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Abstract

Patterns are the key building blocks in the logical analysis of data (LAD). It has been observed in empirical studies and practical
applications that some patterns are more “suitable” than others for use in LAD. In this paper, we model various such suitability
criteria as partial preorders defined on the set of patterns. We introduce three such preferences, and describe patterns which ar
Pareto-optimal with respect to any one of them, or to certain combinations of them. We develop polynomial time algorithms for
recognizing Pareto-optimal patterns, as well as for transforming an arbitrary pattern to a better Pareto-optimal one with respect to
any one of the considered criteria, or their combinations. We obtain analytical representations characterizing some of the sets of
Pareto-optimal patterns, and investigate the computational complexity of generating all Pareto-optimal patterns. The empirical
evaluation of the relative merits of various types of Pareto-optimality is carried out by comparing the classification accuracy
of Pareto-optimal theories on several real life data sets. This evaluation indicates the advantages of “strong patterns”, i.e. those
patterns which are Pareto-optimal with respect to the “evidential preference” introduced in this paper.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

This paper is devoted to a frequently encountered problem of data analysis, in which a set of “observations” is given, with each
of the observations being represented as a vector of binary attribute values. The observations in the data set are of two types, anc
the type of each observation (e.g., positive or negative) is known. Typical data analysis problems related to such data sets include
classification (i.e., identification of the type of a new observation not included in the data set), determination of characteristic
properties of observations of the same type, analysis of the role of various attributes, etc.

The logical analysis of data (LAO22,13,4-8,21,19k a methodology addressing the above kinds of problems. The mathe-
matical foundation of LAD is in discrete mathematics, with a special emphasis on the theory of Boolean functions.

Patterns are the key building blocks in LAR2,13], as well as in many other rule induction algorithms (such as C4.5rules
[24], CN2[10,9], AQ17-HCI [27], RISE[14], RIPPER[11] and SLIPPER12]). Since a typical data set has an exceedingly
large number of patterns, all these algorithms are limited to the consideration of small subsets of patterns. In most algorithms,
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the choice of such a subset of patterns is not explicitly analyzed, in spite of the fact that it has been observed in empirical studies
and practical applications that some patterns are more “suitable” than others for use in data analysis. The goal of this paper is to
model various such suitability criteria as partial preorders defined on the set of patterns.

After providing some basic definitions and terminology in Section 2, we introduce in the following section the three basic
preferences of “simplicity”, “selectivity”, and “evidence”, as well as their combinations obtained by using intersections or
refinements. We describe then patterns which are Pareto-optimal with respect to the introduced preferences. In Section 4, we
develop polynomial time algorithms which transform an arbitrary pattern to a “better” Pareto-optimal one with respect to any
one of the considered criteria. Section 5 is devoted to the investigation of the computational complexity of generating all Pareto-
optimal patterns. In Section 6, we obtain analytical characterizations of various types of Pareto-optimal patterns as the solutions
of certain associated Boolean equations.

The empirical evaluation of the relative merits of various types of Pareto-optimality is carried out in Section 7 by comparing
the classification accuracy of Pareto-optimal theories on several real life data sets. This evaluation indicates the advantages of
“strong” patterns (i.e., those patterns which are Pareto-optimal with respect to the evidential preference introduced in this paper),
and ways of reducing the number of errors or unclassified observations through the use of those strong patterns which are also
“spanned” or “prime”, respectively (i.e., those patterns which are Pareto-optimal with respect to the refinement of the evidential
preference with respect to either simplicity or selectivity).

2. Notation and terminology

A Boolean functionf (x1, x2, ..., x,) is a mapping0, 1} — {0, 1}. While the values of a Boolean function are defined in
every O-1n-vector, in LAD these values are usually known only in very few of ther®vEectors. Apartially defined Boolean
function(pdBf) is given by two disjoint sets afdimensional 0-1 vectors, and is hereafter denote@by’), whereT C {0, 1}
is the set of “true” (or “positive”) vectors, ankl C {0, 1}" is the set of “false” (or “negative”) vectors. In line with the generally
accepted terminology in many practical studies, the vectod"jrF) will also be calledobservationsA Boolean function
f(x1, x2, ..., x,) will be called anextensiorof a pdBf(7, F) iff

1 if XeT,
f(X)—{o if X e F.

A literal is either a binary variable; or its negationy;, notationxl?‘ refers tox; if « = 1, and tox; if « = 0. A termis a
conjunction of distinct literals which does not contain both a variable and its negation. A term contdlitengls will be called
a minterm Note that minterms are in one-to-one correspondence with Boolean vectors. We shall say thaf aoersan
observatiorXiff C(X) = 1. The set of all Boolean vectoks not necessarily it U F, such thatC (X) = 1, will be denoted by
S(C). Clearly,S(C) is a subcube of0, 1}".

LAD is built around two central concepts: (positive or negative) patterns and (positive or negative) theories. Following the
terminology of[22,13], a termC is called gpositive (negative) patterof a pdBf(T, F) if

1. C(X)=0foreveryX € F (X €T),and
2. C(X)=1foratleastone vectot € T (X € F).

Notice that in the special case of Boolean functions, sifice F = {0, 1}, condition 1 implies condition 2. In that case, a
term which satisfies condition 1 is callegasitive (negative) implicardf that Boolean function. Clearly, in the case of Boolean
functions the concept of patterns reduces to that of implicants. Recall phisme implicantof a Boolean function is defined as
an implicant having the property that the removal of any of its literals results in a term which is not an implicant.

Example 2.1. Let us consider the pdBf given ifable 1 In this tablea, b, ¢, d, ande are positive observations, apdq, r, s,

andt are negative observations. It can be checked, for example;ithats is a positive pattern and x»x3 is a negative pattern.

It can also be seen thaix, is neither a positive nor a negative pattern, since it covers both positive and negative observations.
On the other hand;1xox3 is neither a positive nor a negative pattern, since it does not cover any of the given observaiions.

Terms can be geometrically interpreted as subcubes ofi-tfimensional cubg0, 1}". Then positive (negative) patterns
correspond to those subcubes that intersect th€& gespectivelyF) but do not intersect the sBt(respectivelyT). Consider
again Example 2.1. The ter@=Xx1x3x4 iS a positive pattern. The set of those points wi@takes the value 1, or equivalently,
wherex; = 0,x3 =0, x4 =1, is the subcub® = {(0101J, (00013, (01010, (00010Q}. Notice thatQ N F = . Whenever it
does not cause a confusion, we may refer to terms and corresponding subcubes interchangeably.
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Table 1
A pdBf (T, F)
X1 X2 X3 x4 X5
a 1 0 1 1 1
b 0 0 0 1 1
T c 1 1 1 1 1
d 1 1 1 0 1
e 1 1 1 0 0
p 1 0 0 1 0
q 0 0 1 0 1
F r 1 0 1 0 0
s 1 0 0 0 0
t 0 0 1 0 0

Since the properties of positive and negative patterns are completely symmetric, without loss of generality we will focus in
this paper on positive patterns. We will frequently refer to positive patterns simply as patterns.

In LAD, a (positive) theory (or simply theoryy™ of a pdBf(T, F) is a collection of pattern®y, ..., P, with the property
that for everyX e T there exists &; € 7 such thatP; (X) =1. Atheory.7 is associated with the Boolean function represented
by the disjunction of terms (DNH/f:lP;. This DNF can be used to predict whether a Boolean vector nbtunF is true
or false. Obviously, every theory is an extensior(Bf F). Note that although every Boolean function can be represented by a
DNF, not every extension is a theory in the sense that there may exist an extension such that any DNF representing it includes
terms which are not patterns (i.e., do not cover any vectors$.in

In Example 2.17 = {x1x3x4, Xx2X4, x4x5} IS a theory, since its patterns cover all the vectorg:inr1x3x4 covers the point
b, xox4 coversd ande, while x4x5 coversa, b, andc. This theory defines the extensiofix3x4 v xox4 V x4x5 of the pdBf given
in Table 1

3. Preferences and Pareto-optimal patterns

In order to model various pattern suitability criteria as partial preorders, we shall need some definitions. First, we recall that
a binary relatiorp defined on a finite seis called gpartial preorderif it is

(i) reflexivei.e.,xpx holds for anyx € S, and
(i) transitive i.e., for anyx, y, z € S, if both xpy andypz hold, thenx pz also holds.

A partial preorder is called partial orderif it is also

(iii) antisymmetrici.e., for anyx, y € S, if xpy holds, thenypx cannot hold.

A partial preordep’ is called arefinemenbf a partial preordep if for any x, y € S the relationxpy implies the relationcp’y.

Definition 3.1. Given a partial preordeg on the set of patterns, a patté?will be calledPareto-optimalwith respect to=, if
there is no distinct patterR” such thatP’:= P.

Unfortunately, the concept of suitability does not have a unique definition. Among the many reasonable criteria of suitability,
we shall briefly discuss below the three (simplicity, selectivity, evidence) that look most important to us.

Since the earliest studies on LAR2,13], it was realized thagimplicitywas an important preference criterion in comparing
patterns. The criterion of simplicity, also known as #rnciple of Occam'’s Razgis a widely accepted tenet in the sciences.
To formally define a simplicity-based partial preorder of patterns, let us denote ) tti# set of literals in a terr@.

Definition 3.2 (Simplicity preference A patternP; is simplicity-wise preferredo a patternP, (denoted byP; =, P») if and
only if Lit (P1) C Lit(Pp).
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In [22,13] a patterrP was calledprimeif the removal of any literal appearing in LIRj results in a ternC which is not a
pattern. It is clear that a pattern is Pareto-optimal with respect to simplicity if and only if it is prime.

Example 3.3. It can be seen that the pdBf givenTable 1has among its prime patterns the following terms:
X2, X1X3, X1X4, X1X5, X3X4, X3X5, X4X5.

On the other hand, the patterfixo provides an example of a non-prime pattern.

It is easy to make an argument in favor of the simplicity preference. The simplest argument for simplicity simply states that
this criterion corresponds to the way in which human cognition works. It is natural to expect that the fewer variables a pattern
involves, the easier it is to comprehend its meaning. While this is a popular point of view, it is not universally accepted (for
a discussion, s€fd5,16]). Another argument used by some authors in favor of simplicity states that simplicity leads to higher
accuracy (see e.g., the computational learning theory model of Occam’s razor, which is prop@gdTinis point of view
is again not universally accepted. Moreover, various theoretical and empirical arguments were made, stating that simplicity in
itself may even lead to lower accuracy (see ¢1h,16,25). In particular, it was shown if23] that a decrease in the simplicity
of patterns can result in higher accuracy.

In the special case of LAD, the simplicity preference favors short patterns. While an unknown point covered by a short pattern
is, of course, not necessarily a positive one, a point whictotsovered by any of the short patterns is quite likely a negative
one. Therefore, in our view, the use of the simplicity preference in LAD tends to reduce the number of “false negatives”, but
does not offein itself safeguards against “false positives”.

A natural way of reducing the number of false positives is to favor more selective patterns. This can be achieved by reducing
the size of the subcub®( P) of a patterrP.

Definition 3.4 (Selectivity preferenge A patternPy is selectivity-wise preferretb a patternP, (denoted byPs 3= > Pp) if and
only if S(P1) S S(Py).

Two immediate remarks are in order. First, it is obvious thgt s P> if and only if Py’=4P1. Second, it is equally obvious
that the patterns which are Pareto-optimal with respect to selectivity are exactly the minterms corresponding to the positive
observations. Therefore, the exclusive use of patterns which are Pareto-optimal with respect to selectivity would allow LAD to
classify as positive exclusively the originally given set of positive points. Clearly, a theory based on such patterns would achieve
the goal of avoiding false positives at the expense of declaring every unknown point negative. It will be seen below that in spite of
this seemingly unproductive role of the selectivity preference, it can become extremely useful in combination with other criteria.

While previous theoretical LAD studies employed exclusively the simplicity preference, the implementation §81 &bk
into account another very natural suitability criterion. This criterion is related to the so-caledageCov(P) of a patternP,
i.e. the set of vectorX e T for which P(X) = 1. Note that the second condition in the definition of a pattern guarantees that for
every patterrP the coverage Ca\P) # . The effect offCov(P)| on the accuracy of rule induction algorithms was investigated
within the framework of the so-called “problem of small disjuncts” (d283,26).

While the relatiorfCov(P1)| > |Cov(P»)| could be interpreted as signifying that the pattBgris more representative than the
patternPs, in fact, it only takes into account tmemberof elements in the two sets Ca®%() and Cov({P,). However, replacing the
above cardinality relation between these two sets with the stronger set inclusion relation allows to take into account the individual
observations covered by the two patterns. The observations iPCoa( be viewed as the “body of evidence” supporting the
patternP. This point of view leads to the following definition.

Definition 3.5 (Evidential preference A patternP; is evidentially preferredo a patternP, (denoted byP, = P) if and only
if Cov(P1) 2 Cov(Pp).

Evidentially Pareto-optimal patterns will be callstiong Clearly, a patterd? is strong if and only if there is no patted’
such thatCov(P’) D Cov(P).

Example 3.6. It can be seen that for the pdBf givenTable ] the patternczx4 is not strong; indeed; ov(x4xs) = {a, b, ¢} D
{a, ¢} = Cov(x3xy). It will be seen later that the following terms are among the strong patterns of this pdBf:

X2, X1X2, X2X3, X1X2X3, X1X5, X1X3X5, X4X5.

For any preference, the simultaneous satisfaction of the relatiaghs= Po and P> = P1 will be denoted byP; ~ P». Also,
the simultaneous satisfaction of the relatighs= P, and P> P1 will be denoted byP; > Ps.
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It is easy to notice that the three preferences defined above are not independent of each other. First of all, as has been
remarked, the simplicity and the selectivity preferences are exactly the opposite of each other. More interestingly, the following
two implications can be easily seen to hold:

P1i=gPp = P1=¢ P2, 1)
Pi=y Py = Pyi=,;P1. 2

In order to define the most suitable types of patterns, we shall consider below combinations of the preferences introduced
above. The two most natural ways of combining a preferenagth a preference is to consider their intersectianA p, or
their lexicographic refinement| p, as defined below.

Definition 3.7. Given preferences andp on the set of patterns, a pattePq is preferred to a patter®, with respect to the
intersectiont A p (denoted byPy =, P2) if and only if P1>=7 P> and Py Po.

Definition 3.8. Given preferences andp on the set of patterns, a pattePq is preferred to a patter®, with respect to the
lexicographic refinement | p (denoted byP13=r | , P2) if and only if P17 P or (P1~z P2 and Py i=), P2).

Itis easy to notice that while the preferenaes p andp A = are identical, the preference$p andp | = are usually different.

Since each of the introduced preferences expresses a different aspect of the suitability of patterns, it seems reasonable tc
analyze various combinations of them. In spite of the apparent abundance of combinations of the discussed preferences that car
be formally specified by using intersections and lexicographic refinements, it will be seen below that in fact only three of these
combinations are meaningful.

First of all, because of their opposite nature, any combination of the simplicity and selectivity preferences using either
intersection or lexicographic refinement makes no sense.

Second, since the evidential preferende a refinement of the simplicity preferenedgas stated by the condition (1)), the
intersections A ¢ is identical too.

Third, for any preference which is a partial order, and for any preferencehe lexicographic refinemenmnt| p is identical
to . Note that each of the relationy ~, P, and P1~y P» implies thatP; = P>, meaning that the preorders of simplicity and
selectivity are actually partial orders. Therefore, the lexicographic refinemé¢nend | ¢ coincide withe andX, respectively.

On the other hand, the evidential preference is not a partial order (since there cafistixist patternsP, and P, such that
Py~ P>), and therefore the lexicographic refinements ande | X introduce new preferences.

In conclusion, the only new preferences that can be obtained by applying intersection and lexicographic refinéfnent are
¢| o, ande| 2. We shall briefly examine these three preferences below. As far as terminology is concerned, we shall call the
patterns which are Pareto-optimal with respectta ¢ spannedlt should be remarked that, as can be deduced from Theorem
4.5 below, the concept of spanned patterns is essentially equivalent to that of “maximally specific disjuncts” introf28jed in
(the only difference being the absence of any restrictions on the coverage of spanned patterns). It will be seen below that the
patterns which are Pareto-optimal with respect tte or ¢| X do not require new names, since they can be described using
already introduced terms.

Example 3.9. It can be seen that for the pdBf given Table 1 the patternvzx4 is not spanned; indeed, CoM x3x4x5) =
{a, c} = Cov(x3xy), and clearly, Litx1x3xax5) D Lit (x3x4). It will be seen later that;x3x4xs is spanned. Some of the other
spanned patterns of this pdBf are

X1X2X3, X1X3X5, X4X5, X1X2X3X4, X1X2X3X4X5.

Note that for any two preferencesand p, the Pareto-optimal patterns with respect to the lexicographic refinemjent
are also Pareto-optimal with respectitoTherefore, the Pareto-optimal patterns with respeef toare strong. Similarly, the
Pareto-optimal patterns with respectta> are also strong.

Theorem 3.10. A pattern is Pareto-optimal with respect#dgo if and only if it is both strong and prime
Proof. Let P be a Pareto-optimal pattern with respectt@. ThenP is strong by the above remark. B is not prime, then

there must exist a patter®’ such that LitP’) c Lit(P). It follows then that Co¢P’) D Cow(P), and thereforeP’>;| 5 P,
contradicting the Pareto-optimality &f
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Table 2

Types of Pareto-optimality

Preference Pareto-optimal pattern
4 Prime

P Minterm

& Strong

PV Spanned

el X Strong spanned
elo Strong prime

Table 3

Patterns of the pdBf given in Table 1

Pattern properties Pattern examples
Prime Strong Spanned

No No No X1X2X3, XpX3X4, X3X4X5
Yes No No X1X3, X1X4, X3X4, X3X5
No Yes No X1X2, X2X3

No No Yes X1X2X3X 4, X1X2X3X4X5
Yes Yes No X2, X1X5

No Yes Yes X1X2X3, X1X3X5

Yes Yes Yes X4X5

Conversely, leP be a strong and prime pattern. If it is not Pareto-optimal with respedtapthen there must exist a pattern
P’ such thatP’> |, P. Then eitherP’>; P (contradicting the fact tha® is strong), orP’~, P and P’ P (contradicting the
fact thatP is prime). O

Example 3.11. It follows from Examples 3.3 and 3.6 that for the pdBf giverTable 1, the following patterns are both strong
and prime:

X2, X1X5, X4X5.
Theorem 3.12. A pattern is Pareto-optimal with respect¢ if and only if it is both strong and spanned

Proof. Let P be a Pareto-optimal pattern with respectt@. ThenP is strong. IfP is not spanned, then there must exist a
patternP’ such thatP’>y . . P. Therefore,P’:=5 P and P":=, P. SinceP is strong, it follows thatP’~; P and P’>y P. This
simply states thaP’ > | > P, contradicting the Pareto-optimality Bf

Conversely, leP be a strong and spanned pattern. If it is not Pareto-optimal with respgct tthen there must exist a pattern
P’ such thatP’>, | > P. SincePis strong,P’~, P, and therefore®’ -y P, contradicting the fact tha& is spanned. O

Example 3.13. It follows from Examples 3.6 and 3.9 that for the pdBf giverTable ], the following patterns are both strong
and spanned:

X1X2X3, X1X3X5, X4X5.

Moreover, note that the pattexg.xs is not only strong and spanned, but also prime.

In conclusion, we summarize ifable 2 the properties of patterns which are Pareto-optimal with respect to the preferences
and combinations of preferences discussed above.

This paper will focus on the study of spanned, strong spanned, and strong prime patterns of ptfie 8we summarize
the examples presented above in order to highlight the existence of patterns having various combinations of properties discussed
in this section. The only combination of pattern properties, which is missing Tiadste 3 is “Prime, Not Strong, Spanned”. It
will be seen later (Theorem 4.10) that this combination is not possible, since a pattern, which is both prime and spanned, must
also be strong.
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It can be seen that in the special case of Boolean functionsTile.F = {0, 1}"), only two of the above combinations of
pattern properties are possible: “Not Prime, Not Strong, Spanned” and “Prime, Strong, Spanned”. This observation follows from
the fact that in this case every pattern is spanned, and a pattern is prime if and only if it is strong. Additionally, in this case both
the concepts of prime pattern and of strong pattern are simply reduced to that of prime implicant.

4. Pareto-optimization of patterns and theories

After having introduced several important types of preferences and the corresponding Pareto-optimal patterns in the previous
section, we shall now focus our attention on developing efficient computational procedures for transforming an arbitrary pattern
into a comparable Pareto-optimal one.

For each preference listed Table 2(with the only exception of the trivial case of selectiviB), simple, polynomial time
transformations will be developed in this section to associate to an arbitrary pattern a “better” Pareto-optimal one. Obviously,
every Pareto-optimal pattern resulting from the transformations presented below will cover a superset of the observations covered
by the original pattern.

4.1. Prime patterns

Given a termC and a pdBf(T, F), it is extremely easy to check wheth@iis a pattern of 7, F) by simply verifying on the
one hand whether there exists an observatidndavered byC, and on the other hand whether no observatidhisicovered by
C. Similarly, it is also very easy to check whether a patfeof a pdBf (T, F) is prime. Indeed, all one has to do is to examine
one by one the terms obtained frdrby eliminating one of its literals, and to verify that none of these “shortened” terms is a
pattern, i.e. that no such term covers an observatién in

Example 4.1. For the pdBf inTable 1 the termx1x3x5 is a pattern which is not prime, because the elimination of the literal
results in the termy1 x5 which is a pattern. On the other hand, the patiqry is prime because neither the “shortened” tasm
nor the other “shortened” terng is a pattern.

The procedure described above, which recognizes the primality of a pRtwé€epdBf(T, F), leads naturally to the following
procedure, which transforms an arbitrary patteno a prime patter?’:=, P, implying the followingcoverage condition

Cov(P’) D Cov(P). (3

Algorithm 1. Transformation of patterns to prime patterns

Step 1 Given a patterrP = ]'[fczlx;‘:, wherej1< --- < j, let P/ := P andi := 0.

Step 2If i =1t, then go to Step 5, otherwise ket=i + 1 and letC := P’\{x;‘;’}.

Step 3If Cis a pattern, then lep’ := C.

Step 4 Go to Step 2.

Step 5 Output P’.

It is easy to check that the running time of this algorithm {@ QLit (P)| - | F|), wheren is the number of Boolean variables
andF is the set of false points.

Clearly, the above procedure is correct, i.e. starting from an arbitrary p&térwill yield a prime patternP’ satisfying

Lit(P’) C Lit(P), 4)

i.e., such thaP’=,P.
Note that variants of Algorithm 1 can be developed so as to attemp to enZogeP’)| or to decreasgLit (P')|.

4.2. Spanned patterns

We recall that spanned patterns were defined as those patterns which are Pareto-optimal with tEspecMte shall need
below the following interesting property of the prefereiite. .

Lemma 4.2. If P, and P, are patterns of a pdBfT', F) which satisfy the relatio; =5 . . P2, thenCov(P1) = Cov(P»).
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Proof. The relationPy=3 . . P2 implies on the one hand that

Cov(P1) 2 Cov(Py), (5)
and on the other hand that

Lit (P1) 2 Lit(Pp). (6)
It follows from (6) that

Cov(Py) < Cov(Py). )

The statement of the lemma immediately follows from (5) and (71}

In order to characterize spanned patterns, let us definedheex hull[S] of a non-empty subsef C {0, 1}" as the
smallest subcube containiggThis concept is well-defined, since the intersection of any two subcubes contaisiagubcube
containingS.

Lemma 4.3. Consider a non-empty subsetC {0, 1}" and let | be the set of all those indices i for which the ith components of
all the vectorsX e S have a common valusayq; € {0, 1}. Then

[s1=]]x""

iel

Proof. Since forevery =(X1,..., X,) € Swe haveX; =u;, i.e.,X;" =1, itfollows thateveryX e S is covered by ;< x;" .
Let us assume that there exists a t&@rauch that everX e S is covered byC, butUiele"' PLit(C). This implies thatC

contains a Iiterakl“’ ¢ Uielx;x". Since everyX € S is covered byC, it follows that X; = «; for everyX € S. It follows that
t € I, contradicting the conclusion above ]

Lemma 4.4. If P is a pattern of a pdB{T, F), then
[COVU(P)]>=3 A ¢ P, (8)
and therefore

Cov([Cov(P)]) = Cov(P). 9

Proof. It follows from the definition of the convex hull that
Cov(P) € Cow([Cov(P)]). (10)
On the other hand, it follows from Lemma 4.3 that
Lit (P) C Lit ([Cow(P)]), (11)
because for everyf‘" € Lit(P) and everyX € Cov(P) we haveX; = u;.
Inclusions (10) and (11) imply (8), which in its turn implies (9) by Lemma 4.Z]
Theorem 4.5. A pattern P of a pdBi7, F) is spanned if and only if
P =[Cov(P)], (12)
or, equivalently P is a fixed point of the mapping
C — [Cov(O)].
Proof. Let us first prove the “only if” part of the statement. Lemma 4.4 states that (8) holds.Bis@ssumed to be spanned,
i.e., Pareto-optimal with respect oA &, it must hence follow that (12) holds.
Let us now prove the “if” part of the statement. Let a patterbe such that (12) holds, and let us assume by contradiction

thatP is not spanned. Then there must exist a distinct patr(i.e., Lit(P’) # Lit(P)) such that CoyP’) 2 Cov(P) and
Lit (P’) D Lit(P), in contradiction with the assumption tHais the smallest subcube containing €8y. [
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Corollary 4.6. If P is a pattern of a pdB{T, F), then
P =[Cov(P)] (13)

is a spanned pattern @f’, F) which has the same coverage as P

Proof. In view of Lemma 4.4 and Theorem 4.5, the statement follows from the following results:

[Cov(P)] = [Cou[Cov(P)])] = [Cov(P)| = P. [

Corollary 4.6 can be restated as the following computationally inexpensive procedure, which transforms an arbitrary pattern
P to the spanned pattei:= .. P (which, by Lemma 4.2, will satisfy the coverage condition (3)).

Algorithm 2. Transformation of patterns to spanned patterns

Step 1Given a patteri, let S := Cov(P).

Step 2:0utputP := [S].

It is easy to check that the running time of this algorithm i@ ©|T'|), wheren is the number of Boolean variables ahis
the set of true points.

If P and P’ are two arbitrary patterns of a pdBf, F), then the condition
Lit(P) D Lit(P")
obviously implies the condition
Cov(P) C Cov(P)).

The converse implication does not hold in general. However, as stated below, it does hold in the special cRde sgamed.

Corollary 4.7. If P is a spanned pattern of a pdBf, F) and P’ is another pattern of 7', F) such thatCov(P’) © Cov(P),
thenLit (P’) C Lit(P).

4.3. Strong patterns

By definition, a patteri® is strong if and only if there is no patte# such that
Cov(P’) D Cov(P).

A direct combinatorial characterization of strong patterns is provided by the following theorem.

Theorem 4.8. A pattern P of a pdBfT, F) is strong if and only if the terfiCov(P) U X1] is not a pattern for any point
X € T\Cov(P).

Proof. Note that the “only if” part of the statement is obvious, since if there exists a poiatZ\Cov(P) such that the term
[Cov(P) U X]is a pattern, theR is not strong, because C@¥) c Cov([Cov(P) U X]).

Let us now prove the “if” part of the statement by contradiction. Let us assumePtignot strong, and that the term
[Cov(P) U X] is not a pattern for any poir € T\Cowv(P). Then there must exist a pattePi such that

Cov(P’) D Cov(P). (14)
It follows from (14) that there exists a poidt € Cov(P’)\Cov(P), or equivalently,
Cov(P) U X' € Cov(P).
This implies
Lit ([Cov(P) U X']) D Lit([Cov(P")]) D Lit(P).

It then follows thafCov(P) U X’] is a pattern, contradicting the assumption abovél
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Theorem 4.8 leads naturally to the following procedure, which transforms an arbitrary pBtterra strong pattern
P'=cP.

Algorithm 3. Transformation of patterns to strong patterns
Step 1 Given a patteri® of a pdBf(T, F), let P’ := [Cov(P)] andK := T\Cov(P).
Step 2If K =@, then go to Step 6, otherwise [Bte K.
Step 3Let C := [Cov(P') U X], and letK := K\ X.
Step 41f Cis a pattern, then lef’ := C andK := K\Cov(P’).
Step 5Go to Step 2.
Step 6 OutputP’.
It is easy to check that the running time of this algorithm {& O|T'| - | F|), wheren is the number of Boolean variables.

Note that variants of this transformation procedure can be developed so as to attempt to|@ueargé)| or to decrease
[Lit (P)].

Remark 4.9. The outputP’ of Algorithm 3 is not only strong, but is also spanned, iR =, |z P.This patternP” may or may
not be prime. On the other hand, by applying to this pattern Algorithm 1 (described in Subsection 4.1), we obtain #pattern
which is not only prime but also strong, i.& =, | 5 P.

The above remark speaks about those patterns which are simultaneously strong and spanned, or simultaneously strong anc
prime. The only two combinations of these pattern properties which have not yet been discussed are prime-spanned and strong-
prime-spanned. As a matter of fact, these two classes coincide:

Theorem 4.10. If a pattern P of a pdB{T, F) is both prime and spannethen it is also strong

Proof. Let us prove this theorem by contradiction, and assumeRhatot strong. Then there must exist a patt@nsuch
that CoWP’) > Cov(P). SinceP is spanned, Corollary 4.7 implies that (') c Lit(P). This implies thafP is not prime,
contradicting the assumption.

4.4. Pareto-optimization of theories

Let us recall that a theory™ of a pdBf(T, F) is a collection of pattern®q, ..., P, with the property that for ever € T
there exists &; € 7 such thatX € Cov(P;). All the transformations described in this section result in patterns which satisfy
the coverage condition (3). It follows that applying any of these transformations to all the patterns of a theory will result in a
collection of patterns which again form a theory. This fact makes it possible to produce theories consisting exclusively of the
type of Pareto-optimal patterns we are interested in, e.g., strong and prime, or strong and spanned. We shall call such theories
strong prime theories and strong spanned theories respectively.

In order to contsruct a Pareto-optimal theory by the above approach, we have to start with some initial theory. Perhaps the
most straightforward way of producing an initial theory is to form the “minterm theory”, i.e., the collection of all the minterms
associated to the individual pointsTnWhile this seems to be the simplest way to produce a Pareto-optimal theory, it is far from
sure that it will produce a “best” one. In spite of that, such Pareto-optimal theories can be useful for empirically comparing the
relative merits of theories based on various types of Pareto-optimal patterns. In Section 7, we shall present the results of several
such comparisons using some real life data sets.

5. Complexity of generation of strong spanned patterns

In the previous section, we have presented efficient polynomial algorithms forr transforming a pattern into a better Pareto-
optimal one with respect to various preferences. In this section, we shall analyze the computational complexity of galherating
the Pareto-optimal patterns.

Among the types of Pareto-optimal patterns considered in this paper, the strong spanned patterns possess the most appealin:
combination of properties. An additional advantage of the strong spanned patterns is that their number does not exceed that of
any other type of Pareto-optimal patterns studied here, with the exception of the (not very interesting) case of minterms. (This
statement follows from the easily observed fact that for every strong spanned pattern there exists at least one strong prime pattern
which covers exactly the same set of true points.)
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In order to analyze the complexity of generating all strong spanned patterns, let us introduce Boolean variablegr
associated to the true poimXg, . .., X7, of the pdBf(7, F); these variables are defined by:

_[1 if Xz € Cov(P),
=10 otherwise

In order to easily distinguish between positive and negative observations, we shall denote the pdigits,of (Si1, - - -, Bin),
fork=1,...,|T|, and the points oF by y; = (y;1, ..., ), fori=1,... |F|.

Lemma 5.1. A Boolean vecto(Zs, ..., Z|7|) is the characteristic vector of a subset of the coverage set of a pattern if and
only if for every false pointy;1, ..., 7;,). [ =1, ..., |F|, there exists a coordinatg € {1, ..., n} such that the implicatiofiif
Z = 1thenfy; # y;;" holds for every true pointfyy. . ... fr,), k=1, ..., |T|.

Proof. Letus first prove the “only if” part. LetZ1, . .., Zj7|) be the characteristic vector of the coverage set of a pajeand
(11, - - -+ 71n) be afalse point. Since s a patternp (1, . . ., 7;,) = 0, and hence there must exist a coordinate{1, ..., n}

such that? = x' P'. This shows that for ever§fiy, . ... Br,) € Cov(P) we havey; =7;;.
Let us now prove the “if” part. Let

S={peT | Zx=1),

and letP = [S]. We have to prove th& is a pattern. Lef; be a false point. 1:hen, by our assumption, there exists a coordinate
j €{l,...,n} such that for every}; € S we havef;; =7;;. Therefore,P = x;/.’-’ P’,and hence?(y;) =0. O

Let us associate to a pdBT, F) the Boolean function

|[F| n |T|
tet )=\ [TV @B v 7By v ) (15)
[=1j=1k=1
which, in view of the corollary below, will be called tlwwverage functiowf (7, F).

Corollary 5.2. A Boolean vecto(Z, ..., Z|r)) is the characteristic vector of a subset of the coverage set of a pattern of a
pdBf(T, F) if and only if it is a solution of

(21, ..., 7)) =0.
Note that the coverage functiaris monotone non-decreasing.

Corollary 5.3. The strong spanned patterns of a pdBf F) are in one-to-one correspondence with the maximal false points
of its coverage function.

Lemma 5.4. The coverage functionof a pdBf(T, F) does not have any linear implicants

Proof. Let us assume by contradiction thalas a linear implicant. In this case, as can be seen from (15), there exists a false
pointy; and a true poing,; such that for every € {1, ..., n} the following condition holds:

Brj v 7)) B v o) =1

However, this condition simply means thit; = v,; for everyj € {1,..., n}, i.e., f; =7, contradicting the disjointness of
andF. O

Interestingly, the necessary condition of Lemma 5.4 actually characterizes the set of coverage functions.

Theorem 5.5. Every monotone non-decreasing Boolean function without linear implicants is the coverage function af a pdBf
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Proof. Let us consider an arbitrary monotone non-decreasing Boolean function without linear implicants:

m

gt .m) =\ [ @

I=1jes
where|S;|>2, forl =1, ..., m. Let us construct now the pdB®’, F) with |T| = n and|F| = m such that:
ﬂij{l ?f k=j.,
0 if k #J,
and

Lo Jrifjes,
=0 i jes.

Itis easy to notice thatr’, F) is indeed a pdBf, i.eT N F =@, since|S;|> 2, foreveryl =1, ..., m.
In order to calculate the coverage functiogiven by (15), let us consider an arbitrdrg {1, ..., m}, and let us evaluate

n

n
7= ]_[ 2k B vV 7)) Bij v vij)-
j=1lk=1

Let us notice first that for any € S; we have:
n —
\/ 2B V) Brj v i) =2,
k=1

since(fy; v 7;;) (Brj v 71;) =0 if and only ifk # j for everyj € S;.
Let us remark now that for every¢ S; we have:

n j—1 n
\ B VB v =\ v \V %
k=1 k=1  k=j+1

since(f; v @,)(Ekj v y;7) = 0ifand only ifk = j for every; ¢ 5.
Consequently, sinces;|> 2, for everyl =1, ..., m, we have:

i

( [T V z B V7)) By V”/lj)) ( [T V z B V7)) By V”/lj))

JjES k=1 jES k=1
j-1 n
= [Tz )T Vay V «)])=11 z-
jes; jes; \k=1 k=j+1 jes;

It follows that the coverage function of", F) is g(z1,...,z,). O

Corollary 5.3 together with the construction used in the proof of Theorem 5.5 imply the following result, which shows that the
complexity of generating all strong spanned patterns of a pdBf is not easier than the dualization of a monotone non-decreasing
Boolean function. Various results about the complexity of this dualization problem can be fodnt7ri8,20]

Corollary 5.6. The dualization of a monotone non-decreasing Boolean function can be reduced in quadratic time to the gener-
ation of all strong spanned patterns of a pdBf

Corollary 5.7. For every integern> 2, there exists a pdBFT', F) depending or2n variables such thal 7| = 2n, |F| = n, and
the number of strong spanned patterngdf F) is 2°.

Proof. Let us consider the following Boolean function

n
g(z1, ..., z20) = \/ TiZntis
i=1
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and construct the pdBf’, F) as in the proof of Theorem 5.5. It is well know (see, §47]) thatg(z1, . . . , z2,) has Z maximal
false points, and therefore, by Corollary 538, F) has Z strong spanned patterns.(]

It is clear from the above corollary that the generation of all strong spanned patterns can require time which is exponential
in the size of the pdBf. If the complexity of the generation algorithm is evaluated in terms of both the input and output lengths,
then by Corollary 5.6, the existence of a polynomial total time algorithm for this problem would imply the possibility to dualize
a positive DNF in time which is polynomial in the length of the DNF and its dual CNF. Note that the best-known dualization
algorithm is quasi-polynomigR0].

Formula (15) provides an expression of the coverage functiahich is of polynomial length in the size ¢f, F). However,
the Boolean expression in (15) is neither a CNF nor a DNF. Corollary 5.7 implies that every CNF representatiay dfave
exponential length in the size ¢f', F). The following result shows that the same phenomenon may also occur with the DNF
representations af

Theorem 5.8. For every integen> 2, there exists a pdBfT, F) depending on n variablesuch thati7T| =2n — 2, |F| = 1,
and its coverage functionhas2"~1 — 1 prime implicants

Proof. Let us construct the pdRf, F) depending om variables, having only one false poifit 1, ..., 1), and having 2 — 2
true points defined by:

1 if k<n,je{k, n},
Brj=11 ifkz=nj=k—n+1,
0 otherwise

wherek=1,2,....,2n—2andj=1,...,n.
It follows from (15) that the coverage functiarof (T, F) is

n—1 n—1
g1,z =[G Ve |V «
j=1 k=1

Itis easy to see that every prime implicant of this function has the form:

n—1
/\ (Pjzj vV PjZj4n—1),
j=1
where(p1, ..., py—1) isa(0, 1) vector of parameters. Clearly, every sibhl) vector different fromQO, . .., 0) defines a prime

implicant of r, and no two vectors define the same prime implicant. Hence, it follows that the number of prime implicants of
is2r"l-1. O

It is interesting to compare Corollary 5.6 with Theorem 5.8. The corollary shows that the generation of all strong spanned
patterns is not easier than dualization. Are the two problems equivalent? They would certainly be, if a DNF representation of
were easy to construct. Theorem 5.8 could be interpreted as indicating that the two problems are not equivalent, since any DNF
representation of may have exponential length.

6. Analytical description of Pareto-optimal patterns

We have described in Section 4 computational procedures for transforming a pattern to a better Pareto-optimal one for different
types of Pareto-optimality. In Section 5, the analysis of computational complexity of generating all Pareto-optimal patterns has
been based on analytical models using decision variables associated to the observations in the data set. In view of the fact
that the number of attributes is typically much smaller than that of observations, a more practical approach to generating all
Pareto-optimal patterns should utilize analytical models based on decision variables associated not to the observations but to
the attributes. Such analytical models are developed in this section by characterizing the Pareto-optimal patterns studied in this
paper as the solutions of certain Boolean equations.

We shall present below characterizations of those pattemisich are Pareto-optimal with respect to a certain criterion. For
this purpose, we shall use Boolean variablgs. . ., y, associated to the original variablesg . .., x,, of the pdBf(T, F), with
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the following meaning:

o frif Xj Orx; is present inP,
YI=10 otherwise

We shall sometimes denote the pattern described by the values of the vayigbles y, asPy, ... y,.
6.1. Description of patterns and prime patterns

Without loss of generality, we shall characterize those Pareto-optimal paResiéch cover a particular true point, say

(o1, ..., 0,) € T.Asinthe previous section, we shall denote the poin®s\@fiy, . . ., an) by (Bi1, - - ., Pry) fork=1, ..., |T|—
1, while the points of will be denoted by(y;,...,v;,), forl =1, ..., |F|. Using these notations, let us characterize those
positive pattern® which cover the observatiafy, . .., o). This coverage requirement means that
d o
_ %4, =
Pyl ..... y,,(xl,n-,xn)—l_[(xj V)’j)' (16)
j=1

Since this patterR does not cover any negative points, the decision variahles ., y, must satisfy the following condition:

|F| n

V [1aj vip=o. an

1=1j=1

Sinceyla:f = 1iff y;; = «;, condition (17) implies that all the positive patterns covering, ..., o,) are described by the
solutions of the following Boolean equation:

IF|

=\ [] 7 =0 (18)

1=1joj#y;

Example 6.1. For the pdBf given infable 1, all the positive patterns covering the poit©111) are described by the solutions
of the Boolean equation

T=Y3Y4Y5V Y1Y4Y5 V Y3V5 V y1V4 V Yay5=0,
or simply
T=Y1Y4 V ¥3Y5 V V4y5=0. (19)
While there is a one-to-one correspondence between the solutions of (18) and the positive patterns (eqvering,),

different implicants of the complementof = may describe the same positive pattern. However, since (18) implies that
monotone non-decreasing Boolean function, each pfitse implicantds of the form]_[jesyj, and describes a distinct positive

prime pattern? = [] xfj covering(aq, ..., o).
Jjes -
Example 6.2. Continuing Example 6.1, we find:
T=Yy1y5V y3y4V yays, (20)
showing that the prime patterns covering the polrt11) arexixs, x3x4, andxaxs.

6.2. Description of spanned patterns

We shall turn now our attention to characterizing spanned patterns. It follows from Theorem 4.5 that aRattery)

covering(ag, . .., %) is spanned iffy, = 0 exactly when there exist@yy, ..., fr,) € Cov(Py, ... y,) having i, # op.
Notice that if(By1, ..., Br,) € COV(Pyy,...y,) and[)’kp # op, then the assumption thaty, .. ., ay) € Cov(Py,, ... y,) implies
yp = 0. Therefore, a patterRy, ... y, covering(a1, ..., o) is spanned iffy, = 0 implies that there exist$;1, ..., fi,) €

Cov(Py,,....y,) havingﬁkp # op.



P.L. Hammer et al./Discrete Applied Mathematics 144 (2004) 79—-102 93
Since(Bi1, - - - Prn) € COV(Py,q,....y,), it follows from (16) that
n
o —
[T vip=1
j=1
or equivalently,
n —
\/ i@y v @) =0.
j=1
The conditionﬂkp # op can be expressed as
O‘pﬁkp V &pﬁkp =0.

Thereforey, = 0 implies

|T|—-1 n
[T opBip VapBiy v \/ v (B v i) | =0. (21)
k=1 j=1

Since (21) must hold for every, a pattern is spanned if and only if its characteristic ve¢tr. . ., y,) satisfies the following
condition

n |T|-1 n
\ ¥y T1 [ #oBep VopBip v \/ vjiBi; v aipi) | =0. (22)
p=1 k=1 j=1

In conclusion, all the positive spanned patterns covenag. . ., o) are described by the solutions of the system of Boolean
equations (18) and 22, or simply by the solutions of the following equation:

|F| n n |IT|-1 n
N TT5@mivampy \ v [T | 2B VB v \/ vi@iB; vVaBg) | =0. (23)
[=1j=1 p=1 k=1 Jj=1

Example 6.3. All the positive spanned patterns covering the polfitl 1) in the pdBf ofTable lare described by the solutions
of the Boolean equation

Y1Y4 V Y3Y5 V Y4Y5 V Y1¥3 V Y3y1 V yay2(¥ay2 vV yays) V (¥sy2 V ysy4) =0,
or, after simplification,

Y13 V y1¥3 V Y1¥4 V y2y4 vV y5=0. (24)
The solutions of this equation are givenTiable 4

Therefore, the positive spanned patterns covering the pbritl]) arexsxs, X2x4x5, X1X3X4X5, X1X2X3X4X5, andx1x3xs.

Table 4
Solutions of (24)

y1 Y2 Y3 Y4 Y5

PR RPROO
or oORrO
PR P OO
OR kR Rk
PR R R e
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6.3. Description of strong spanned patterns

In view of Theorem 4.8, a spanned pattéty .. y, covering(ay, ..., o) is strong if and only if for any(f;1, ..., fr,) €
T\CoV(Py,,...y,) there existgy;3. ..., y,) € F such that for every inde if y; =1 andf;; = «;, theny;; = o;. This last
condition can be expressed as

i Brj Vv o) v ay) =0,
or simply,
¥j @By v % Brjvij) =0.
Since there must exist an indeguch that the last condition holds for evéryve have:

[FI'| n
TT1 v v @By | =0. (25)
=1(;=1

It follows from (16) that the conditiofy1, ..., fr,) € T\COV(Py, ... y,) can be expressed as

.....

n
\/ viBei VoiB) =1 (26)
j=1
Since a spanned patteRy, .. y, covering(ay, ..., a,) is strong iff (26) implies (25), all the strong spanned patterns covering
(o1, ..., 0p) are described by the solutions of (23) and
[T]-1 n B |F| n B
\/ \/ viiBe vaibi) | [T\ viiBemy v aiBgm,) |t =0 (27)
k=1 j=1 I=1| j=1

In other words, all the strong spanned patterns coveting . ., o, ) are described by the solutions of the following equation.

|F| n n |IT|-1 n

N TT3@mivamupy N v [T | 2B VB v\ vj@iBi; VaBg) | v

1=1j=1 p=1 k=1 j=1
|T]1-1 n B |F| n B
\/ \/ yiiBe v aibi) | T\ viiBemy v aBegmw,) | § =0 (28)
k=1 | | j=1 1=1] j=1

Example 6.4. Let us now continue Example 6.3 and describe all the strong spanned patterns covering th@Qddift
Assuming thak =2, ..., 5 correspond to the poinis . .., e of T, we present ifable 5the corresponding expressions of (25)
and (26) after simplifications.

Using the results iTable 5 we have:

(27=(y1V y3)y4y5 V y2(y1y5 V y3y4 V yays) V (y2 V y4)y1Y5
= Yy1y2Y5 V Y1Y4Y5 V Y2¥3V4 V Y2Y4Y5 V Y3Y4Y5.

Since the expression of (23) was calculated in Example 6.3 (see (24)), we see that Eq. (28) for our example becomes
(28) = y1y3V Y1Y3V Y1Y4 V ¥2Y4 V Y5 V Y1y2Y5 V Y1YaY5 V y2Y3Y4 V y2Y4ys V y3y4ys =0,
or, after simplification,
y1Y3V y1y3V y1ya VvV y1yaV y2 vV ys =0. (29)

The solutions of this equation are givenTiable 6
Therefore, the positive strong spanned patterns covering the @0iht) arexsxs andx1x3xs.
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Table 5

Evaluation of (25) and (26)

k (26) (25)

2 y1vy3 (ya Vv y5)y5y4 = yays

3 y2 (y3VyaVys)(y1 Vv yaV ys)(y3V ys)(y1V y4)(y4V y5) = y1y5 vV y3ya V yays

4 Y2V y4 (y3Vy5)(y1V ¥5)y1y5 = y1)5

5 Y2V yaVys y3y1 - 0=0

Table 6

Solutions of (29)

y1 y2 Y3 y4 Y5

0 0 0 1 1

1 0 1 0 1

Table 7

Datasets used in empirical evaluation

Name of dataset Number of observations Attributes Observation with

Positive Negative Total Binary or Numerical missing values

categorical Number Handling

Australian credit 307 383 690 9 6 37 Removed

Breast cancer Wisconsin 241 458 699 0 9 16 Removed

Boston housing 253 253 506 1 13 0

Pima Indians diabetes 268 500 768 0 8 0

Heart disease(Cleveland) 139 164 303 8 6 6 Removed

Oil 702 930 1632 0 7 0

Congressional voting 267 168 435 16 0 203 Substituted

7. Empirical evaluation

The aim of this section is to empirically evaluate the relative merits of various theories, each of which consists of a specific type
of Pareto-optimal patterns. The evaluation is based on comparing the classification performances of three such Pareto-optimal
theories (prime, strong spanned, and strong prime), made on several real life data sets which are widely used in the machine
learning literature. As a benchmark, we also evaluate the performance of the “standard implementation” of LAD (as described
in [6]) on the same datasets.

Note that—although the uses of patterns in LAD are not confined to classificatiof6{yeelassification performance is
used here in the empirical evaluation of the relative merits of various types of Pareto-optimal patterns because of the public
availability of standard classification datasets.

Seven datasets are used in our experiments, six taken from the Irvine repositdij)saed one (“Oil") provided by the
Chevron Corporation (see descriptior{@}). The key parameters concerning these datasets are presefaddein This table
also indicates the number of observations which have some missing attribute values and which have therefore been removed
from the datasets in our experiments. In the special case of “Congressional voting”, the number of observations with missing
attribute values is so large that, instead of removing them from consideration, we have simply substituted the missing Boolean
values with the majority value for the corresponding class.

In order to be able to apply the Boolean methods of this paper to numerical data, we “binarize” the datasets, i.e. replace the
numerical attributes by one or more binary attributes, which indicate whether the value of the corresponding numerical attribute
is above or below certain thresholds; the binarization procedure, including the determination of the thresholds, is described
in [6].
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For the sake of comparability, the Pareto-optimal theories used in the comparisons are all produced starting from the same initial
theory, by applying to it the three transformations described in Section 4. As mentioned in Section 4.4, a most straightforward
way of obtaining the initial theory is to rewrite the given pd@f, F) as the theory consisting of all its minterms. By applying
the three transformations described in Section 4 to this minterm-generated theory, we obtain Pareto-optimal theories consisting
either of prime patterns, or of strong spanned patterns, or of strong prime patterns. The reason for choosing the minterm theory
as the starting point is its ready availability and the fact that it is not biased towards any of the types of Pareto-optimality
considered here. Note that the Pareto-optimal theories obtained in this way are not necessarily the best performing ones within
their categories. However, this is not a hindrance, since our objective is only to evalualatiemerits of the above-mentioned
three main concepts of Pareto-optimality. Our experimental evaluation is not aimed at producing an LAD algorithm with the
best possible performance, but is designed so as to make the results truly comparable by guaranteeing that the only difference
between the three theories is the type of the Pareto-optimal patterns used.

Conforming to the implementation of LA[B], the classification process is symmetric with respect to both positive and negative
observations, and consists of the following two stages. First, for each type of Pareto-optimality we follow the procedure described
above to construct a positive and a negative Pareto-optimal theory. Second, the positive and negative patterns obtained in this
way are combined into a “discriminant” (a pseudo-Boolean polynomial) using as positive and negative weights their respective
coverages (separately normalized for the positive and the negative patterf&§) s€hose new observations are classified as
positive or negative according to the sign of this discriminant. New observations for which the value of the discriminantis 0 are
not classified.

The data sets are randomly partitioned into two parts of equal sizes. A theory is derived using one of these parts as training
set, and its performance is then evaluated on the other part (testing set); afterwards the roles of the training and testing sets are
reversed, and the experiment is repeated, thus completing a 2-fold cross-validation. For each data set, the average performanc
(along with the standard deviation) on 25 such random partitions is reporfeblia 8 The classification performance of the
theories on the testing sets is evaluated using the following parameters:

o the percentages of those positive and negative observations which are correctly classified,;

o the percentage of those positive (negative) observations which are misclassified as negative (positive);

o the percentages of those positive and negative observations which are not classified (these appear in the tables in the column:
marked “?”).

The aggregate measure of classification inaccuracy can take into account either the number of errors alone, or both the number
of errors and the number of unclassified observations, or some combination of these points of vievaelite percentage
of misclassified observations, andce the percentage of unclassified observations, and let us define the aggregate “cost” of
classification inaccuracy as

c=m+ Ju,

where the parametére [0, 1] represents the relative weight of unclassified observations. The valo@satir experiments for

three values of. (0, 0.5, 1) are presented iFable 9 andFigs. 12,3. While we report the results of the experiments for all the
three values of, the most realistic estimate of the cost of classification inaccuracy is giveaByb. Indeed, the estimates given

by /=0 impose no penalty for a theory which would never give an answer, while the estimates givenlbgverpenalize the
decision of not providing an answer due to high uncertainty. In other words, the estimate fbassumes that “no answer” is
alwaysthe correct answer, while the estimate fet 1 assumes that “no answer’rigverthe correct answer. On the other hand,

the estimate fo = 0.5 coincides with the expected error rate of a procedure which accepts the answer of a theory whenever it
is given, and in case of “no answer”, selects the answer by flipping a fair coin.

Finally, in Table 10we present the results of pairwise comparisons of classification inaccuracies of the four types of theories
discussed in this section. The average differences between the classification inaccuracies of the compared theories are reporte
in the columnsAc for each of the three values 6f In the columnsSignif.we report the critical probability values given by the
t-test, and indicate by * those differences which are significant at the level of 99.9%.

The results presented above show that the classification performance of Pareto-optimal theories is roughly comparable to
that of LAD, which is known to be a competitive classification method (6§ It is not entirely surprising that in most
cases LAD does statistically outperform the other theories (although by a slim margin), since the LAD theory results from an
extensive pattern enumeration procedure, while the Pareto-optimal theories used here are constructed in a simplistic greedy
way. Since these Pareto-optimal theories do exhibit reasonable performance, their pairwise comparison is justified, and can be

1The slight difference in the LAD performance reported here ari@]iis due to the fact that in this paper (1) observations with missing
attribute values were removed from the datasets, and (2) only 100%-homogeneous patterns were used.



Table 8
Classification accuracy

Observ. Classif. Credit Breast cancer Housing Diabetes Heart Qil \oting
Mean S.D. Mean S.D. Mean S.D. Mean Mean Mean Mean
LAD + Correct 87.4 34 95.2 2.6 87.1 3.4 64.3 55 80.3 6.7 92.7 1.9 96.2 2.6
+ Wrong 11.3 2.9 3.9 2.1 12.0 3.2 21.3 5.2 175 5.7 3.9 11 3.2 21
+ ? 14 15 0.9 1.2 0.9 11 14.4 5.7 2.2 25 34 1.6 0.5 1.2
- Correct 86.6 2.9 97.3 0.9 84.3 45 72.0 4.9 81.5 5.8 90.5 2.2 95.0 24
- Wrong 12.0 2.7 2.6 0.8 14.1 4.0 18.0 29 16.5 5.6 5.8 15 4.1 15
- ? 1.3 1.2 0.1 0.3 1.6 14 10.0 4.9 2.0 2.3 3.7 1.6 0.9 2.3
All Correct 87.0 21 96.5 1.0 85.7 24 69.3 3.7 80.8 4.2 91.7 1.2 95.5 2.1
All Wrong 11.7 1.7 3.1 0.8 13.1 2.3 19.2 25 17.1 35 4.8 0.8 3.8 1.0
All ? 1.3 1.1 0.4 0.5 1.3 1.0 115 5.0 21 1.9 35 1.3 0.8 18
Strong + Correct 81.6 4.3 91.5 3.0 82.1 4.4 50.0 5.6 73.4 8.1 92.4 1.9 94.1 2.8
spanned + Wrong 10.6 3.0 4.1 2.2 12.6 3.7 27.6 4.9 18.9 6.1 4.7 1.2 3.9 2.4
+ ? 7.8 3.0 43 24 5.3 2.3 22.4 5.6 7.6 4.5 2.9 15 2.0 1.8
— Correct 82.8 3.3 96.7 11 83.4 4.1 73.6 3.9 78.4 5.4 89.5 2.2 95.9 1.7
- Wrong 11.8 25 25 1.0 11.3 37 18.2 3.1 145 55 5.9 1.6 31 13
- ? 5.4 21 0.8 0.7 5.4 2.3 8.2 2.4 7.1 3.7 4.6 1.9 1.0 1.3
All Correct 82.2 2.3 94.9 1.1 82.7 1.9 65.4 3.0 76.0 3.3 91.0 1.2 95.2 1.2
All Wrong 11.3 15 3.1 0.9 12.0 2.0 215 2.0 16.6 3.0 5.2 0.8 34 1.0
All ? 6.5 1.8 21 1.0 5.3 1.7 13.2 3.0 7.4 3.0 3.7 13 14 11
Strong + Correct 83.6 4.0 915 3.3 83.3 3.8 56.4 5.2 75.5 7.2 92.8 18 95.1 2.5
prime + Wrong 11.3 3.2 5.8 2.7 14.2 35 30.1 5.1 19.4 6.4 4.7 1.2 3.7 2.3
+ ? 5.1 2.2 2.7 1.8 24 1.3 135 4.3 5.1 3.4 25 14 12 14
- Correct 84.0 3.0 97.4 1.0 85.2 3.7 75.2 3.6 79.7 5.3 89.7 2.1 95.9 1.6
- Wrong 12.3 2.6 2.3 1.0 11.7 35 20.2 3.3 16.3 5.4 6.2 15 35 1.3
- ? 3.7 14 0.3 0.4 3.1 1.9 45 1.9 4.0 24 4.0 1.8 0.6 0.8
All Correct 83.8 21 95.3 1.1 84.2 1.6 68.6 2.7 77.7 3.0 91.4 1.2 95.6 11
All Wrong 11.8 15 35 1.0 13.0 1.8 23.7 2.2 17.8 3.0 5.4 0.8 3.6 0.9
All ? 4.4 14 1.1 0.7 2.8 1.3 7.7 2.3 45 2.3 3.2 1.2 0.9 0.8
Prime + Correct 73.2 5.8 89.7 3.7 74.0 4.9 13.2 6.5 70.5 6.4 74.5 5.8 91.8 4.5
+ Wrong 12.7 34 5.0 2.7 9.6 35 10.6 4.7 21.1 5.7 3.7 1.0 6.3 3.7
+ ? 14.1 5.2 5.3 2.6 16.4 54 76.2 7.9 8.4 4.6 21.8 5.7 1.9 2.4
— Correct 78.6 4.5 94.2 1.6 65.9 7.1 41.3 5.7 73.1 8.4 79.6 4.1 93.7 24
- Wrong 7.3 2.4 35 14 9.6 3.9 5.8 31 14.7 5.9 3.8 1.6 5.5 21
- ? 14.1 4.5 2.3 1.4 24.5 7.5 52.9 6.6 12.1 6.9 16.6 4.0 0.9 0.9
All Correct 76.1 34 92.6 15 69.8 4.4 31.4 4.3 71.8 3.9 76.8 35 92.9 2.0
All Wrong 9.8 1.7 4.0 1.3 9.7 24 7.5 2.6 17.7 3.3 3.7 1.0 5.8 1.8
All ? 14.1 4.0 34 15 20.5 5.8 61.1 6.6 10.5 4.7 19.4 3.9 1.3 11

S.D.
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Table 9
Cost of classification inaccuracy
y Credit Breast cancer Housing Diabetes Heart Oil \oting
Mean S.D. Mean S.D. Mean S.D. Mean S.D. Mean S.D. Mean S.D. Mean
LAD 0 11.7 1.7 3.1 0.8 13.1 2.3 19.2 25 17.1 35 4.8 0.8 3.8 1.0
0.5 12.4 1.8 3.3 0.8 13.7 2.3 24.9 1.9 18.1 3.7 6.5 0.8 4.1 14
1 13.0 21 35 1.0 143 24 30.7 3.7 19.2 4.2 8.3 1.2 45 21
Strong 0 11.3 15 3.1 0.9 12.0 2.0 215 2.0 16.6 3.0 5.2 0.8 3.4 1.0
spanned 0.5 14.5 17 4.1 0.8 14.7 1.8 28.1 2.1 20.3 2.8 7.1 0.8 4.1 0.9
1 17.8 2.3 5.1 1.1 17.3 1.9 34.6 3.0 24.0 3.3 9.0 1.2 438 1.2
Strong 0 11.8 15 35 1.0 13.0 1.8 23.7 2.2 17.8 3.0 5.4 0.8 3.6 0.9
prime 0.5 14.0 17 4.1 1.0 14.4 1.6 27.5 2.2 20.1 2.8 7.0 0.8 4.0 0.9
1 16.2 21 4.7 1.1 15.8 1.6 31.4 2.7 22.3 3.0 8.6 1.2 4.4 1.1
Prime 0 9.8 1.7 4.0 1.3 9.7 2.4 7.5 2.6 17.7 3.3 37 1.0 5.8 1.8
0.5 16.8 1.8 5.7 12 19.9 2.0 38.0 14 23.0 2.7 135 1.7 6.4 1.8
1 23.9 34 7.4 15 30.2 4.4 68.5 43 28.2 3.9 23.2 35 7.1 2.0
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Credit Breast Boston  Diabetes  Heart Oil Voting
Cancer  Housing Disease

Datasets

~~LAD ~#~— Strong Spanned —#— Strong Prime ~#~ Prime]

Fig. 1. Cost of classification inaccuracy foe= 0.

Mean Cost

Credit Breast Boston  Diabetes  Heart 0il Voting
Cancer  Housing Disease

Datasets

~+—LAD ~#—Strong Spanned ~#&—Strong Prime ~m~Prime

Fig. 2. Cost of classification inaccuracy o 0.5.

a basis for meaningful conclusions about the relative merits of various types of Pareto-optimality. In view of the discussion

above, we shall derive our conclusions based primarily on the results correspondiagd®. The main conclusions are the
following:

e The simplicity preference does not seemto lead to a good performadeed, in the above results, the classification accuracy
of the minterm-generated prime theories is statistically worse than that of the other three types of theories.

e The evidential preference initself seems to lead to a good performiadesd, in all cases the best performing Pareto-optimal
theory is one of the two strong theories. Moreover, although the preferenZeandc | o are obtained by lexicographically
refining the evidential prefereneé two opposite ways, in most cases the corresponding (minterm-generated) strong spanned
and strong prime theories have statistically insignificant differences in overall performance.
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Mean Cost

Credit Breast Boston  Diabetes  Heart 0il Voting
Cancer  Housing Disease

Datasets

~+~LAD ~#~ Strong Spanned —a—Strong Prime ~#—Prime

Fig. 3. Cost of classification inaccuracy foe= 1.

e The (minterm-generated) strong spanned and strong prime theories achieve a different balance in performance: the strong
spanned theories seemto reduce the number of errors, while the strong prime theories seem to reduce the number of unclassifiet
observations. This conclusion is not entirely surprising in view of the conservative bias of selectivity and the aggressive bias
of simplicity.

8. Conclusions

Patterns are the main building blocks in LAD, as well as in many other methods of data analysis. This paper introduces an
axiomatic approach to comparing the value of various patterns in LAD, leading to the concept of Pareto-optimal patterns.

Prime and strong patterns are the Pareto-optimal patterns which correspond respectively to the simplicity and the evidential
preferences. Because of the wide acceptance of the simplicity preference, LAD, as well as many other data analysis techniques,
traditionally used prime patterns. While the importance of the coverage of patterns has been widely recognized in the ma-
chine learning literature, to the best of the authors knowledge, the concept of strong patterns has never been studied before.
This paper focuses on strong patterns, with a special attention to the two extreme cases of strong prime and strong spannec
patterns.

Itis shown in Section 4 that an arbitrary pattern can be transformed in polynomial time to a better Pareto-optimal one according
to any one of the preferences discussed in this paper. On the other hand, gerdir&@argto-optimal patterns turns out to be
intractable, and it is shown in Section 5 that even the set of strong spanned patterns, wilistirargmaximally specific)
representatives of the classes of evidentially equivalent strong patterns, can have exponential cardinality. The links established
in Section 5 between the generation of all strong spanned patterns and the dualization of a positive DNF indicate the intrinsic
computational difficulty of the former problem (even if the computational complexity is evaluated in terms of both the input and
the output lengths). In Section 6, the Pareto-optimal patterns studied in this paper are characterized as the solutions of certain
Boolean equations using decision variables associated to the attributes of the data set.

The computational evaluation of the various types of Pareto-optimal patterns described in Section 7 was carried out on
several real life data sets (mostly taken from the Irvine repository). The results seem to indicate that in itself the simplicity
preference does not necessarily lead to a good performance, while the evidential preference does. Moreover, the refinement
of the evidential preference with respectsimplicity will bias the Pareto-optimal theories in favor of reducing the number of
unclassified observation®n the other hand, the refinement of the evidential preference with respetetivitywill bias the
Pareto-optimal theories in favor of reducing the numbegradrs.

To summarize, the use of strong patterns leads to a superior performance, and the use of strong spanned or strong prime
patterns reduces the number of errors or unclassified observations, respectively.
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Table 10
Pairwise cost comparison of theories
A =0 4 =05 =1
Dataset Theories compared Al Sign. Al Sign. Al Sign.
Credit LAD-Strong spanned 0.42 0.0247 —2.16 0.0000 —4.75 0.0000
LAD-Strong prime -0.14 0.4814 —1.65 0.0000 -3.16 0.0000
LAD-Prime 1.93 0.0000 —4.46 0.0000 —10.85 0.0000
Strong spanned-Strong prime ~ —0.57 0.0000 0.51 0.0000 1.59 0.0000
Strong spanned—Prime 151 0.0600 —2.30 0.0000 —6.10 0.0000
Strong prime—Prime 2.07 0.0000 -2.81 0.0000 —7.69 0.0000
Breast cancer LAD-Strong spanned —-0.01 0.8999 —0.85 0.0000 —1.68 0.0000
LAD-Strong prime —0.45 0.0005 —0.83 0.0000 —-1.21 0.0000
LAD-Prime —0.95 0.0000 —2.44 0.0000 —3.94 0.0000
Strong spanned-Strong prime ~ —0.43 0.0000 0.02 0.7922 0.47 0.0060
Strong spanned—Prime —0.93 0.0000 —1.60 0.0000 —2.26 0.0000
Strong prime—Prime —0.50 0.0048 -1.62 0.0000 —2.73 0.0000
Housing LAD-Strong spanned 1.07 0.0608 —0.96 0.0016 —2.99 0.0000
LAD-Strong prime 0.07 0.8102 —0.69 0.0178 —1.45 0.0000
LAD-Prime 3.41 0.0000 —6.20 0.0000 —15.82 0.0000
Strong spanned-Strong prime ~ —1.00 0.0000 0.27 0.0880 1.54 0.0060
Strong spanned—Prime 2.34 0.0600 -5.24 0.0000 -12.83 0.0000
Strong prime—Prime 3.35 0.0000 -5.51 0.0000 —14.37 0.0000
Diabetes LAD-Strong spanned -2.32 0.0000 -3.13 0.0000 —-3.94 0.0000
LAD-Strong prime —4.56 0.0000 —2.62 0.0000 —0.68 0.1742
LAD-Prime 11.67 0.0000 —13.09 0.0000 —37.85 0.0000
Strongspanned-Strong prime —2.24 0.0000 0.51 0.0005 3.26 0.0000
Strong spanned—Prime 13.99 0.0000 —9.96 0.0000 -33.91 0.0000
Strong prime—Prime 16.24 0.0000 -10.47 0.0000 -37.17 0.0000
Heart LAD-Strong spanned 0.49 0.2499 —2.16 0.0000 —4.82 0.0000
LAD-Strong prime -0.72 0.0706 —-1.95 0.0000 —3.19 0.0000
LAD-Prime -0.61 0.2555 —4.85 0.0000 —9.08 0.0000
Strong spanned-Strong prime ~ —1.21 0.0000 0.21 0.2512 1.63 0.0060
Strong spanned—Prime -1.10 0.0400 —2.68 0.0000 —4.27 0.0000
Strong prime—Prime 0.11 0.8243 —2.89 0.0000 —5.90 0.0000
Oll LAD-Strong spanned —0.45 0.0000 —0.55 0.0000 —0.66 0.0002
LAD-Strong prime —0.63 0.0000 —0.49 0.0000 —0.35 0.0347
LAD-Prime 1.06 0.0000 —6.91 0.0000 —14.88 0.0000
Strong spanned-Strong prime ~ —0.18 0.0000 0.07 0.0732 0.31 0.0060
Strong spanned—Prime 151 0.0600 —6.35 0.0000 —14.22 0.0000
Strong prime—Prime 1.69 0.0000 —6.42 0.0000 —14.53 0.0000
\oting LAD-Strong spanned 0.34 0.0288 0.03 0.8638 -0.27 0.3885
LAD-Strong prime 0.17 0.2361 0.13 0.4808 0.09 0.7540
LAD-Prime —2.05 0.0000 —2.30 0.0000 —2.56 0.0000
Strong spanned-Strong prime ~ —0.17 0.0394 0.10 0.2756 0.37 0.0049
Strong spanned—Prime -2.39 0.0000 -2.34 0.0000 —-2.29 0.0000
Strong prime—Prime —-2.21 0.0000 —2.43 0.0000 —2.66 0.0000
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