any restrictions on the coverage of spanned patterns). It will be seen below that the
patterns which are Pareto-optimal with respect to� |� or � |� do not require new names, since they can be described using
already introduced terms.

Example 3.9. It can be seen that for the pdBf given inTable 1, the patternx3x4 is not spanned; indeed, Cov(x1x3x4x5) =
{a, c} = Cov(x3x4), and clearly, Lit(x1x3x4x5) ⊃ Lit (x3x4). It will be seen later thatx1x3x4x5 is spanned. Some of the other
spanned patterns of this pdBf are

x1x2x3, x1x3x5, x4x5, x1x2x3x4, x1x2x3x4x5.

Note that for any two preferences� and�, the Pareto-optimal patterns with respect to the lexicographic refinement� |�
are also Pareto-optimal with respect to�. Therefore, the Pareto-optimal patterns with respect to� |� are strong. Similarly, the
Pareto-optimal patterns with respect to� |� are also strong.

Theorem 3.10.A pattern is Pareto-optimal with respect to� |� if and only if it is both strong and prime.

Proof. Let P be a Pareto-optimal pattern with respect to� |�. ThenP is strong by the above remark. IfP is not prime, then
there must exist a patternP ′ such that Lit(P ′) ⊂ Lit (P ). It follows then that Cov(P ′) ⊇ Cov(P ), and thereforeP ′�� | �P ,
contradicting the Pareto-optimality ofP.
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Table 2
Types of Pareto-optimality

Preference Pareto-optimal pattern

� Prime
� Minterm
� Strong
� ∧ � Spanned
� |� Strong spanned
� |� Strong prime

Table 3
Patterns of the pdBf given in Table 1

Pattern properties Pattern examples

Prime Strong Spanned

No No No x1x2x3, x2x3x4, x3x4x5
Yes No No x1x3, x1x4, x3x4, x3x5
No Yes No x1x2, x2x3
No No Yes x1x2x3x4, x1x2x3x4x5
Yes Yes No x2, x1x5
No Yes Yes x1x2x3, x1x3x5
Yes Yes Yes x4x5

Conversely, letP be a strong and prime pattern. If it is not Pareto-optimal with respect to� |�, then there must exist a pattern
P ′ such thatP ′�� | �P . Then eitherP ′��P (contradicting the fact thatP is strong), orP ′≈�P andP ′��P (contradicting the
fact thatP is prime). �

Example 3.11. It follows from Examples 3.3 and 3.6 that for the pdBf given inTable 1, the following patterns are both strong
and prime:

x2, x1x5, x4x5.

Theorem 3.12.A pattern is Pareto-optimal with respect to� |� if and only if it is both strong and spanned.

Proof. Let P be a Pareto-optimal pattern with respect to� |�. ThenP is strong. IfP is not spanned, then there must exist a
patternP ′ such thatP ′�� ∧ �P . Therefore,P

′��P andP ′��P . SinceP is strong, it follows thatP ′≈�P andP ′��P . This
simply states thatP ′�� | �P , contradicting the Pareto-optimality ofP.
Conversely, letPbe a strong and spanned pattern. If it is not Pareto-optimal with respect to� |�, then theremust exist a pattern

P ′ such thatP ′�� | �P . SinceP is strong,P ′≈�P , and thereforeP ′��P , contradicting the fact thatP is spanned. �

Example 3.13. It follows from Examples 3.6 and 3.9 that for the pdBf given inTable 1, the following patterns are both strong
and spanned:

x1x2x3, x1x3x5, x4x5.

Moreover, note that the patternx4x5 is not only strong and spanned, but also prime.

In conclusion, we summarize inTable 2, the properties of patterns which are Pareto-optimal with respect to the preferences
and combinations of preferences discussed above.
This paper will focus on the study of spanned, strong spanned, and strong prime patterns of pdBfs. InTable 3we summarize

the examples presented above in order to highlight the existence of patterns having various combinations of properties discussed
in this section. The only combination of pattern properties, which is missing fromTable 3, is “Prime, Not Strong, Spanned”. It
will be seen later (Theorem 4.10) that this combination is not possible, since a pattern, which is both prime and spanned, must
also be strong.
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It can be seen that in the special case of Boolean functions (i.e.,T ∪ F = {0,1}n), only two of the above combinations of
pattern properties are possible: “Not Prime, Not Strong, Spanned” and “Prime, Strong, Spanned”. This observation follows from
the fact that in this case every pattern is spanned, and a pattern is prime if and only if it is strong. Additionally, in this case both
the concepts of prime pattern and of strong pattern are simply reduced to that of prime implicant.

4. Pareto-optimization of patterns and theories

After having introduced several important types of preferences and the corresponding Pareto-optimal patterns in the previous
section, we shall now focus our attention on developing efficient computational procedures for transforming an arbitrary pattern
into a comparable Pareto-optimal one.
For each preference listed inTable 2(with the only exception of the trivial case of selectivity,�), simple, polynomial time

transformations will be developed in this section to associate to an arbitrary pattern a “better” Pareto-optimal one. Obviously,
every Pareto-optimal pattern resulting from the transformations presented belowwill cover a superset of the observations covered
by the original pattern.

4.1. Prime patterns

Given a termC and a pdBf(T , F ), it is extremely easy to check whetherC is a pattern of(T , F ) by simply verifying on the
one hand whether there exists an observation inT covered byC, and on the other hand whether no observation inF is covered by
C. Similarly, it is also very easy to check whether a patternP of a pdBf(T , F ) is prime. Indeed, all one has to do is to examine
one by one the terms obtained fromP by eliminating one of its literals, and to verify that none of these “shortened” terms is a
pattern, i.e. that no such term covers an observation inF.

Example 4.1. For the pdBf inTable 1, the termx1x3x5 is a pattern which is not prime, because the elimination of the literalx3
results in the termx1x5 which is a pattern. On the other hand, the patternx1x5 is prime because neither the “shortened” termx1
nor the other “shortened” termx5 is a pattern.

The procedure described above, which recognizes the primality of a patternPof a pdBf(T , F ), leads naturally to the following
procedure, which transforms an arbitrary patternP to a prime patternP ′��P , implying the followingcoverage condition:

Cov(P ′) ⊇ Cov(P ). (3)

Algorithm 1. Transformation of patterns to prime patterns
Step 1: Given a patternP =∏t

k=1x
�k
jk
, wherej1� · · · � jt , letP ′ := P andi := 0.

Step 2: If i = t , then go to Step 5, otherwise leti := i + 1 and letC := P ′\{x�i
ji

}.
Step 3: If C is a pattern, then letP ′ := C.
Step 4: Go to Step 2.
Step 5: OutputP ′.
It is easy to check that the running time of this algorithm is O(n · |Lit (P )| · |F |), wheren is the number of Boolean variables

andF is the set of false points.
Clearly, the above procedure is correct, i.e. starting from an arbitrary patternP, it will yield a prime patternP ′ satisfying

Lit (P ′) ⊆ Lit (P ), (4)

i.e., such thatP ′��P .
Note that variants of Algorithm 1 can be developed so as to attemp to enlarge|Cov(P ′)| or to decrease|Lit (P ′)|.

4.2. Spanned patterns

We recall that spanned patterns were defined as those patterns which are Pareto-optimal with respect to� ∧ �. We shall need
below the following interesting property of the preference� ∧ �.

Lemma 4.2. If P1 andP2 are patterns of a pdBf(T , F ) which satisfy the relationP1�� ∧ �P2, thenCov(P1) = Cov(P2).
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Proof. The relationP1�� ∧ �P2 implies on the one hand that

Cov(P1) ⊇ Cov(P2), (5)

and on the other hand that

Lit (P1) ⊇ Lit (P2). (6)

It follows from (6) that

Cov(P1) ⊆ Cov(P2). (7)

The statement of the lemma immediately follows from (5) and (7).�

In order to characterize spanned patterns, let us define theconvex hull[S] of a non-empty subsetS ⊆ {0,1}n as the
smallest subcube containingS. This concept is well-defined, since the intersection of any two subcubes containingSis a subcube
containingS.

Lemma 4.3. Consider a non-empty subsetS ⊆ {0,1}n and let I be the set of all those indices i for which the ith components of
all the vectorsX ∈ S have a common value, say�i ∈ {0,1}. Then

[S] =
∏
i∈I

x
�i
i
.

Proof. Since for everyX=(X1, . . . , Xn) ∈ S we haveXi =�i , i.e.,X
�i
i

=1, it follows that everyX ∈ S is covered by
∏

i∈I x
�i
i
.

Let us assume that there exists a termC such that everyX ∈ S is covered byC, but
⋃

i∈I x
�i
i

�Lit (C). This implies thatC

contains a literalx�t
t /∈⋃i∈I x

�i
i
. Since everyX ∈ S is covered byC, it follows thatXt = �t for everyX ∈ S. It follows that

t ∈ I , contradicting the conclusion above.�

Lemma 4.4. If P is a pattern of a pdBf(T , F ), then

[Cov(P )]�� ∧ �P, (8)

and therefore

Cov([Cov(P )]) = Cov(P ). (9)

Proof. It follows from the definition of the convex hull that

Cov(P ) ⊆ Cov([Cov(P )]). (10)

On the other hand, it follows from Lemma 4.3 that

Lit (P ) ⊆ Lit ([Cov(P )]), (11)

because for everyx�i
i

∈ Lit (P ) and everyX ∈ Cov(P ) we haveXi = �i .
Inclusions (10) and (11) imply (8), which in its turn implies (9) by Lemma 4.2.�

Theorem 4.5. A pattern P of a pdBf(T , F ) is spanned if and only if

P = [Cov(P )], (12)

or, equivalently, P is a fixed point of the mapping

C �⇒ [Cov(C)].

Proof. Let us first prove the “only if” part of the statement. Lemma 4.4 states that (8) holds. SinceP is assumed to be spanned,
i.e., Pareto-optimal with respect to� ∧ �, it must hence follow that (12) holds.
Let us now prove the “if” part of the statement. Let a patternP be such that (12) holds, and let us assume by contradiction

thatP is not spanned. Then there must exist a distinct patternP ′ (i.e., Lit(P ′) �= Lit (P )) such that Cov(P ′) ⊇ Cov(P ) and
Lit (P ′) ⊃ Lit (P ), in contradiction with the assumption thatP is the smallest subcube containing Cov(P ). �
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Corollary 4.6. If P is a pattern of a pdBf(T , F ), then

P̂ = [Cov(P )] (13)

is a spanned pattern of(T , F ) which has the same coverage as P.

Proof. In view of Lemma 4.4 and Theorem 4.5, the statement follows from the following results:

[Cov(P̂ )] = [Cov([Cov(P )])] = [Cov(P )] = P̂ . �

Corollary 4.6 can be restated as the following computationally inexpensive procedure, which transforms an arbitrary pattern
P to the spanned pattern̂P��∧�P (which, by Lemma 4.2, will satisfy the coverage condition (3)).

Algorithm 2. Transformation of patterns to spanned patterns
Step 1: Given a patternP, let S := Cov(P ).
Step 2:OutputP̂ := [S].
It is easy to check that the running time of this algorithm is O(n · |T |), wheren is the number of Boolean variables andT is

the set of true points.

If P andP ′ are two arbitrary patterns of a pdBf(T , F ), then the condition

Lit (P ) ⊇ Lit (P ′)

obviously implies the condition

Cov(P ) ⊆ Cov(P ′).

The converse implication does not hold in general. However, as stated below, it does hold in the special case whenP is spanned.

Corollary 4.7. If P is a spanned pattern of a pdBf(T , F ) andP ′ is another pattern of(T , F ) such thatCov(P ′) ⊇ Cov(P ),
thenLit (P ′) ⊂ Lit (P ).

4.3. Strong patterns

By definition, a patternP is strong if and only if there is no patternP ′ such that

Cov(P ′) ⊃ Cov(P ).

A direct combinatorial characterization of strong patterns is provided by the following theorem.

Theorem 4.8. A pattern P of a pdBf(T , F ) is strong if and only if the term[Cov(P ) ∪ X] is not a pattern for any point
X ∈ T \Cov(P ).

Proof. Note that the “only if” part of the statement is obvious, since if there exists a pointX ∈ T \Cov(P ) such that the term
[Cov(P ) ∪ X] is a pattern, thenP is not strong, because Cov(P ) ⊂ Cov([Cov(P ) ∪ X]).
Let us now prove the “if” part of the statement by contradiction. Let us assume thatP is not strong, and that the term

[Cov(P ) ∪ X] is not a pattern for any pointX ∈ T \Cov(P ). Then there must exist a patternP ′ such that

Cov(P ′) ⊃ Cov(P ). (14)

It follows from (14) that there exists a pointX′ ∈ Cov(P ′)\Cov(P ), or equivalently,

Cov(P ) ∪ X′ ⊆ Cov(P ′).

This implies

Lit ([Cov(P ) ∪ X′]) ⊇ Lit ([Cov(P ′)]) ⊇ Lit (P ′).

It then follows that[Cov(P ) ∪ X′] is a pattern, contradicting the assumption above.�
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Theorem 4.8 leads naturally to the following procedure, which transforms an arbitrary patternP to a strong pattern
P ′��P .

Algorithm 3. Transformation of patterns to strong patterns
Step 1: Given a patternP of a pdBf(T , F ), letP ′ := [Cov(P )] andK := T \Cov(P ).
Step 2: If K = ∅, then go to Step 6, otherwise letX ∈ K.
Step 3: LetC := [Cov(P ′) ∪ X], and letK := K\X.
Step 4: If C is a pattern, then letP ′ := C andK := K\Cov(P ′).
Step 5: Go to Step 2.
Step 6: OutputP ′.
It is easy to check that the running time of this algorithm is O(n · |T | · |F |), wheren is the number of Boolean variables.

Note that variants of this transformation procedure can be developed so as to attempt to enlarge|Cov(P ′)| or to decrease
|Lit (P ′)|.

Remark 4.9. The outputP ′ of Algorithm 3 is not only strong, but is also spanned, i.e.,P ′�� | �P . This patternP ′ may or may
not be prime. On the other hand, by applying to this pattern Algorithm 1 (described in Subsection 4.1), we obtain a patternP ′′
which is not only prime but also strong, i.e.,P ′′�� | �P .

The above remark speaks about those patterns which are simultaneously strong and spanned, or simultaneously strong and
prime. The only two combinations of these pattern properties which have not yet been discussed are prime-spanned and strong-
prime-spanned. As a matter of fact, these two classes coincide:

Theorem 4.10. If a pattern P of a pdBf(T , F ) is both prime and spanned, then it is also strong.

Proof. Let us prove this theorem by contradiction, and assume thatP is not strong. Then there must exist a patternP ′ such
that Cov(P ′) ⊃ Cov(P ). SinceP is spanned, Corollary 4.7 implies that Lit(P ′) ⊂ Lit (P ). This implies thatP is not prime,
contradicting the assumption.�

4.4. Pareto-optimization of theories

Let us recall that a theoryT of a pdBf(T , F ) is a collection of patternsP1, . . . , Pk with the property that for everyX ∈ T

there exists aPi ∈ T such thatX ∈ Cov(Pi). All the transformations described in this section result in patterns which satisfy
the coverage condition (3). It follows that applying any of these transformations to all the patterns of a theory will result in a
collection of patterns which again form a theory. This fact makes it possible to produce theories consisting exclusively of the
type of Pareto-optimal patterns we are interested in, e.g., strong and prime, or strong and spanned. We shall call such theories
strong prime theories and strong spanned theories respectively.
In order to contsruct a Pareto-optimal theory by the above approach, we have to start with some initial theory. Perhaps the

most straightforward way of producing an initial theory is to form the “minterm theory”, i.e., the collection of all the minterms
associated to the individual points inT.While this seems to be the simplest way to produce a Pareto-optimal theory, it is far from
sure that it will produce a “best” one. In spite of that, such Pareto-optimal theories can be useful for empirically comparing the
relative merits of theories based on various types of Pareto-optimal patterns. In Section 7, we shall present the results of several
such comparisons using some real life data sets.

5. Complexity of generation of strong spanned patterns

In the previous section, we have presented efficient polynomial algorithms forr transforming a pattern into a better Pareto-
optimal one with respect to various preferences. In this section, we shall analyze the computational complexity of generatingall
the Pareto-optimal patterns.
Among the types of Pareto-optimal patterns considered in this paper, the strong spanned patterns possess the most appealing

combination of properties. An additional advantage of the strong spanned patterns is that their number does not exceed that of
any other type of Pareto-optimal patterns studied here, with the exception of the (not very interesting) case of minterms. (This
statement follows from the easily observed fact that for every strong spanned pattern there exists at least one strong prime pattern
which covers exactly the same set of true points.)
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In order to analyze the complexity of generating all strong spanned patterns, let us introduce Boolean variablesz1, . . . , z|T |
associated to the true pointsX1, . . . , X|T | of the pdBf(T , F ); these variables are defined by:

zk =
{
1 if Xk ∈ Cov(P ),

0 otherwise.

In order to easily distinguish between positive and negative observations, we shall denote the points ofTby�k = (�k1, . . . , �kn),
for k = 1, . . . , |T |, and the points ofF by �l = (�l1, . . . , �ln), for l = 1, . . . , |F |.

Lemma 5.1. A Boolean vector(Z1, . . . , Z|T |) is the characteristic vector of a subset of the coverage set of a pattern if and
only if for every false point(�l1, . . . , �ln), l = 1, . . . , |F |, there exists a coordinatej ∈ {1, . . . , n} such that the implication“ if
Zk = 1 then�kj �= �lj ” holds for every true point(�k1, . . . , �kn), k = 1, . . . , |T |.

Proof. Let us first prove the “only if” part. Let(Z1, . . . , Z|T |) be the characteristic vector of the coverage set of a patternP, and
(�l1, . . . , �ln) be a false point. SinceP is a pattern,P(�l1, . . . , �ln)= 0, and hence there must exist a coordinatej ∈ {1, . . . , n}
such thatP = x

�lj
j

P ′. This shows that for every(�k1, . . . , �kn) ∈ Cov(P ) we have�kj = �lj .
Let us now prove the “if” part. Let

S = {�k ∈ T | Zk = 1},

and letP = [S]. We have to prove thatP is a pattern. Let�l be a false point. Then, by our assumption, there exists a coordinate

j ∈ {1, . . . , n} such that for every�k ∈ S we have�kj = �lj . Therefore,P = x
�lj
j

P ′, and henceP(�l ) = 0. �

Let us associate to a pdBf(T , F ) the Boolean function

	(z1, . . . , z|T |) =
|F |∨
l=1

n∏
j=1

|T |∨
k=1

zk(�kj ∨ �lj )(�kj ∨ �lj ), (15)

which, in view of the corollary below, will be called thecoverage functionof (T , F ).

Corollary 5.2. A Boolean vector(Z1, . . . , Z|T |) is the characteristic vector of a subset of the coverage set of a pattern of a
pdBf(T , F ) if and only if it is a solution of

	(z1, . . . , z|T |) = 0.

Note that the coverage function	 is monotone non-decreasing.

Corollary 5.3. The strong spanned patterns of a pdBf(T , F ) are in one-to-one correspondence with the maximal false points
of its coverage function	.

Lemma 5.4. The coverage function	 of a pdBf(T , F ) does not have any linear implicants.

Proof. Let us assume by contradiction that	 has a linear implicant. In this case, as can be seen from (15), there exists a false
point �l and a true point�k such that for everyj ∈ {1, . . . , n} the following condition holds:

(�kj ∨ �lj )(�kj ∨ �lj ) = 1.

However, this condition simply means that�kj = �lj for everyj ∈ {1, . . . , n}, i.e.,�k = �l , contradicting the disjointness ofT
andF. �

Interestingly, the necessary condition of Lemma 5.4 actually characterizes the set of coverage functions.

Theorem 5.5. Every monotone non-decreasing Boolean function without linear implicants is the coverage function of a pdBf.
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Proof. Let us consider an arbitrary monotone non-decreasing Boolean function without linear implicants:

g(z1, . . . , zn) =
m∨
l=1

∏
j∈Sl

zlj ,

where|Sl |�2, for l = 1, . . . , m. Let us construct now the pdBF(T , F ) with |T | = n and|F | = m such that:

�kj =
{
1 if k = j,

0 if k �= j,

and

�lj =
{
1 if j ∈ Sl,

0 if j /∈ Sl.

It is easy to notice that(T , F ) is indeed a pdBf, i.e.,T ∩ F = ∅, since|Sl |�2, for everyl = 1, . . . , m.
In order to calculate the coverage function	 given by (15), let us consider an arbitraryl ∈ {1, . . . , m}, and let us evaluate

	l =
n∏

j=1

n∨
k=1

zk(�kj ∨ �lj )(�kj ∨ �lj ).

Let us notice first that for anyj ∈ Sl we have:

n∨
k=1

zk(�kj ∨ �lj )(�kj ∨ �lj ) = zj ,

since(�kj ∨ �lj )(�kj ∨ �lj ) = 0 if and only ifk �= j for everyj ∈ Sl .
Let us remark now that for everyj /∈ Sl we have:

n∨
k=1

zk(�kj ∨ �lj )(�kj ∨ �lj ) =
j−1∨
k=1

zk ∨
n∨

k=j+1

zk,

since(�kj ∨ �lj )(�kj ∨ �lj ) = 0 if and only ifk = j for everyj /∈ Sl .
Consequently, since|Sl |�2, for everyl = 1, . . . , m, we have:

	l =
( ∏
j∈Sl

n∨
k=1

zk(�kj ∨ �lj )(�kj ∨ �lj )

)( ∏
j /∈Sl

n∨
k=1

zk(�kj ∨ �lj )(�kj ∨ �lj )

)

=
( ∏
j∈Sl

zj

)( ∏
j /∈Sl

(
j−1∨
k=1

zk ∨
n∨

k=j+1
zk

))
= ∏

j∈Sl
zj .

It follows that the coverage function of(T , F ) is g(z1, . . . , zn). �

Corollary 5.3 together with the construction used in the proof of Theorem 5.5 imply the following result, which shows that the
complexity of generating all strong spanned patterns of a pdBf is not easier than the dualization of a monotone non-decreasing
Boolean function. Various results about the complexity of this dualization problem can be found in[1,17,18,20].

Corollary 5.6. The dualization of a monotone non-decreasing Boolean function can be reduced in quadratic time to the gener-
ation of all strong spanned patterns of a pdBf.

Corollary 5.7. For every integern�2, there exists a pdBF(T , F ) depending on2n variables, such that|T | = 2n, |F | = n, and
the number of strong spanned patterns of(T , F ) is 2n.

Proof. Let us consider the following Boolean function

g(z1, . . . , z2n) =
n∨

i=1

zizn+i ,
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and construct the pdBf(T , F ) as in the proof of Theorem 5.5. It is well know (see, e.g.,[17]) thatg(z1, . . . , z2n) has 2n maximal
false points, and therefore, by Corollary 5.3,(T , F ) has 2n strong spanned patterns.�

It is clear from the above corollary that the generation of all strong spanned patterns can require time which is exponential
in the size of the pdBf. If the complexity of the generation algorithm is evaluated in terms of both the input and output lengths,
then by Corollary 5.6, the existence of a polynomial total time algorithm for this problem would imply the possibility to dualize
a positive DNF in time which is polynomial in the length of the DNF and its dual CNF. Note that the best-known dualization
algorithm is quasi-polynomial[20].
Formula (15) provides an expression of the coverage function	, which is of polynomial length in the size of(T , F ). However,

the Boolean expression in (15) is neither a CNF nor a DNF. Corollary 5.7 implies that every CNF representation of	 may have
exponential length in the size of(T , F ). The following result shows that the same phenomenon may also occur with the DNF
representations of	.

Theorem 5.8. For every integern�2, there exists a pdBf(T , F ) depending on n variables, such that|T | = 2n − 2, |F | = 1,
and its coverage function	 has2n−1 − 1 prime implicants.

Proof. Let us construct the pdBf(T , F ) depending onn variables, having only one false point(1,1, . . . ,1), and having 2n− 2
true points defined by:

�kj =
{1 if k <n, j ∈ {k, n},
1 if k� n, j = k − n + 1,
0 otherwise,

wherek = 1,2, . . . ,2n − 2 andj = 1, . . . , n.
It follows from (15) that the coverage function	 of (T , F ) is

g(z1, . . . , z2n−2) =
n−1∏
j=1

(zj ∨ zj+n−1) ∧
n−1∨
k=1

zk

 .

It is easy to see that every prime implicant of this function has the form:

n−1∧
j=1

(pj zj ∨ pj zj+n−1),

where(p1, . . . , pn−1) is a(0,1) vector of parameters. Clearly, every such(0,1) vector different from(0, . . . ,0) defines a prime
implicant of	, and no two vectors define the same prime implicant. Hence, it follows that the number of prime implicants of	
is 2n−1 − 1. �

It is interesting to compare Corollary 5.6 with Theorem 5.8. The corollary shows that the generation of all strong spanned
patterns is not easier than dualization. Are the two problems equivalent? They would certainly be, if a DNF representation of	
were easy to construct. Theorem 5.8 could be interpreted as indicating that the two problems are not equivalent, since any DNF
representation of	 may have exponential length.

6. Analytical description of Pareto-optimal patterns

Wehave described in Section 4 computational procedures for transforming a pattern to a better Pareto-optimal one for different
types of Pareto-optimality. In Section 5, the analysis of computational complexity of generating all Pareto-optimal patterns has
been based on analytical models using decision variables associated to the observations in the data set. In view of the fact
that the number of attributes is typically much smaller than that of observations, a more practical approach to generating all
Pareto-optimal patterns should utilize analytical models based on decision variables associated not to the observations but to
the attributes. Such analytical models are developed in this section by characterizing the Pareto-optimal patterns studied in this
paper as the solutions of certain Boolean equations.
We shall present below characterizations of those patternsPwhich are Pareto-optimal with respect to a certain criterion. For

this purpose, we shall use Boolean variablesy1, . . . , yn associated to the original variablesx1, . . . , xn of the pdBf(T , F ), with
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the following meaning:

yj =
{
1 if xj or xj is present inP,
0 otherwise.

We shall sometimes denote the pattern described by the values of the variablesy1, . . . , yn asPy1,...,yn .

6.1. Description of patterns and prime patterns

Without loss of generality, we shall characterize those Pareto-optimal patternsP which cover a particular true point, say
(�1, . . . , �n) ∈ T .As in the previous section,we shall denote the points ofT \(�1, . . . , �n)by(�k1, . . . , �kn), fork=1, . . . , |T |−
1, while the points ofF will be denoted by(�l1, . . . , �ln), for l = 1, . . . , |F |. Using these notations, let us characterize those
positive patternsPwhich cover the observation(�1, . . . , �n). This coverage requirement means that

Py1,...,yn (x1, . . . , xn) =
n∏

j=1

(x
�j
j

∨ yj ). (16)

Since this patternPdoes not cover any negative points, the decision variablesy1, . . . , yn must satisfy the following condition:

|F |∨
l=1

n∏
j=1

(�
�j
lj

∨ yj ) = 0. (17)

Since�
�j
lj

= 1 iff �lj = �j , condition (17) implies that all the positive patterns covering(�1, . . . , �n) are described by the
solutions of the following Boolean equation:

� =
|F |∨
l=1

∏
j | �j �=�lj

yj = 0. (18)

Example 6.1. For the pdBf given inTable 1, all the positive patterns covering the point(10111) are described by the solutions
of the Boolean equation

� = y3y4y5 ∨ y1y4y5 ∨ y3y5 ∨ y1y4 ∨ y4y5 = 0,

or simply

� = y1y4 ∨ y3y5 ∨ y4y5 = 0. (19)

While there is a one-to-one correspondence between the solutions of (18) and the positive patterns covering(�1, . . . , �n),
different implicants of the complement� of � may describe the same positive pattern. However, since (18) implies that� is a
monotone non-decreasing Boolean function, each of itsprime implicantsis of the form

∏
j∈Syj , and describes a distinct positive

prime patternP = ∏
j∈S

x
�j
j

covering(�1, . . . , �n).

Example 6.2. Continuing Example 6.1, we find:

� = y1y5 ∨ y3y4 ∨ y4y5, (20)

showing that the prime patterns covering the point(10111) arex1x5, x3x4, andx4x5.

6.2. Description of spanned patterns

We shall turn now our attention to characterizing spanned patterns. It follows from Theorem 4.5 that a patternPy1,...,yn
covering(�1, . . . , �n) is spanned iffyp = 0 exactly when there exists(�k1, . . . , �kn) ∈ Cov(Py1,...,yn ) having�kp �= �p.
Notice that if(�k1, . . . , �kn) ∈ Cov(Py1,...,yn ) and�kp �= �p, then the assumption that(�1, . . . , �n) ∈ Cov(Py1,...,yn ) implies
yp = 0. Therefore, a patternPy1,...,yn covering(�1, . . . , �n) is spanned iffyp = 0 implies that there exists(�k1, . . . , �kn) ∈
Cov(Py1,...,yn ) having�kp �= �p.
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Since(�k1, . . . , �kn) ∈ Cov(Py1,...,yn ), it follows from (16) that

n∏
j=1

(�
�j
kj

∨ yj ) = 1,

or equivalently,

n∨
j=1

yj (�j�kj ∨ �j�kj ) = 0.

The condition�kp �= �p can be expressed as

�p�kp ∨ �p�kp = 0.

Therefore,yp = 0 implies

|T |−1∏
k=1

�p�kp ∨ �p�kp ∨
n∨

j=1

yj (�j�kj ∨ �j�kj )

= 0. (21)

Since (21) must hold for everyp, a pattern is spanned if and only if its characteristic vector(y1, . . . , yn) satisfies the following
condition

n∨
p=1

yp

|T |−1∏
k=1

�p�kp ∨ �p�kp ∨
n∨

j=1

yj (�j�kj ∨ �j�kj )

= 0. (22)

In conclusion, all the positive spanned patterns covering(�1, . . . , �n) are described by the solutions of the system of Boolean
equations (18) and 22, or simply by the solutions of the following equation:

|F |∨
l=1

n∏
j=1

yj (�j �lj ∨ �j �lj ) ∨
n∨

p=1

yp

|T |−1∏
k=1

�p�kp ∨ �p�kp ∨
n∨

j=1

yj (�j�kj ∨ �j�kj )

= 0. (23)

Example 6.3.All the positive spanned patterns covering the point(10111) in the pdBf ofTable 1are described by the solutions
of the Boolean equation

y1y4 ∨ y3y5 ∨ y4y5 ∨ y1y3 ∨ y3y1 ∨ y4y2(y4y2 ∨ y4y5) ∨ (y5y2 ∨ y5y4) = 0,

or, after simplification,

y1y3 ∨ y1y3 ∨ y1y4 ∨ y2y4 ∨ y5 = 0. (24)

The solutions of this equation are given inTable 4.
Therefore, the positive spanned patterns covering the point(10111) arex4x5, x2x4x5, x1x3x4x5, x1x2x3x4x5, andx1x3x5.

Table 4
Solutions of (24)

y1 y2 y3 y4 y5

0 0 0 1 1
0 1 0 1 1
1 0 1 1 1
1 1 1 1 1
1 0 1 0 1
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6.3. Description of strong spanned patterns

In view of Theorem 4.8, a spanned patternPy1,...,yn covering(�1, . . . , �n) is strong if and only if for any(�k1, . . . , �kn) ∈
T \Cov(Py1,...,yn ) there exists(�l1, . . . , �ln) ∈ F such that for every indexj, if yj = 1 and�kj = �j , then�lj = �j . This last
condition can be expressed as

yj (�j�kj ∨ �j�kj )(�j �lj ∨ �j �lj ) = 0,

or simply,

yj (�j�kj �lj ∨ �j�kj �lj ) = 0.

Since there must exist an indexl such that the last condition holds for everyj, we have:

|F |∏
l=1

 n∨
j=1

yj (�j�kj �lj ∨ �j�kj �lj )

= 0. (25)

It follows from (16) that the condition(�k1, . . . , �kn) ∈ T \Cov(Py1,...,yn ) can be expressed as
n∨

j=1

yj (�j�kj ∨ �j�kj ) = 1. (26)

Since a spanned patternPy1,...,yn covering(�1, . . . , �n) is strong iff (26) implies (25), all the strong spanned patterns covering
(�1, . . . , �n) are described by the solutions of (23) and

|T |−1∨
k=1


 n∨
j=1

yj (�j�kj ∨ �j�kj )

 |F |∏
l=1

 n∨
j=1

yj (�j�kj �lj ∨ �j�kj �lj )

= 0. (27)

In other words, all the strong spanned patterns covering(�1, . . . , �n) are described by the solutions of the following equation.

|F |∨
l=1

n∏
j=1

yj (�j �lj ∨ �j �lj ) ∨
n∨

p=1

yp

|T |−1∏
k=1

�p�kp ∨ �p�kp ∨
n∨

j=1

yj (�j�kj ∨ �j�kj )

∨

|T |−1∨
k=1


 n∨
j=1

yj (�j�kj ∨ �j�kj )

 |F |∏
l=1

 n∨
j=1

yj (�j�kj �lj ∨ �j�kj �lj )

=0. (28)

Example 6.4. Let us now continue Example 6.3 and describe all the strong spanned patterns covering the point(10111).
Assuming thatk = 2, . . . ,5 correspond to the pointsb, . . . , e of T, we present inTable 5the corresponding expressions of (25)
and (26) after simplifications.
Using the results inTable 5, we have:

(27)=(y1 ∨ y3)y4y5 ∨ y2(y1y5 ∨ y3y4 ∨ y4y5) ∨ (y2 ∨ y4)y1y5

= y1y2y5 ∨ y1y4y5 ∨ y2y3y4 ∨ y2y4y5 ∨ y3y4y5.

Since the expression of (23) was calculated in Example 6.3 (see (24)), we see that Eq. (28) for our example becomes

(28) = y1y3 ∨ y1y3 ∨ y1y4 ∨ y2y4 ∨ y5 ∨ y1y2y5 ∨ y1y4y5 ∨ y2y3y4 ∨ y2y4y5 ∨ y3y4y5 = 0,

or, after simplification,

y1y3 ∨ y1y3 ∨ y1y4 ∨ y1y4 ∨ y2 ∨ y5 = 0. (29)

The solutions of this equation are given inTable 6.
Therefore, the positive strong spanned patterns covering the point(10111) arex4x5 andx1x3x5.
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Table 5
Evaluation of (25) and (26)

k (26) (25)

2 y1 ∨ y3 (y4 ∨ y5)y5y4 = y4y5
3 y2 (y3 ∨ y4 ∨ y5)(y1 ∨ y4 ∨ y5)(y3 ∨ y5)(y1 ∨ y4)(y4 ∨ y5) = y1y5 ∨ y3y4 ∨ y4y5
4 y2 ∨ y4 (y3 ∨ y5)(y1 ∨ y5)y1y5 = y1y5
5 y2 ∨ y4 ∨ y5 y3y1 · 0= 0

Table 6
Solutions of (29)

y1 y2 y3 y4 y5

0 0 0 1 1
1 0 1 0 1

Table 7
Datasets used in empirical evaluation

Name of dataset Number of observations Attributes Observation with

Positive Negative Total Binary or Numerical missing values

categorical Number Handling

Australian credit 307 383 690 9 6 37 Removed
Breast cancer Wisconsin 241 458 699 0 9 16 Removed
Boston housing 253 253 506 1 13 0
Pima Indians diabetes 268 500 768 0 8 0
Heart disease(Cleveland) 139 164 303 8 6 6 Removed
Oil 702 930 1632 0 7 0
Congressional voting 267 168 435 16 0 203 Substituted

7. Empirical evaluation

The aim of this section is to empirically evaluate the relativemerits of various theories, each of which consists of a specific type
of Pareto-optimal patterns. The evaluation is based on comparing the classification performances of three such Pareto-optimal
theories (prime, strong spanned, and strong prime), made on several real life data sets which are widely used in the machine
learning literature. As a benchmark, we also evaluate the performance of the “standard implementation” of LAD (as described
in [6]) on the same datasets.
Note that—although the uses of patterns in LAD are not confined to classification (see[6])—classification performance is

used here in the empirical evaluation of the relative merits of various types of Pareto-optimal patterns because of the public
availability of standard classification datasets.
Seven datasets are used in our experiments, six taken from the Irvine repository (see[2]), and one (“Oil”) provided by the

Chevron Corporation (see description in[6]). The key parameters concerning these datasets are presented inTable 7. This table
also indicates the number of observations which have some missing attribute values and which have therefore been removed
from the datasets in our experiments. In the special case of “Congressional voting”, the number of observations with missing
attribute values is so large that, instead of removing them from consideration, we have simply substituted the missing Boolean
values with the majority value for the corresponding class.
In order to be able to apply the Boolean methods of this paper to numerical data, we “binarize” the datasets, i.e. replace the

numerical attributes by one or more binary attributes, which indicate whether the value of the corresponding numerical attribute
is above or below certain thresholds; the binarization procedure, including the determination of the thresholds, is described
in [6].
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For the sakeof comparability, thePareto-optimal theories used in the comparisonsare all produced starting from the same initial
theory, by applying to it the three transformations described in Section 4. As mentioned in Section 4.4, a most straightforward
way of obtaining the initial theory is to rewrite the given pdBf(T , F ) as the theory consisting of all its minterms. By applying
the three transformations described in Section 4 to this minterm-generated theory, we obtain Pareto-optimal theories consisting
either of prime patterns, or of strong spanned patterns, or of strong prime patterns. The reason for choosing the minterm theory
as the starting point is its ready availability and the fact that it is not biased towards any of the types of Pareto-optimality
considered here. Note that the Pareto-optimal theories obtained in this way are not necessarily the best performing ones within
their categories. However, this is not a hindrance, since our objective is only to evaluate therelativemerits of the above-mentioned
three main concepts of Pareto-optimality. Our experimental evaluation is not aimed at producing an LAD algorithm with the
best possible performance, but is designed so as to make the results truly comparable by guaranteeing that the only difference
between the three theories is the type of the Pareto-optimal patterns used.
Conforming to the implementationof LAD[6], the classificationprocess is symmetricwith respect to bothpositiveandnegative

observations, and consists of the following two stages. First, for each type of Pareto-optimality we follow the procedure described
above to construct a positive and a negative Pareto-optimal theory. Second, the positive and negative patterns obtained in this
way are combined into a “discriminant” (a pseudo-Boolean polynomial) using as positive and negative weights their respective
coverages (separately normalized for the positive and the negative patterns; see[6]). Those new observations are classified as
positive or negative according to the sign of this discriminant. New observations for which the value of the discriminant is 0 are
not classified.
The data sets are randomly partitioned into two parts of equal sizes. A theory is derived using one of these parts as training

set, and its performance is then evaluated on the other part (testing set); afterwards the roles of the training and testing sets are
reversed, and the experiment is repeated, thus completing a 2-fold cross-validation. For each data set, the average performance
(along with the standard deviation) on 25 such random partitions is reported inTable 8. The classification performance of the
theories on the testing sets is evaluated using the following parameters:

• the percentages of those positive and negative observations which are correctly classified;
• the percentage of those positive (negative) observations which are misclassified as negative (positive);
• the percentages of those positive and negative observations which are not classified (these appear in the tables in the columns
marked “?”).

The aggregate measure of classification inaccuracy can take into account either the number of errors alone, or both the number
of errors and the number of unclassified observations, or some combination of these points of view. Letm be the percentage
of misclassified observations, andu be the percentage of unclassified observations, and let us define the aggregate “cost” of
classification inaccuracy as

c = m + 
u,

where the parameter
 ∈ [0,1] represents the relative weight of unclassified observations. The values ofc in our experiments for
three values of
 (0, 0.5, 1) are presented inTable 91 andFigs. 1,2,3. While we report the results of the experiments for all the
three values of
, themost realistic estimate of the cost of classification inaccuracy is given by
=0.5. Indeed, the estimates given
by 
 = 0 impose no penalty for a theory which would never give an answer, while the estimates given by
 = 1 overpenalize the
decision of not providing an answer due to high uncertainty. In other words, the estimate for
 = 0 assumes that “no answer” is
alwaysthe correct answer, while the estimate for
=1 assumes that “no answer” isneverthe correct answer. On the other hand,
the estimate for
 = 0.5 coincides with the expected error rate of a procedure which accepts the answer of a theory whenever it
is given, and in case of “no answer”, selects the answer by flipping a fair coin.
Finally, inTable 10we present the results of pairwise comparisons of classification inaccuracies of the four types of theories

discussed in this section. The average differences between the classification inaccuracies of the compared theories are reported
in the columns�c for each of the three values of
. In the columnsSignif.we report the critical probability values given by the
t-test, and indicate by * those differences which are significant at the level of 99.9%.
The results presented above show that the classification performance of Pareto-optimal theories is roughly comparable to

that of LAD, which is known to be a competitive classification method (see[6]). It is not entirely surprising that in most
cases LAD does statistically outperform the other theories (although by a slim margin), since the LAD theory results from an
extensive pattern enumeration procedure, while the Pareto-optimal theories used here are constructed in a simplistic greedy
way. Since these Pareto-optimal theories do exhibit reasonable performance, their pairwise comparison is justified, and can be

1The slight difference in the LAD performance reported here and in[6] is due to the fact that in this paper (1) observations with missing
attribute values were removed from the datasets, and (2) only 100%-homogeneous patterns were used.
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Table 8
Classification accuracy

Observ. Classif. Credit Breast cancer Housing Diabetes Heart Oil Voting

Mean S.D. Mean S.D. Mean S.D. Mean S.D. Mean S.D. Mean S.D. Mean S.D.

LAD + Correct 87.4 3.4 95.2 2.6 87.1 3.4 64.3 5.5 80.3 6.7 92.7 1.9 96.2 2.6
+ Wrong 11.3 2.9 3.9 2.1 12.0 3.2 21.3 5.2 17.5 5.7 3.9 1.1 3.2 2.1
+ ? 1.4 1.5 0.9 1.2 0.9 1.1 14.4 5.7 2.2 2.5 3.4 1.6 0.5 1.2
− Correct 86.6 2.9 97.3 0.9 84.3 4.5 72.0 4.9 81.5 5.8 90.5 2.2 95.0 2.4
− Wrong 12.0 2.7 2.6 0.8 14.1 4.0 18.0 2.9 16.5 5.6 5.8 1.5 4.1 1.5
− ? 1.3 1.2 0.1 0.3 1.6 1.4 10.0 4.9 2.0 2.3 3.7 1.6 0.9 2.3
All Correct 87.0 2.1 96.5 1.0 85.7 2.4 69.3 3.7 80.8 4.2 91.7 1.2 95.5 2.1
All Wrong 11.7 1.7 3.1 0.8 13.1 2.3 19.2 2.5 17.1 3.5 4.8 0.8 3.8 1.0
All ? 1.3 1.1 0.4 0.5 1.3 1.0 11.5 5.0 2.1 1.9 3.5 1.3 0.8 1.8

Strong + Correct 81.6 4.3 91.5 3.0 82.1 4.4 50.0 5.6 73.4 8.1 92.4 1.9 94.1 2.8
spanned + Wrong 10.6 3.0 4.1 2.2 12.6 3.7 27.6 4.9 18.9 6.1 4.7 1.2 3.9 2.4

+ ? 7.8 3.0 4.3 2.4 5.3 2.3 22.4 5.6 7.6 4.5 2.9 1.5 2.0 1.8
− Correct 82.8 3.3 96.7 1.1 83.4 4.1 73.6 3.9 78.4 5.4 89.5 2.2 95.9 1.7
− Wrong 11.8 2.5 2.5 1.0 11.3 3.7 18.2 3.1 14.5 5.5 5.9 1.6 3.1 1.3
− ? 5.4 2.1 0.8 0.7 5.4 2.3 8.2 2.4 7.1 3.7 4.6 1.9 1.0 1.3
All Correct 82.2 2.3 94.9 1.1 82.7 1.9 65.4 3.0 76.0 3.3 91.0 1.2 95.2 1.2
All Wrong 11.3 1.5 3.1 0.9 12.0 2.0 21.5 2.0 16.6 3.0 5.2 0.8 3.4 1.0
All ? 6.5 1.8 2.1 1.0 5.3 1.7 13.2 3.0 7.4 3.0 3.7 1.3 1.4 1.1

Strong + Correct 83.6 4.0 91.5 3.3 83.3 3.8 56.4 5.2 75.5 7.2 92.8 1.8 95.1 2.5
prime + Wrong 11.3 3.2 5.8 2.7 14.2 3.5 30.1 5.1 19.4 6.4 4.7 1.2 3.7 2.3

+ ? 5.1 2.2 2.7 1.8 2.4 1.3 13.5 4.3 5.1 3.4 2.5 1.4 1.2 1.4
− Correct 84.0 3.0 97.4 1.0 85.2 3.7 75.2 3.6 79.7 5.3 89.7 2.1 95.9 1.6
− Wrong 12.3 2.6 2.3 1.0 11.7 3.5 20.2 3.3 16.3 5.4 6.2 1.5 3.5 1.3
− ? 3.7 1.4 0.3 0.4 3.1 1.9 4.5 1.9 4.0 2.4 4.0 1.8 0.6 0.8
All Correct 83.8 2.1 95.3 1.1 84.2 1.6 68.6 2.7 77.7 3.0 91.4 1.2 95.6 1.1
All Wrong 11.8 1.5 3.5 1.0 13.0 1.8 23.7 2.2 17.8 3.0 5.4 0.8 3.6 0.9
All ? 4.4 1.4 1.1 0.7 2.8 1.3 7.7 2.3 4.5 2.3 3.2 1.2 0.9 0.8

Prime + Correct 73.2 5.8 89.7 3.7 74.0 4.9 13.2 6.5 70.5 6.4 74.5 5.8 91.8 4.5
+ Wrong 12.7 3.4 5.0 2.7 9.6 3.5 10.6 4.7 21.1 5.7 3.7 1.0 6.3 3.7
+ ? 14.1 5.2 5.3 2.6 16.4 5.4 76.2 7.9 8.4 4.6 21.8 5.7 1.9 2.4
− Correct 78.6 4.5 94.2 1.6 65.9 7.1 41.3 5.7 73.1 8.4 79.6 4.1 93.7 2.4
− Wrong 7.3 2.4 3.5 1.4 9.6 3.9 5.8 3.1 14.7 5.9 3.8 1.6 5.5 2.1
− ? 14.1 4.5 2.3 1.4 24.5 7.5 52.9 6.6 12.1 6.9 16.6 4.0 0.9 0.9
All Correct 76.1 3.4 92.6 1.5 69.8 4.4 31.4 4.3 71.8 3.9 76.8 3.5 92.9 2.0
All Wrong 9.8 1.7 4.0 1.3 9.7 2.4 7.5 2.6 17.7 3.3 3.7 1.0 5.8 1.8
All ? 14.1 4.0 3.4 1.5 20.5 5.8 61.1 6.6 10.5 4.7 19.4 3.9 1.3 1.1
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Table 9
Cost of classification inaccuracy


 Credit Breast cancer Housing Diabetes Heart Oil Voting

Mean S.D. Mean S.D. Mean S.D. Mean S.D. Mean S.D. Mean S.D. Mean S.D.

LAD 0 11.7 1.7 3.1 0.8 13.1 2.3 19.2 2.5 17.1 3.5 4.8 0.8 3.8 1.0
0.5 12.4 1.8 3.3 0.8 13.7 2.3 24.9 1.9 18.1 3.7 6.5 0.8 4.1 1.4
1 13.0 2.1 3.5 1.0 14.3 2.4 30.7 3.7 19.2 4.2 8.3 1.2 4.5 2.1

Strong 0 11.3 1.5 3.1 0.9 12.0 2.0 21.5 2.0 16.6 3.0 5.2 0.8 3.4 1.0
spanned 0.5 14.5 1.7 4.1 0.8 14.7 1.8 28.1 2.1 20.3 2.8 7.1 0.8 4.1 0.9

1 17.8 2.3 5.1 1.1 17.3 1.9 34.6 3.0 24.0 3.3 9.0 1.2 4.8 1.2

Strong 0 11.8 1.5 3.5 1.0 13.0 1.8 23.7 2.2 17.8 3.0 5.4 0.8 3.6 0.9
prime 0.5 14.0 1.7 4.1 1.0 14.4 1.6 27.5 2.2 20.1 2.8 7.0 0.8 4.0 0.9

1 16.2 2.1 4.7 1.1 15.8 1.6 31.4 2.7 22.3 3.0 8.6 1.2 4.4 1.1

Prime 0 9.8 1.7 4.0 1.3 9.7 2.4 7.5 2.6 17.7 3.3 3.7 1.0 5.8 1.8
0.5 16.8 1.8 5.7 1.2 19.9 2.0 38.0 1.4 23.0 2.7 13.5 1.7 6.4 1.8
1 23.9 3.4 7.4 1.5 30.2 4.4 68.5 4.3 28.2 3.9 23.2 3.5 7.1 2.0
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Fig. 1. Cost of classification inaccuracy for
 = 0.

Fig. 2. Cost of classification inaccuracy for
 = 0.5.

a basis for meaningful conclusions about the relative merits of various types of Pareto-optimality. In view of the discussion
above, we shall derive our conclusions based primarily on the results corresponding to
 = 0.5. The main conclusions are the
following:

• The simplicity preference does not seem to lead to a good performance.Indeed, in the above results, the classification accuracy
of the minterm-generated prime theories is statistically worse than that of the other three types of theories.

• The evidential preference in itself seems to lead to a good performance.Indeed, in all cases the best performing Pareto-optimal
theory is one of the two strong theories. Moreover, although the preferences� |� and� |� are obtained by lexicographically
refining the evidential preference� in two oppositeways, inmost cases the corresponding (minterm-generated) strong spanned
and strong prime theories have statistically insignificant differences in overall performance.



100 P.L. Hammer et al. /Discrete Applied Mathematics 144 (2004) 79–102

Fig. 3. Cost of classification inaccuracy for
 = 1.

• The (minterm-generated) strong spanned and strong prime theories achieve a different balance in performance: the strong
spanned theories seem to reduce thenumberof errors,while thestrongprime theories seem to reduce thenumberof unclassified
observations. This conclusion is not entirely surprising in view of the conservative bias of selectivity and the aggressive bias
of simplicity.

8. Conclusions

Patterns are the main building blocks in LAD, as well as in many other methods of data analysis. This paper introduces an
axiomatic approach to comparing the value of various patterns in LAD, leading to the concept of Pareto-optimal patterns.
Prime and strong patterns are the Pareto-optimal patterns which correspond respectively to the simplicity and the evidential

preferences. Because of the wide acceptance of the simplicity preference, LAD, as well as many other data analysis techniques,
traditionally used prime patterns. While the importance of the coverage of patterns has been widely recognized in the ma-
chine learning literature, to the best of the authors knowledge, the concept of strong patterns has never been studied before.
This paper focuses on strong patterns, with a special attention to the two extreme cases of strong prime and strong spanned
patterns.
It is shown in Section 4 that an arbitrary pattern can be transformed in polynomial time to a better Pareto-optimal one according

to any one of the preferences discussed in this paper. On the other hand, generatingall Pareto-optimal patterns turns out to be
intractable, and it is shown in Section 5 that even the set of strong spanned patterns, which aredistinct (maximally specific)
representatives of the classes of evidentially equivalent strong patterns, can have exponential cardinality. The links established
in Section 5 between the generation of all strong spanned patterns and the dualization of a positive DNF indicate the intrinsic
computational difficulty of the former problem (even if the computational complexity is evaluated in terms of both the input and
the output lengths). In Section 6, the Pareto-optimal patterns studied in this paper are characterized as the solutions of certain
Boolean equations using decision variables associated to the attributes of the data set.
The computational evaluation of the various types of Pareto-optimal patterns described in Section 7 was carried out on

several real life data sets (mostly taken from the Irvine repository). The results seem to indicate that in itself the simplicity
preference does not necessarily lead to a good performance, while the evidential preference does. Moreover, the refinement
of the evidential preference with respect tosimplicitywill bias the Pareto-optimal theories in favor of reducing the number of
unclassified observations. On the other hand, the refinement of the evidential preference with respect toselectivitywill bias the
Pareto-optimal theories in favor of reducing the number oferrors.
To summarize, the use of strong patterns leads to a superior performance, and the use of strong spanned or strong prime

patterns reduces the number of errors or unclassified observations, respectively.



P.L. Hammer et al. /Discrete Applied Mathematics 144 (2004) 79–102 101

Table 10
Pairwise cost comparison of theories


 = 0 
 = 0.5 
 = 1

Dataset Theories compared � I Sign. � I Sign. � I Sign.

Credit LAD–Strong spanned 0.42 0.0247∗ −2.16 0.0000∗ −4.75 0.0000∗
LAD–Strong prime −0.14 0.4814 −1.65 0.0000∗ −3.16 0.0000∗
LAD–Prime 1.93 0.0000∗ −4.46 0.0000∗ −10.85 0.0000∗
Strong spanned–Strong prime −0.57 0.0000∗ 0.51 0.0000∗ 1.59 0.0000∗
Strong spanned–Prime 1.51 0.0000∗ −2.30 0.0000∗ −6.10 0.0000∗
Strong prime–Prime 2.07 0.0000∗ −2.81 0.0000∗ −7.69 0.0000∗

Breast cancer LAD–Strong spanned −0.01 0.8999 −0.85 0.0000∗ −1.68 0.0000∗
LAD–Strong prime −0.45 0.0005∗ −0.83 0.0000∗ −1.21 0.0000∗
LAD–Prime −0.95 0.0000∗ −2.44 0.0000∗ −3.94 0.0000∗
Strong spanned–Strong prime −0.43 0.0000∗ 0.02 0.7922 0.47 0.0000∗
Strong spanned–Prime −0.93 0.0000∗ −1.60 0.0000∗ −2.26 0.0000∗
Strong prime–Prime −0.50 0.0048∗ −1.62 0.0000∗ −2.73 0.0000∗

Housing LAD–Strong spanned 1.07 0.0008∗ −0.96 0.0016∗ −2.99 0.0000∗
LAD–Strong prime 0.07 0.8102 −0.69 0.0178∗ −1.45 0.0000∗
LAD–Prime 3.41 0.0000∗ −6.20 0.0000∗ −15.82 0.0000∗
Strong spanned–Strong prime −1.00 0.0000∗ 0.27 0.0880 1.54 0.0000∗
Strong spanned–Prime 2.34 0.0000∗ −5.24 0.0000∗ −12.83 0.0000∗
Strong prime–Prime 3.35 0.0000∗ −5.51 0.0000∗ −14.37 0.0000∗

Diabetes LAD–Strong spanned −2.32 0.0000∗ −3.13 0.0000∗ −3.94 0.0000∗
LAD–Strong prime −4.56 0.0000∗ −2.62 0.0000∗ −0.68 0.1742
LAD–Prime 11.67 0.0000∗ −13.09 0.0000∗ −37.85 0.0000∗
Strongspanned–Strong prime −2.24 0.0000∗ 0.51 0.0005∗ 3.26 0.0000∗
Strong spanned–Prime 13.99 0.0000∗ −9.96 0.0000∗ −33.91 0.0000∗
Strong prime–Prime 16.24 0.0000∗ −10.47 0.0000∗ −37.17 0.0000∗

Heart LAD–Strong spanned 0.49 0.2499 −2.16 0.0000∗ −4.82 0.0000∗
LAD–Strong prime −0.72 0.0706 −1.95 0.0000∗ −3.19 0.0000∗
LAD–Prime −0.61 0.2555 −4.85 0.0000∗ −9.08 0.0000∗
Strong spanned–Strong prime −1.21 0.0000∗ 0.21 0.2512 1.63 0.0000∗
Strong spanned–Prime −1.10 0.0400∗ −2.68 0.0000∗ −4.27 0.0000∗
Strong prime–Prime 0.11 0.8243 −2.89 0.0000∗ −5.90 0.0000∗

Oil LAD–Strong spanned −0.45 0.0000∗ −0.55 0.0000∗ −0.66 0.0002∗
LAD–Strong prime −0.63 0.0000∗ −0.49 0.0000∗ −0.35 0.0347
LAD–Prime 1.06 0.0000∗ −6.91 0.0000∗ −14.88 0.0000∗
Strong spanned–Strong prime −0.18 0.0000∗ 0.07 0.0732 0.31 0.0000∗
Strong spanned–Prime 1.51 0.0000∗ −6.35 0.0000∗ −14.22 0.0000∗
Strong prime–Prime 1.69 0.0000∗ −6.42 0.0000∗ −14.53 0.0000∗

Voting LAD–Strong spanned 0.34 0.0288∗ 0.03 0.8638 −0.27 0.3885
LAD–Strong prime 0.17 0.2361 0.13 0.4808 0.09 0.7540
LAD–Prime −2.05 0.0000∗ −2.30 0.0000∗ −2.56 0.0000∗
Strong spanned–Strong prime −0.17 0.0394∗ 0.10 0.2756 0.37 0.0049∗
Strong spanned–Prime −2.39 0.0000∗ −2.34 0.0000∗ −2.29 0.0000∗
Strong prime–Prime −2.21 0.0000∗ −2.43 0.0000∗ −2.66 0.0000∗
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