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Abstract 

Bowser, S. and C.A. Cable, Some recent results on niche graphs, Discrete Applied Mathematics 

30 (1991) 101-108. 

In an earlier paper entitled “Niche graphs” written by Cable, Jones, Lundgren and Seager, niche 

graphs were introduced and examples were provided of graphs which have niche number 0, 1, 

2, and 03. However, no examples were found of a niche graph having finite niche number 3 or 

larger. We still have had no success in our efforts to find such a graph. Nevertheless we have got- 

ten some interesting results. For example, we show in this paper that if there is such a graph, then 

there must be one which is connected. We also show that the niche number of a graph which has 

a finite niche number is s+j V(G)J. In addition we determine the niche number of all “wheel” 

graphs. 

Keywords. Niche number, wheel. 

1. Introduction 

Niche graphs were introduced by Cable, Jones, Lundgren and Seager [l] in 1988. 

In this paper we extend the theory of niche graphs in our efforts to find a niche 

graph whose niche number is finite and greater than 2. 

If D = (K,4) is a digraph, assumed throughout to be weakly connected, and 

acyclic, and if [x, z] EA we will say that x is a predator of z and z is a prey of x. 

The niche graph corresponding to D is the undirected graph G = (K E) with an edge 

between distinct elements x and y of I/ if and only if for some z E V, there are arcs 

[x, z] and [y, z] in D or there are arcs [z, x] and [z, y] in D. In other words, [x, _Y] E E 
if and only if x and y have either a common predator or a common prey in D. In 

this connection, an element x of V (in the context of either D or G) will be called 

isolated if x is isolated (in the usual sense) as a vertex of G. Since all digraphs con- 

sidered here are weakly connected, this usage should cause no confusion. 
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While it is easy to determine the niche graph corresponding to any digraph, it was 

shown in [l] that not all graphs are niche graphs. It is fairly easy to show in any 

niche graph G there exists a pair of nonadjacent vertices by simply using the fact 

that in an acyclic digraph there exists a vertex y with indeg(y) = 0 and a vertex z such 

that outdeg(z) = 0. It follows then that if rn2 2, then K,,, is not a niche graph. 

However if x is an isolated vertex not in K,,,, then it is easy to see that K, U {x} is 

a niche graph. We show this for m = 3 in Fig. 1. 

This gives rise to the idea of the niche number of a graph [l]. We restate the 

definition here. Let 1, denote k isolated vertices. Then the niche number of G is the 

smallest number, k, of isolated vertices such that GUI, is the niche graph of an 

acyclic digraph. It is denoted n(G). It is obvious from this definition and our discus- 

sion above that n(K,J = 1 for m 2 2. From [l] we know that n(C,) = 2 where C, is 

a cycle on 4 vertices and that n(P,) = 0 if m L 3, where P, is a path on m vertices. 

It is also shown in [l] that there is an infinite class of graphs (called novas in [l]) 

which cannot be made into niche graphs by the addition of any finite number of 

isolated vertices. For such graphs we say that the niche number is infinite and write 

n(G) = 03. Interestingly enough, we have been unable to find any graphs with finite 

niche number greater than 2, nor have we been able to prove such graphs do not 

exist. However we have obtained some results in our efforts to settle this matter. 

We show that if there is a graph having a finite niche number greater than 2, then 

there is one which is connected. In order to accomplish this we first show that if 

D is an acyclic digraph associated with G which has the fewest number of isolated 

vertices and if x is an isolated vertex of G, then in D either indeg(x)=O or 

outdeg(x)= 0. Moreover, we have been able to show that if G has a finite niche 

number, then its niche number is at most 31 V(G)1 (improving the bound of 1 V(G)1 

obtained in [l]). 

2. Niche number and connectedness 

In this section we show that if Gi, G2,. . . , G, is a set of disjoint graphs each hav- 

ing a niche number less than or equale to 2, then the graph G which is the union 

of Gi, . . . . G, is one which has niche number less than or equal to 2. We say that an 
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acyclic digraph D is niche minimal for the undirected graph G if (1) the niche graph 

associated with D is G U Ik and (2) if D’ is an acyclic digraph with niche graph 

GUI,, then k’rk. 

Lemma 2.1. If G is a graph such that n(G) = k< 03, D is an acyclic digraph whose 
niche graph is G U Ik and if x is an isolated vertex in Ik, then in D, outdeg(x) = 0 

or indeg(x) = 0. 

Proof. Assume that there is an acyclic digraph D for G satisfying conditions stated 

in the lemma, and that there is an isolated vertex x of D such that indeg(x)>O and 

outdeg(x)>O. See Fig. 2. By definition, D is niche minimal. We notice that there 

are no arcs leaving the vertices 1,2, . . . , t except the ones indicated which lead to x, 

since x is an isolated vertex. By the same argument there are no arcs leading into 

l/,2’,..., s’ except those which originate at x. 

In general D will have additional vertices and arcs but we have pictured in Fig. 2 

only the vertices adjacent in D to the vertex x and their corresponding arcs, since 

these are the items which are germane to the argument. 

We construct D’ from D as follows. D’ consists of the vertex set of D with x 

removed and the same arc set as D, except we replace the arcs shown in Fig. 2 by 

those shown in Fig. 3. Specifically we replace ([1,x], . . . , [t,x], [x, I’], . . . , [x, s’]} by 

{]l, 1’1, ..-, [Ls’l, P,l’l, --., [t, 1 ‘I}. It is easy to see that D’ is acyclic (since D is) and 

that D’ has niche graph G U (Zk - {xl). The existence of this D’ contradicts the 

niche minimality of D. 0 

The following corollary is an immediate consequence of Lemma 2.1 and is used 

later. 

r S’ 

Fig. 3. 
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Corollary 2.2. No path in a niche-minimal digraph D can pass through an isolated 
vertex. 

We now use the preceding lemma to prove the following theorem. 

Theorem 2.3. If Cl, G2, . . . , G, are graphs such that n(G,) I 2 for 1 I i 5 r and G is 

the disjoint union of G,, G2, . . . , G,, then n(G)<2. 

Proof. Let G, and G2 be graphs. If n(G,) = 0 or n(G,) = 0, it is clear that n(G, U G2) I 

2. Suppose that n(G,) >O and n(G2)>0. Let D, and D, be niche-minimal acyclic 

digraphs corresponding to G, and G2 respectively. Let x be an isolated vertex of Gi 

and y be an isolated vertex of GZ. By Lemma 2.1 (and possibly reversing all arcs 

in one or both digraphs) we can assume without loss of generality that outdeg(x) = 0 

and indeg(y) = 0. See Fig. 4. If we identify vertices x and y we obtain a new digraph 

D’ which is acyclic and has one fewer isolated vertex than the sum n(GJ + n(G2). 
Since outdeg(xy)>O and indeg(xy)>O, by Lemma 2.1, D’ is not niche minimal. 

Therefore a niche-minimal digraph for Gt U G2 has at most n(G,) +n(G,) -2 
isolated vertices. This implies that n(G, U G,)s2. Repeating this argument we see 

that if G is the union of a finite number of disjoint components G,, G2, . . . , G,, then 

n(G)<2. 0 

3. Niche number of wheels and an upper bound theorem 

We first refine a result from [l] and use this to obtain the niche numbers of the 

class of graphs called wheels. We then concentrate on determining an upper bound 

for the niche number of an arbitrary graph in terms of its order. In the remainder 

of the paper we will use “clique” to mean a (not necessarily maximal) complete 

subgraph. 

Notation. Let a(G) represent the clique number of G, for XE V(G) let a,(G) = 

size of a largest clique in G containing x, let G \ (x} be the subgraph of G generated 

by V(G) - (x}, and let d(x) be the degree of vertex x in G. 

Fig. 4. 
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Theorem 3.1. If G is a graph with finite niche number and x is any vertex of G, 

then d(x) 5 2co(G \ {x}) [co,(G) - 11. 

Proof. Since G has finite niche number, there is an acyclic digraph D with niche 

graph G U ZK. Fix x E I’(G), let P be the set of predators of x and let Q be the set 

of vertices of D (other than x) having a common predator with x in D. Since 

PC V(G\{x}) d an since P generates a clique in G, it generates a clique in G \ {x}. 

It follows that 

IZ’ 5 a(G\ (4). (1) 

For each y E P, let Q(y) be the set of prey of y other than x, if any; then 

Q = V’I, Q(Y). (2) 

Since Q(y) U {x} generates a clique in G containing x, it follows that 

IQ(y)1 5 w,(G)-1. (3) 

Combining (l), (2), and (3) 

IQ1 ~Y;plQ(~)l ~YpbxWl = IPlb,(G)-11 

5 NG\ Ix>> b,(G) - 11. 

If R is the set of vertices of D (other than x) having common prey with x in D, then 

by a similar argument 

/RI ~MG\W)b,(G)-11. 

Though R and Q need not be disjoint, still d(x) 5 ) Ql + lR I so the proof is com- 

plete. 0 

Theorem 3.1 is a refinement of a result from [l] which can be stated as follows: 

If G is a graph with finite niche number, then for every vertex x of G 

d(x)l2w(G)[o(G)-11. 

Corollary 3.2 exploits the benefits of this refinement. 

Let W, represent the “wheel” on m+l vertices, i.e., 

and 
WKJ = {x0,x,, . . ..x.J 

E(W,)= {[xo,xil, [~~,.q+~l: i=l,...,m-1, [x0,x,1, [x1,x,1}. 

Corollary 3.2. Zf m 2 9, then n( W,) = 00. 

Proof. If x0 is the center of W,, then o,( W,) = 3 and o( W,\ {x,,}) = 2, violating 

the conclusion of Theorem 3.1, which means that n( W,) = 00 for m = d(x,J > 8. 0 



106 S. Bowser. C.A. Cable 

Comment. A careful analysis of the proof (rather than the result) of Theorem 3.1 

can be used to show that n(Ws) = cx. The (quite tedious) details are omitted here. 

W, =K4 so (as mentioned in the introduction) n(W,) = 1 and for m =4, 5,6,7 di- 

graphs have been found to demonstrate that n(B’,) = 0. As an example, we present 

a niche-minimal digraph for W, in Fig. 5. 

The final result gives a bound on (finite) niche number in terms of the order of 

the original graph. The proof we give requires the following. 

Lemma 3.3. In a niche-minimal acyclic digraph D with niche graph G U Zk, every 
b E Zk is adjacent in D to at least one vertex which is not adjacent to any vertex in 

Z,- Ibl. 

Proof. Let D be a niche-minimal acyclic diagraph and suppose b E V(D) is isolated. 

Assume, without loss of generality, that b is a source and suppose (contrary to the 

conclusion of this lemma) that every prey of b is a predator of an isolated vertex. 

We note that this means that each prey of b has exactly one prey. Let 6be any fixed 

(isolated) prey of a prey of b and let D, be the subgraph of D generated by b, 6, 
all prey of b, and all predators of b: If every prey of b is a predator of b; then b 
is superfluous, i.e., the digraph obtained from D by removing vertex b and all arcs 

originating at b has niche graph G U (Z, - {b}). This contradicts the assumed niche 

minimality of D. Thus b has at least one prey, say y, which is not a predator of b: 

Likewise there is a predator jj of 6” which is not a prey of b. 
Now let 0; be the digraph on V(D,) obtained by replacing each arc in D1 of the 

form [z, 51 by [z, y] and each arc in D, of the form [b,z] by [Xz] (see Fig. 6 for D, 
and D;), and let D’ be the digraph obtained from D by replacing D, with 0;. It is 

straightforward that D and D’ have the same niche graph. Now a cycle in D’ must, 

since D is acyclic, pass through a vertex of D;, and must therefore pass through a 

prey (in D) of b and so must pass through an isolated vertex, denoted b’ (due to 

the assumption that the prey of every prey of b is isolated). Clearly 6’ is outside 

Fig. 5. 
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V(Q) = V(Q’) and so b’ is an isolated vertex in D with positive in- and outdegree. 

This contradicts Corollary 2.2 since D is assumed niche minimal. So D’ is acyclic. 

This, finally, contradicts the niche-minimal nature of D since b and 6 are both 

superfluous in D’. Thus no such vertex b can exist. 0 

Theorem 3.4. If n(G) is finite, then n(G) 5 + / V(G)I. 

Proof. Let D be a niche-minimal acyclic digraph with niche graph G U ZK where 

k=n(G). Let 

l$ = {ys V(G): y is adjacent in D to exactly i vertices of Zk} 

for i=1,2, 

Az = {be V(Z,): 3ye V(G) such that y is adjacent in D to both b and 

another vertex of Zk}, 

A, = V(zk)-AZ. 

Note in the definition of A2 that no such vertex y can be adjacent in D to more 

than two isolated vertices, i.e., vertices of ZK. We now define f : V, + V(Zk) by 

f(y) = b iff be V(Z,) and y is adjacent in D to b. 

By construction of V,, f is well defined and Vi =Ube ,,tIK) f-(6) is a partition of 4, 

from which it follows that 

By Lemma 3.3, If-‘(b)1 11 for all be V(ZK). Every vertex in ?‘(I,) must be adja- 

cent in D to at least two nonisolated vertices since D is niche minimal. If b EAT, 

then these adjacent vertices are in V, and so beAl * If-‘(b)1 22. Finally, notice 

IA, I I 2 j V, 1. Combining these observations with (4) one obtains 

I v,l = & If-‘@)I +,,c, lf-l@)l 
I 2 

~$4,I+IA2I 
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and so 

Iv(G)1 2 IV,1+~~I/,I~2/~,/+I~,/+31~,1~~(I~,I+~~,/) 

= +I V(Z,)l = +n(G). 0 

In closing we comment that Theorem 3.4 can probably be improved substantially. 

The use of Theorem 3.4 has already had a direct impact on the speed of an algorithm 

developed by one of the authors to compute niche numbers. Any further improve- 

ment would have an additional impact. The observation mae in [l] is, as far as we 

know, still true: no graph with finite niche number greater than two is known. 
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