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In this paper we study a mapping from permutations to Dyck
paths. A Dyck path gives rise to a (Young) diagram and we give
relationships between statistics on permutations and statistics on
their corresponding diagrams. The distribution of the size of this
diagram is discussed and a generalization given of a parity result
due to Simion and Schmidt. We propose a filling of the diagram
which determines the permutation uniquely. Diagram containment
on a restricted class of permutations is shown to be related to the
strong Bruhat poset.
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1. Statistics on permutations and their paths

Let Sn be the set of all permutations π = π1π2 . . .πn on [n] = {1,2, . . . ,n}. Let B = {b1, . . . ,bn}
with b1 < · · · < bn be any finite subset of N. Define the standardization of a permutation π on B
to be the permutation π∗ ∈ Sn obtained from π by replacing bi with the integer i. For example
3 5 9 4∗ = 1 3 4 2. In this paper we will use the language of generalized patterns. The reader unfamiliar
with generalized patterns should consult Claesson [2].

We will define a mapping D that maps permutations to Dyck paths. This mapping can be traced
back to Knuth [6, §2.2.1, Exercises 3, 4 and 5] where it arose as a result of analysing push and pop
operations in a stack and the admissible sequences of these operations. Using more recent terminol-
ogy, the mapping mentioned in [6] is from the collection of (2-3-1)-avoiding permutations to the
collection of Dyck words.
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Define the recursive map D from Sn to the set of Dyck paths of length 2n as follows: Set
D(∅) = ∅ and D(1) = ur. Given a permutation π ∈ Sn , split π into π = πLnπR and define D(π) =
uD(πL

∗)rD(πR
∗).

For example, the permutation π = 5 3 1 4 8 2 7 6 ∈ S8 is mapped to the path D(π) = uD(4 2 1 3)×
rD(1 3 2) = uD(4 2 1 3)ruurrur = uuruururrruurrur.

For the usual representation of a Dyck path rotate the figure clockwise by π/4. We call a pair of
entries ru in a Dyck path a valley.

Let us note that the mapping D with domain Sn is not a bijection, as is easily seen since D(1 3 2) =
D(2 3 1) = uurruu. The permutation π is also associated to a partition Λ(π) whose Young diagram
arises when lengthening the ascents and descents of the path. The Young diagram of any partition
obtained from a permutation π ∈ Sn fits in the shape (n − 1,n − 2, . . . ,1). In the following, we will
identify a partition with its Young diagram and vice versa. To recover the length of π from a given
partition, we allow parts equal to 0 and require that Λ(π) has exactly n − 1 parts. In the above
example, we have Λ(π) = (7,5,5,2,1,1,0).

It transpires that Knuth’s map relates the classical statistics of partitions with natural permutation
statistics. For a permutation π ∈ Sn , we call the numbers a1,a2, . . . ,an the left border numbers of
π where ai is the position of the rightmost element to the left of πi in π which is greater than
πi , or 0 if no such element exists. For instance, the left border numbers of π = 5 3 1 4 8 2 7 6 are
0,1,2,1,0,5,5,7. Clearly, ai = 0 whenever πi is a left-to-right maximum of π (that is, an element
which is greater than all elements to its left), and ai = i − 1 whenever i − 1 is a descent of π (that
is, πi−1 > πi ). Furthermore, each number ai > 0 is necessarily a descent of π and so the nonzero left
border numbers form the descent set of π .

Proposition 1.1. For π ∈ Sn, let a be the sequence of the left border numbers a2,a3, . . . ,an of π in decreasing
order. Then Λ(π) = a.

Proof. First we note that the valleys (ru) of the path D(π) are in bijection with the descents of π .
Let πi = n. We may assume that i < n; otherwise we consider the reduced permutation π1π2 . . .πn−1.
(The identity permutation 12 . . .n is mapped to the path unrn having no valleys.) Clearly, i is a descent
of π . By construction, we have D(π) = uD(π ′

1 . . .π ′
i−1)rD(π ′

i+1 . . . π ′
n) where π∗

L = π ′
1 . . . π ′

i−1 ∈ Si−1
and π∗

R = π ′
i+1 . . .π ′

n ∈ Sn−i . Obviously, π∗
L and π∗

R together have exactly one descent less than π .
On the other hand, since D(π∗

R ) starts with u, the paths D(π∗
L ) and D(π∗

R ) together have exactly one
valley less than D(π). Consequently, the descents of π corresponds to the valleys of Knuth’s path.
More exactly, the vertical projection of the valley point corresponding to descent i meets the diagonal
at point 2i. Hence the descents of π are the different nonzero parts of Λ(π).

The multiplicity of part i > 0 in Λ(π) is given by the number of consecutive u’s following the
step r which marks the valley associated to i. Consider D(π) = u . . . rD(π ′

i+1 . . .π ′
k) . . . . The number

ai+1 = i accounts for the initial u step of D(π ′
i+1 . . .π ′

k). Splitting π ′
i+1 . . .π ′

k into LmR with maximal
element m yields D(π ′

i+1 . . .π ′
k) = uD(L∗)rD(R∗). Repeating this process, for every decomposition the

initial sequence of consecutive u’s is extended by a further u while L is nonempty. In any case, πi

is the rightmost element to the left of m which is greater than m. Thus the number of j satisfying
a j = i equals the number of u’s we identify to be the multiplicity of part i. �
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Remarks 1.2.

A. Note that the left border numbers a2, . . . ,an can be recovered in their original order from Λ(π)

(a1 = 0 by definition). Given the partition, we set ai+1 = i for each nonzero part i of Λ(π). The
remaining parts of Λ(π) are then placed as follows. Replace the undetermined a j ’s (from left to
right) by the greatest possible part which is smaller than j.
For the above example, we have Λ(π) = (7,5,5,2,1,1,0), and hence a2 = 1, a3 = 2, a6 = 5, and
a8 = 7. The number a4 equals to the greatest remaining part of Λ(π) which is smaller than 4,
namely 1. Then a5 takes the greatest remaining part which is smaller than 5, namely 0, and lastly
a7 needs to be 5.

B. Analogously, we can define the right border number bi as the smallest integer j > i with πi < π j ,
or n + 1 if there is no such element. The numbers n + 1 − bn,n + 1 − bn+1, . . . ,n + 1 − b1 are just
the left border numbers of the reverse of π .

Given a partition λ as in the diagram below, we define the size of a reversed hook of a cell in λ to
be 1 plus the number of cells above it, plus the number of cells to its left. Let the maximal reverse
hook length be the reverse hook length that is maximal over all cells of the partition. In the diagram
below there are two cells having maximal reverse hook length which is 7: the lowest and rightmost
pink cell, and the rightmost blue cell. (For interpretation of the colors in the diagram, the reader is
referred to the web version of this article.)

For a fixed partition λ, the number of permutations π ∈ Sn with Λ(π) = λ can be given in terms
of the length of particular reverse hooks. For this, we divide λ successively into disjoint rectangles as
follows: Consider the corner with maximal reverse hook length. If there is more than one, choose the
leftmost. Outline the rectangle consisting of all cells left and above the corner and repeat it for the
subshape below this rectangle and the subshape to the right of this rectangle. The process is carried
out until all cells have an assigned rectangle. (Finally, we have as many rectangles as λ has corners.)

Let wi and hi be the width and height, respectively, of the rectangle whose bottom right-hand corner
is contained in the ith column of λ.

Proposition 1.3. For a partition λ ⊆ (n − 1,n − 2, . . . ,1) with corners in the columns i1, i2, . . . , ik there are

k∏
j=1

(
wi j + hi j − 1

wi j − 1

)

permutations π ∈ Sn with Λ(π) = λ.

Proof. As mentioned above, the corner in column i corresponds to the descent i. By construction,
wi − 1 is the number of elements between the rightmost larger element to the left of πi (which is
on position ai ) and πi . But the height hi counts the elements between πi and the leftmost larger
element to the right of πi (which is on position bi ). If we know all the elements arising somewhere
between ai and bi for each descent i and furthermore, if we know which of these elements arise to
the left of position i, then we can determine the permutation π completely. �
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Remark 1.4. Knuth’s path construction is closely related to the representation of permutations as
decreasing binary trees (see [10, p. 23] for a slightly modified version). Given a permutation π =
πLnπR ∈ Sn , define T (π) to be the tree with root n having left and right subtrees T (π∗

L ) and T (π∗
R ),

respectively, obtained by removing n. This yields inductively a tree such that the left predecessor of a
vertex πi is the rightmost element to the left of πi which is greater than πi , that is, π(ai), while the
right predecessor of πi is the leftmost element greater than πi to the right of πi , that is, π(bi).

Some of the natural statistics of Λ(π) can be expressed in terms of statistics of π . Let des(π)

denote the number of descents of π , lrmax(π) the number of left-to-right maxima of π , maj(π) the
major index of π (that is, the sum of all elements in the descent set {i: πi > πi+1}), and lbsum(π)

the sum of the left border numbers of π .

Corollary 1.5. Let π ∈ Sn and Λ be its associated partition. Then

(i) The number of different nonzero parts of Λ is equal to des(π).
(ii) The number of nonzero parts of Λ is equal to n − lrmax(π).

(iii) The largest part of Λ is equal to the largest descent of π .
(iv) The sum of all different parts of Λ is equal to maj(π).
(v) The sum of all parts (equivalently, area) of Λ is equal to lbsum(π).

By the definition of the left border numbers, lbsum(π) is the sum of the initial position of the
occurrences of all the (consecutive) patterns (k + 1)ωk with ω ∈ Sk−1 arbitrary. But we also can
express this statistic in terms of the number of occurrences of certain patterns (without considering
the positions where the occurrences appear in π ).

For any pattern σ , let (σ )π be the number of the occurrences of σ in π . Furthermore, we use
1-4̄-3-4̄-2 to denote a pattern 1-3-2 which is part of neither a 1-4-3-2 nor a 1-3-4-2 pattern.

Proposition 1.6. We have lbsum(π) = (2-1)π + (1-4̄-3-4̄-2)π for any permutation π .

Proof. For any j, the number a j counts the number of integers i < j for which there exists k such
that i � k < j and πk > π j . (This is compatible with the original definition of a j . Suppose a j = m, that
is, m is maximal with m < j and πm > π j . Then for i = 1, . . . ,m there exists such a k, namely k = m,
whereas for m + 1, . . . , j − 1 there is no such k.)

In the case of πi > π j , the number of inversions (2-1)π will count the relevant pairs (i, j). If
πi < π j then there must exist a k such that πiπkπ j is an occurrence of the pattern 1-3-2. To avoid
the multiple counting of (i, j), we assume that k is maximal, that is, we must rule out elements larger
than πk in the subword πiπi+1 . . .π j−1π j . Hence the number of such pairs (i, j) is (1-4̄-3-4̄-2)π . �

Since the second expression in Proposition 1.6 counts particular occurrences of the pattern 1-3-2,
the statistic lbsum(π) coincides with the number of inversions of π if π avoids 1-3-2. In this case,
Λ(π) is just the conjugated permutation diagram, see [8]. Thus Knuth’s map induces a bijection
between 1-3-2-avoiding permutations and Dyck paths which takes the inversion number to the area
statistic which was already observed by Bandlow and Killpatrick [1].

2. Distribution of lbsum

In [9, Prop. 1], Simion and Schmidt show that there are as many even as odd 1-3-2-avoiding
permutations in Sn if n is even while the excess of even over odd 1-3-2-avoiding permutations equals
a Catalan number if n is odd. We give the following generalization.

Proposition 2.1. For n even, the number of permutations in Sn for which lbsum takes an even value is the
same as the number of permutations in Sn for which the value is odd. For n odd, the numbers differ by the
tangent numbers.
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Proof. By definition, for a permutation π = πLnπR ∈ Sn the path D(π) is the concatenation of
uD(π∗

L )r and D(π∗
R ).

Interpreting lbsum(π) as area of the shape Λ(π), it is easy to see that lbsum(π) = lbsum(π∗
L ) +

lbsum(π∗
R ) + k(n − k) where πk = n. (Note that the path D(π) first returns to the diagonal at 2k.)

In the case of even n, the map φ : π �→ πRnπL is an involution on Sn which switches the parity of
lbsum since n is placed on position n + 1 − k in φ(π).

If n is odd, lbsum(π) is an even number if and only if lbsum(π∗
L ) and lbsum(πR∗) have the same

parity. Let en (resp. on) be the number of permutations in Sn with an even (resp. odd) left border
number sum. Then we have

en =
n∑

k=1

(
n − 1

k − 1

)
(ek−1en−k + ok−1on−k),

on =
n∑

k=1

(
n − 1

k − 1

)
(ek−1on−k + ok−1en−k)

(where e0 = 1, o0 = 0). Because ek = ok for each even k, we obtain

�n := en − on =
n−1∑
k=2

k even

(
n − 1

k − 1

)
�k−1�n−k (�1 = 1). �

The considerations made at the beginning of the previous proof immediately yield a recursion
formula for the ordinary generating function of the statistic lbsum.

Proposition 2.2. The function Fn(x) = ∑
π∈Sn

xlbsum(π) satisfies

Fn(x) =
n∑

k=1

(
n − 1

k − 1

)
Fk−1(x)Fn−k(x)xk(n−k) (1)

where F0(x) = 1.

As a consequence, we obtain the following information on the expectation of the random vari-
able Xn : Sn → N0 with Xn(π) = lbsum(π) where the probability measure is the uniform distribution
on Sn . We also have a representation for the variance in terms of harmonic numbers.
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Corollary 2.3. For n � 2, we have

E(Xn) = (n + 1)

(
n

2
− Hn,1

)
+ n,

Var(Xn) = 2n(n + 2) − (n + 1)Hn,1 − (n + 1)2 Hn,2

where Hn,m = 1 + 1
2m + · · · + 1

nm denotes the harmonic number of order m.

Remarks 2.4.

A. As mentioned in Section 1, the statistic lbsum is identical with the inversion number inv for 1-3-2-
avoiding permutations. Over Sn(1-3-2), the generating function of inv is the q-Catalan polynomial
Cn(q) which satisfies the recursion

Cn(q) =
n∑

k=1

Ck−1(q)Cn−k(q)qk−1

as shown by Fürlinger and Hofbauer [3]. Eq. (1) generalizes this result.
B. The random variable Xn has the same distribution function as the random variable

(n
2

)−Yn where
Yn has appeared in literature several times, see [7,5,4]. It is known to measure the major cost of
the in-situ permutation algorithm or the left path length of random binary search trees. Kirschen-
hofer et al. [5] and Hwang and Neininger [4] have given limit laws and general moments for Yn

(and therefore Xn).

Refining, let Gn(x, y, p,q) be the generating function of the statistic quadruple (lbsum,des,maxdes,
lrmax) where maxdes(π) is defined to be the largest descent of π . Note that, for a given permutation
π ∈ Sn , these statistics measure the area, the number of corners, the number of columns, and n
minus the number of rows of the associated shape Λ(π). Using the decomposition of π into πLnπR ,
we obtain for all n � 2

Gn(x, y, p,q) = Gn−1(x, y, p,q)

+
n−1∑
k=1

(
n − 1

k − 1

)
Gk−1(x, y,1,q)Gn−k(x, y, p,1)xk(n−k) ypkq

where G0(x, y, p,q) = G1(x, y, p,q) = 1. The generating function of these polynomials

g(x, y, p,q, z) =
∑
n�0

1
n! x(

n
2)znGn

(
x−1, y, p,q

)

admits the recursion

∂ g(x, y, p,q, z)

∂z
= g(x, y, p,q, xz) − ypg(x, y,1,q, xpz)

(
1 − g(x, y, p,1,qz)

)
.

Particular instances of this may be solved; for example, one easily finds g(−1,1,1,1, z) = 1 + tanh(z),
giving an alternative proof of Proposition 2.1.
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3. A permutation representation

In this section, we provide Λ(π) with an additional filling to obtain a unique assignment between
permutations and filled shapes.

Given the shape Λ(π), label its columns from left to right with 1 to k (where k is the last descent
of π ). Then label the rows of length i � 1 from bottom to top with the numbers j (in increasing
order) for which a j = i. (Note that the bottom row of length i has label i + 1.) Lastly, put a dot
into the cell in column i and row j whenever (i, j) is an inversion of π . For π = 5 3 1 4 8 2 7 6, the
procedure yields

Recovering the permutation from the filled shape is an easy matter: By counting the dots in the ith
column, we know the number of inversions (i, ·) which is enough to determine πi successively.

To describe the tableaux resulting from a permutation in this way, we first focus on the minimal
filling. Consider the splitting of the shape introduced in Section 1. It is easy to see that each cell
which arises in the rightmost column of some rectangle must be filled. As explained in the proof of
Proposition 1.3, these cells correspond to the elements to the right of a descent top πi before the first
occurrence of an element which is greater than πi .

But these are exactly those cells which have to be filled absolutely. The unique permutation in
bijection with this tableau has the property that for all i, if j > i is the smallest integer with πi < π j
then πi < πk for all k � j. This means that π avoids the pattern 2-3-1.

As mentioned in Section 1, the other extreme case (all the cells are filled) corresponds to 1-3-2-
avoiding permutations which proves the following result.

Proposition 3.1. There is a bijection between 1-3-2-avoiding and 2-3-1-avoiding permutations in Sn which
preserves the corresponding shape and hence all the statistics mentioned in Corollary 1.5.

By the tableau construction, it is an easy matter to read the number of occurrences of 1-3-2 from
the filling. If we have an empty cell and to its right a filled cell, precisely the empty cell in column
i and the filled cell in column j, within the row labeled with k then the sequence πiπ jπk is an
occurrence of 1-3-2 in π . (Note that i < j < k by the definition of the labels, and πi < πk < π j by
the definition of the cell filling.) Conversely, if πiπ jπk is a 1-3-2-occurrence then ak � j and the row
labeled with k comprises at least j cells. Therefore the tableau records all the occurrences of 1-3-2
in π .
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Remark 3.2. The occurrences of 2-3-1 are not immediately countable. Two filled cells (in columns i
and j) in the same row k mean that πiπ jπk is either an occurrence of 2-3-1 or 3-2-1. To find out
which case is true one has to check whether the tableau contains the cell (i, j) (in column i and
row j). If so, then the cell is filled and πiπ jπk is a decreasing subsequence; otherwise we have an
occurrence of 2-3-1.

Furthermore, it turns out that the poset of 1-3-2-avoiding permutations ordered by containment
of the associated partitions is just the (strong) Bruhat poset restricted to Sn(1-3-2).

Proposition 3.3. For π,σ ∈ Sn(1-3-2), we have Λ(π) ⊂ Λ(σ) if and only if π < σ in the Bruhat order.

Proof. Let π be covered by σ in the Bruhat poset, that is,

σ = π1 . . . πi−1π jπi+1 . . . π j−1πiπ j+1 . . . πn

with πi < π j such that σ has exactly one inversion more than π . Consequently, there is no k with
i < k < j and πi < πk < π j . Because π avoids 1-3-2, we even have πk < πi for all k = i + 1, . . . , j − 1.
The figure shows the regions (shaded) in which the dots (k,πk) have to be placed to guarantee that
no 1-3-2 occurs in π or σ .

Now we compare the left border numbers a1, . . . ,an of π (which are the parts of Λ(π)) with the left
border numbers a′

1, . . . ,a′
n of σ (which are the parts of Λ(σ)). Obviously, we have a′

i = a j , ai = i − 1
and a′

j = i. All the other left border numbers do not change when exchanging πi and π j , that is,
ak = a′

k for k 
= i, j. This is trivial for k < i. For k = i + 1, . . . , j − 1, if ak = i (otherwise ak = l for some
l > i), then a′

k = i since π j > πi . Finally, for k = j + 1, . . . ,n we have πk > π j or πk < πi . In the first
case, ak = a′

k = l for some l < i. If we have ak = j in the second case (the alternative is ak = l for some
l > j), then a′

k = j as well since πk < πi . Consequently, Λ(σ) is obtained from Λ(π) by adding one
(corner) cell.

Conversely, assume now that Λ(π) ⊂ Λ(σ) and the both shapes differ by exactly one cell. By
Proposition 1.6, the number of cells in the ith column of the shape is equal to the number of inver-
sions (i, j) with i < j in the corresponding permutation. Hence σ is obtained from π by a singleton
reduction. �
Remark 3.4. In general the previous statement fails. The shapes of Bruhat ordered permutations do
not have to be contained in each other (for example, Λ(1243) = (3,0,0) and Λ(1423) = (2,2,0)).
Conversely, permutations whose shapes are contained in each other are not necessarily comparable in
Bruhat order (for example, Λ(1342) = (3,0,0) and Λ(2143) = (3,1,0)).

Open questions.

1) If the shape of one permutation is contained inside the shape of another, then what aspect of the
permutations does this reflect?

2) What are the rules for filling tableaux as introduced in Section 3?
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