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The aim of the paper is to derive the exact analytical expressions for torsion and bending creep of rods
that obey the Norton–Bailey, Prandtl–Garofalo and Naumenko–Altenbach–Gorash constitutive models.
The common secondary creep constitutive model is the Norton–Bailey law which gives a power law rela-
tionship between creep rate and stress. The closed form solutions for fractional Norton–Bailey creep law
are derived. The analytical formulas express the torque and bending moment as functions of the time for
the period of relaxation. Other formulas express the twist rate and curvature as functions of the time for
the duration of engineering creep experiment. The derived formulas are suitable for the practically
important problems of machinery. Namely, the formulas are relevant for calculation of hereditary effects
for helical, leaf and disk springs and twisted shafts.

� 2014 Elsevier Ltd. All rights reserved.
1. Introduction

Stress analysis for creep has a long history in engineering
mechanics driven by the requests of design for elevated tempera-
ture. The permanent high stress leads to creep of these structural
elements. The modeling of creep under multi-axial stress states
is the key step in the adequate prediction of the long-term struc-
tural behavior. Such a modeling requires the introduction of ten-
sors of stress, strain, strain rate and corresponding inelastic parts.

The basic mechanical elements, such as bolts, shafts, torsion
members, helical and leaf springs, are usually exposed for a long
time to a constant or variable high stress. Even if the stress tensor
of these elements is predominantly uniaxial, the stress fields are
principally inhomogeneous. The only exception of the homoge-
neous stress is the uniaxial stress field in the rod of a constant
cross-section in tension or compression. This is the argument for
choice of the constant cross-section rod as the preferred object
for creep experiments. In this case the strain rate and the stress
could be immediately measured. The acquired dependence of
creep strain rate over the constant uniaxial stress provides the uni-
axial creep law.

In contrast, the stress fields in the majority of mechanical ele-
ments are inhomogeneous. In contrast to uniaxial tension tests,
the stresses are not distributed uniformly over the cross section
of structural members. Firstly, the shear strain in the twisted circu-
lar rods depends linearly upon the radius. Torsional loading has a
significant influence on the initial choice of section for maximum
structural efficiency. The elastic solution covers by StVenant theory
of torsion. Secondly, the axial elongation of bent beams is the lin-
ear function of coordinate according to the Euler–Bernoulli theory.

However, the closed form solutions were not derived – to the
author’s knowledge – up to now, despite the fact that the classical
theories of StVenant for torsion and Euler–Bernoulli for bending
are applicable for creep problems. The problem consists in the non-
linear dependence of strain rate upon stress and calculation of
resulting integrals over the rod’s cross-section.

The nonlinear dependence of strain rate upon stress leads to the
nonlinear differential equations that describe creep effect. Usually
these nonlinear differential equations are being solved numerically
using finite-element codes. The application of finite-element codes
is unpractical for the structural members with such a primitive
geometry, like rectangular beam or circular rods.

Another argument for closed analytical solution is the follow-
ing. The closed form solution allows inversely derive the uniaxial
creep law from torsion or bending experiments. The shear
stress–strain response of materials can be extremely important
in the design, analysis and manufacture of a wide variety of prod-
ucts and components which are loaded primarily in shear or tor-
sion. When the applied loadings are primarily shear in nature,
the shear creep laws must be known in order to apply the usual
closed form equations commonly used in engineering design and
analysis. The same argument could be applied for experiments
on beam-like elements under flexure.

Consequently, the essential task is the derivation of the exact
closed form expressions for torsion and bending creep for isotropic
materials, which obey the commonly accepted constitutive laws.
It is shown in this Article, that the laws of Norton–Bailey,
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Prandtl–Garofalo and Naumenko–Altenbach–Gorash allow the
closed form solution. These basic constitutive models were based
on the time- and strain-hardening constitutive equations for
time-varying stress. The models adequately describe the secondary
creep stage from constant load/stress uniaxial tests where creep
rate is nearly constant. Among others, the most widespread sec-
ondary creep constitutive model has been the Norton–Bailey law.
The closed form solution is found for the fractional strain rate gen-
eralization of the Norton–Bailey law as well. This creep law pro-
vides a power law relationship between fractional strain rate and
equivalent stress.

The constitutive models and the solution methods for creep
problems are discussed in Kassner (2008). A summary of creep
laws for common engineering materials is provided in Naumenko
and Altenbach (2007) and Yao et al. (2007). The results of creep
simulation are applied to practically important problem of engi-
neering, namely for simulation of creep and relaxation of helical
and disk springs.

There are two kinds of hereditary effects in structural members,
namely relaxation and creep (Findley et al., 1976). The two terms
are sometimes used interchangeably, although they are really dif-
ferent. Stress relaxation is a decrease in stress under constant
strain. The deformation of body during relaxation does not alter,
but the stress gradually reduces. The stress relaxation occurs when
the deformation is held constant such as in bolt in flange where the
constraint is that the total length of the system is fixed. Creep is an
increase in strain under constant stress. For terminology clarity,
the hereditary effects under constant stress will be referred to as
‘‘engineering creep’’.
2. Constitutive equations for creep

2.1. Tensorial generalization of creep laws

The groundwork of the engineering creep theory is the intro-
duction of the inelastic strain, the creep potential, the flow rule,
the equivalent stress and internal state variables. The creep com-
ponent of strain rate is defined by material specific creep law. In
this article we adopt, following the common procedure (Betten,
2008), an isotropic stress function

_e0ij ¼
3r0ij
2reff

Fðreff ; tÞ: ð1Þ

The equations must be presented in the direct tensor notation.
This notation assures the invariance with respect to the choice of
the coordinate system and has the advantage of clear and compact
representation of constitutive hypothesis. The special case of
incompressible behavior of material ( _ekk ¼ 0) is assumed hereafter.

In Eq. (1) the following notations are used:

_e0ij ¼ _eij�
1
3

_ekkdij is the deviatoric component of creep strain rate;
r0ij ¼ rij �
1
3
rkkdij is the deviatoric component of stress;
reff ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3
2
r0ijr0ij

r
¼

ffiffiffiffiffiffiffi
3J02

q
is the Mises equivalent stress;
J02 ¼
1
2
r0ijr

0
ij is the second invariant of the stress tensor:

The expressions for strain rate in uniaxial and shear stress
states for the definite representations of stress function are next
derived. The effects of hardening or softening and damage process
are not accounted.
2.2. Norton–Bailey law

Firstly, consider Norton–Bailey law (Odquist and Hult, 1962).
The isotropic stress function reads in this case

Fðreff ; tÞ ¼ �e
t
�t

� �k�1 reff

�r

� �mþ1
; ð2Þ

where �e, �r, �t; m and k are the experimental constants. The effect of
time softening is accounted, if the time exponent is k less that one.
If the time exponent k is greater than one, the time hardening
occurs.

There is only non-vanishing component of stress tensor
(r11 ¼ r) for the uniaxial stress state. Correspondingly, the non-
vanishing components of strain rate are

_e � _e11 ¼ �2 _e22 ¼ �2 _e33;

where

_e ¼ �e
t
�t

� �k�1 r
�r

� �mþ1
:

For brevity of equations, we introduce the material constant

cr ¼
�e

�tk�1 �rmþ1
:

With this constant the dependence of uniaxial strain rate upon
stress reads

_e ¼ crtkþ1rmþ1: ð3Þ

For pure shear stress state (r12 ¼ r21 ¼ s) the non-vanishing
components of deformation rate are

_e12 ¼ _e21 �
_c
2
¼ 1

2
�c

t
�t

� �k�1 s
�s

� �mþ1
;

where

�c ¼
ffiffiffi
3
p

�e:

With the creep constant for shear strain

cs ¼
�c

�tk�1�smþ1

and equivalent shear stress

�s ¼
�rffiffiffi
3
p

the Norton–Bailey creep law for pure shear deformation reduces to

_c ¼ cstk�1smþ1: ð4Þ

There is a simple relation between the constants in Eqs. (3) and
(4):

cs ¼ 3m=2þ1cr:

2.3. Prandtl–Garofalo creep law

Secondly, consider the creep law with the hyperbolic sine func-
tion. This kind of creep law was originally suggested by Prandtl
(1928) and employed by Nadai (1937) to describe the stress depen-
dence of the steady creep rate. The isotropic stress function of
Garofalo creep law (Garofalo, 1963; Abu-Haiba et al., 2002) could
be represented as

Fðreff ; tÞ ¼ �e
t
�t

� �k�1

sinhP reff

�r

� �
: ð5Þ

Once again, the case k – 1 corresponds to the time hardening or
softening. The Garofalo creep law describes creep in the break-
down and power-law range. Hereafter the case of Garofalo creep
law with P ¼ 1 is considered and is referred to as Prandtl–Garofalo
creep law.
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For the uniaxial stress state the deformation rate reads

_e ¼ �e
t
�t

� �k�1

sinh
r
�r

� �
or

_e � _e11 ¼ crtk�1 sinh
r
�r

� �
ð6Þ

Here

cr ¼
�e

�tk�1

is the creep constant for uniaxial strain.
For pure shear stress state the deformation rate reads

_e12 ¼ _e21 ¼
1
2

�c
t
�t

� �k�1

sinh

ffiffiffi
3
p

s
�r

 !
:

Finally, the shear strain rate according to Prandtl–Garofalo
creep law is

_c � 2 _e12 ¼ cstk�1 sinh
s
�s

� �
ð7Þ

with the corresponding constant

cs ¼
ffiffiffi
3
p

�e
�tk�1

�
�c

�tk�1
�

ffiffiffi
3
p

cr:
2.4. Naumenko–Altenbach–Gorash law

Thirdly, the isotropic stress function for Naumenko–Altenbach–
Gorash creep law (Naumenko et al., 2009) is

Fðreff ; tÞ ¼ �e � reff

�r
þ reff

�r

� �mþ1
� �

: ð8Þ

Eq. (8) adequately describes creep in diffusion range and
power-law range.

For the uniaxial stress state the strain rate reads

_e � _e11 ¼ �e � r
�r
þ r

�r

� �mþ1
� �

¼ �2 _e22 ¼ �2 _e33: ð9Þ

For pure shear stress state the shear deformation rate reduces
to

_c � 2 _e12 ¼ �c � s
�s
þ s

�s

� �mþ1
� �

: ð10Þ

For the creep laws (1)–(10) the closed form solutions of basic
creep problems are derived. Needless to say, that the numerical
values for the creep constants �e, �c, �r, �s are apparently different
for diverse creep laws.

3. Creep and relaxation of twisted rods

3.1. Basic constitutive equations for relaxation in torsion

Torsion is twisting of a structural member, when it is loaded by
couples that produce rotation about its longitudinal axis. Consider
the relaxation problem for a rod with circular cross-section under
the constant twist. Let sðr; tÞ is shear stress in the cross-section of
rod. The total shear strain in any instant of the time is cðr; tÞ; is the
sum of the elastic and the creep components of shear strain:

c ¼ ce þ cc: ð11Þ

The creep component of shear strain is ccðr; tÞ. The elastic com-
ponent of shear strain is

ce ¼ s=G; ð12Þ
where G is the shear modulus.
In this Article the creep for the total deformation that remains

constant in time is investigated. Thus, the total strain c0ðrÞ is func-
tion of radius only but constant in time. However, the elastic and
the creep components of strain are the functions as well of radius
and of time, such that:

cðr; tÞ ¼ ceðr; tÞ þ ccðr; tÞ � c0ðrÞ: ð13Þ

The time differentiation of (13) leads to the differential equa-
tion for elastic and creep strain rates:

_cðr; tÞ ¼ _ceðr; tÞ þ _ccðr; tÞ � 0; ð14Þ

where dot denotes the time derivative.
The differentiation of the Eq. (12) over time delivers the elastic

component of strain rate

_ce ¼ _s=G: ð15Þ
3.2. Torque relaxation for the materials, that obeys Norton–Bailey law

Firstly, the Norton–Bailey law for the state of shear stress
(Boyle, 2012) is assumed

_ccðr; tÞ ¼ cstk�1smþ1; ð16Þ

The substitution of material law (16) in the Eq. (14) delivers the
ordinary nonlinear differential equation of the first order for total
shear stress sðr; tÞ:

_s
G
þ cstk�1smþ1 ¼ 0: ð17Þ

The initial condition for the Eq. (17) presumes the pure elastic
shear stress in the initial moment t ¼ 0:

sðr; t ¼ 0Þ ¼ s0ðrÞ: ð18Þ

The shear stresses in the moment t ¼ 0 for the rod with circular
cross-section are

s0ðrÞ ¼ Ghr;

where h is the twist angle per unit length. The torque at the moment
t ¼ 0 is

M0
T ¼

1
2

GphR4:

The solution of the ordinary differential equation (17) with ini-
tial condition (18) delivers the shear stress over the cross-section
of the twisted rod as the function of time and radius:

sðr; tÞ ¼ s�m
0 ðrÞ þ

cs G mtk

k

� ��1=m

� Gh
1
rm
þ cs G mþ1hmm

k
tk

� ��1=m

: ð19Þ

The couple as the function of time is

MTðtÞ ¼ 2p
Z R

0
r2sðr; tÞdr: ð20Þ

With the expression for total shear stress (19) we can calculate
the couple

MTðtÞ ¼ 2pGh
Z R

0
r2 1

rm
þ cs G mþ1hmm

k
tk

� ��1=m

dr

For evaluation of the integral (20) the formula (A4) for
Jpða;m; XÞ is applied for the case p ¼ 2. The integral could be
expressed in terms of hypergeometric function (Lewin, 1981)
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MTðtÞ ¼ 2pGh Jp
cs hmGmþ1 mtk

k
;m; R

 !
¼2

F1
4
m
;

1
m

;
4þm

m
;� cs hmGmþ1 mtk

k
Rm

 !
M0

T : ð21Þ
3.3. Torque relaxation for the material, that obeys Prandtl–Garofalo
law

Secondly, the Prandtl–Garofalo law for shear stress is presumed

_crðr; tÞ ¼ cstk�1 sinh
s
�s

� �
: ð22Þ

The solution of the differential equation (14) with initial condi-
tion (18) for the Garofalo creep law (22) reads

sðr; tÞ ¼ �s ln tanh
Gcs

2k�s
tk þ arctanh exp

Grh
�s

� �� �� �	 

: ð23Þ

The time dependent torque (20) could be expressed in terms of
polylogarithms (Abramowitz and Stegun, 1972) using formula (A3)
for I2ða; b; XÞ,

MTðtÞ ¼ 2p
Z R

0
r2sðr; tÞdr ¼ 2p�s I2

Gcs

2k�s
tk;

Gh
�s

; R
� �

: ð24Þ
3.4. Torque relaxation for the material, that obeys Naumenko–
Altenbach–Gorash

Thirdly, the Naumenko–Altenbach–Gorash law for the state of
shear stress is applied

_crðr; tÞ
�c
¼ s

�s
þ s

�s

� �mþ1
; ð25Þ

The substitution of material law (25) in Eq. (14) leads to the
nonlinear ordinary homogeneous differential equation for total
shear stress

_s
G
þ �c

s
�s
þ s

�s

� �mþ1
� �

¼ 0: ð26Þ

The solution of the differential equation (26) with initial condi-
tion (18) delivers the shear stress over the cross-section of the
twisted rod

sðr; tÞ ¼ r

rm m�cGn�sc
�smþ1 þ n

Gmhm

� �1=m ð27Þ

with the auxiliary time function

n ¼ nðtÞ ¼ exp
m�cG

�s
t

� �
:

The torque evaluates after the substitution of (27) in the expres-
sion (20). For evaluation the formula (A4) for Jpða;m; XÞ is applied
for the case p ¼ 2. Finally, torque as function of time is expressed
in terms of hypergeometric function:

MTðtÞ¼2F1
4
m
;

1
m

;
4þm

m
;
ðhGRÞm

n�smþ1 ð�s� �cnGmÞ
� �

n�1=mM0
T : ð28Þ

The results of this section could be instantly applied to estimate
the effects of creep and relaxation of twisted shafts. On the other
hand, the wire of helical compression springs is also in twist state.
The derived formulas express relaxation and creep of helical com-
pression springs.
3.5. ‘‘Engineering creep’’ phenomenon in torsion

An ‘‘engineering creep’’ phenomenon is an increased tendency
toward more strain and plastic deformation with no change in
stress. Thus, the applied torque does not alter in time, but the twist
angle of the rod continuously increases.

According to Norton–Bailey law (4) the shear stress due to creep is

s ¼
_c

cstk�1

� � 1
mþ1

¼
_hr

cstk�1

 ! 1
mþ1

:

Performing the integration in (20) over the area of wire we get
the torque due to creep

M0
TðtÞ ¼ 2p

Z R

0
r2sðr; tÞdr ¼ 2p

Z R

0
r2 r _h

cstk�1

 ! 1
mþ1

dr ¼
_h

cstk�1

 ! 1
mþ1

T1;

where

T1 ¼ 2p
Z R

0
r2þ 1

mþ1dr ¼ 2p mþ 1
3mþ 4

R
3mþ4
mþ1 :

Assuming that torque M0
T remains constant, from the algebraic

equation the twist rate resolves as:

_h ¼ g1tk�1

with g1 ¼ cs
M0

T
T1

� �mþ1
providing the inhomogeneous ordinary differ-

ential equation of the first order with the initial condition

hð0Þ ¼ 0:

The twist rate during the ‘‘engineering creep’’ is the following
solution of this initial value problem:

h ¼ g1tk=k:
4. Creep and relaxation of beams in bending

4.1. Basic constitutive equations for relaxation in bending

Consider the problem of stress relaxation in the pure bending of
a rectangular cross-section (B� H) beam. In the applied Euler–Ber-
noulli theory of slender beams subjected to a bending moment MB,
a major assumption is that ‘plane sections remain plane’. In other
words, any deformation due to shear across the section is not
accounted for (no shear deformation). During the relaxation exper-
iment the curvature of the neutral axis of beam j remains constant
over time, such that the bending moment MB continuously
decreases. This case describes the relaxation of bending stress,
assuming that the flexure deformation of beam does not alter in
time.

Let rðz; tÞ is uniaxial stress in the beam in the direction of beam
axis. The total strain in any instant of the time is eðz; tÞ; is the sum
of the elastic and the creep components of the strain:

e ¼ ee þ ec: ð29Þ

The elastic component of shear strain is

ee ¼ r=E; ð30Þ

where E is the shear modulus and ecðz; tÞ is the creep component of
normal strain.

Consider creep under constant in time total strain

eðz; tÞ ¼ eeðz; tÞ þ ecðz; tÞ � e0ðrÞ: ð31Þ

The normal strain e0ðrÞ ¼ eðz; t ¼ 0Þ is the function of radius, but
remains constant over time. The time differentiation of (31) leads
to
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_e ¼ _ee þ _ec � 0: ð32Þ

The kinematic assumptions upon which the Euler–Bernoulli
beam theory is founded allow it to be extended to more advanced
analysis. Simple superposition allows for three-dimensional trans-
verse loading. Euler–Bernoulli beam theory can also be extended to
the analysis of curved beams, beam buckling, composite beams,
and geometrically nonlinear beam deflection. The common consti-
tutive models of creep in bending state are studied below.

4.2. Bending moment relaxation for the material, that obeys Norton–
Bailey law

The Norton–Bailey law for a uniaxial state of stress reads

_ecðz; tÞ ¼ crtk�1rmþ1; ð33Þ

The substitution of material laws results in the ordinary differ-
ential equation for uniaxial stress

_r
E
þ crtk�1rmþ1 ¼ 0: ð34Þ

The initial condition for the Eq. (34) delivers the pure elastic
shear stress in the initial moment

rðz; t ¼ 0Þ ¼ r0ðzÞ: ð35Þ

For pure elastic bending the following hypothesis of
Euler–Bernoulli for initial distribution of stresses over the
cross-section of the beam is valid:

r0ðzÞ ¼ Ejz;

where j is the bending curvature, which presumed to be constant
over time and z is the perpendicular distance to the neutral axis.
The hypothesis of Euler–Bernoulli beam does not account for the
effects of transverse shear strain.

The solution of the ordinary differential equation (34) with
initial condition (35) is

rðz; tÞ ¼ r�m
0 ðzÞ þ

cr Emtk

k

� ��1=m

¼ Ej � 1
zm þ

cr jmEmþ1 m
k

tk

" #�1=m

: ð36Þ

The bending moment for the rectangular cross-section of width
B and height H is the function of time.

MBðtÞ ¼ B
Z H=2

�H=2
zrðz; tÞdz: ð37Þ

With the expression (36) we can calculate the moment in (37)
as

MBðtÞ ¼ 2BEj
Z H=2

0
z � 1

zm þ
cr jmEmþ1 m

k
tk

" #�1=m

dz: ð38Þ

Using the Eq. (A4) for Jpða;m; XÞ for case p ¼ 1; the integral in
(38) could be expressed in terms of hypergeometric function

MBðtÞ ¼ 2BEj � J1
cr jmEmþ1 mtk

k
;m;

H
2

 !

¼2 F1
3
m
;

1
m

;
3þm

m
;� cr jmEmþ1 mtk

k
H
2

� �m
 !

M0
B; ð39Þ

where

M0
B ¼ EBH3j=12

is the elastic bending moment at time t ¼ 0.
4.3. Bending moment relaxation for the material, that obeys Prandtl–
Garofalo law

The Prandtl–Garofalo law for uniaxial state of stress reads

_ec ¼ crtk�1 sinh
r
�r

� �
: ð40Þ

The solution of the ordinary differential equation (32) with ini-
tial condition (35) for the Prandtl–Garofalo creep law (40) leads to
the expression of normal stress as function of coordinate z and
time t:

rðz; tÞ ¼ �r ln tanh
Ecr

2k�r
tk þ arctanh exp

Ej
�r

z
� �� �� �	 


: ð41Þ

For evaluation the formula (A2) for I1ða; b; XÞ is applied. With
this formula the integral in (37) could be expressed in terms of
polylogarithm

MBðtÞ ¼ 2B�rI1
Ecr

2k�r
tk;

Ej
�r

;
H
2

� �
: ð42Þ
4.4. Bending moment relaxation for the material, that obeys
Naumenko–Altenbach–Gorash law

In this section the problem of the pure bending of a rectangular
cross-section beam with a modified power law (stress range-
dependent constitutive model) subjected to a bending moment is
solved. The description of creep is based on Naumenko–
Altenbach–Gorash law.

The substitution of modified power material law (9) results in
the ordinary differential equation for uni-axial stress

_r
E
þ �e � r

�r
þ r

�r

� �mþ1
� �

¼ 0: ð43Þ

When loaded by a bending moment, the beam bends so that the
inner surface is in compression and the outer surface is in tension.
The neutral plane is the surface within the beam between these
zones, where the material of the beam is not under stress, either
compression or tension. The solution of the ordinary differential
equation (43) with initial condition (35) delivers the stress over
the cross-section of the beam as the function of time and distance
z to neutral plane

rðz; tÞ ¼ z

zm m�eE1��r
�rmþ1 þ 1

Emjm

� �1=m ; ð44Þ

where

1 ¼ 1ðtÞ ¼ exp
m�eE

�r
t

� �
:

For calculation of the bending moment (37) the formula (A4) for
Jpða;m; XÞ used for the case p ¼ 1. With this formula the bending
moment in the cross-section could be expressed in terms of hyper-
geometric function:

MBðtÞ¼2F1
3
m
;

1
m

;
3þm

m
;
ðjEHÞm

2m �rmþ1
ð�r�m�eE1Þ

� �
1�1=mM0

B: ð45Þ

The curvature j of the beam remains constant in time. In the
expressions (39), (42), and (45) the bending moment MBðtÞ is the
function of time and continuously relaxes with time.

4.5. ‘‘Engineering creep’’ phenomenon members subjected to bending

As mentioned above, the ‘‘engineering creep’’ phenomenon is an
increased tendency toward more strain under constant load. The
beam is stressed with a invariable bending moment. Over time,
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the moment and stress do not change, although the curvature of
the beam j ¼ jðtÞ continuously increases. The elongation rate of
the strip, which locates on the perpendicular distance z to the neu-
tral axis, is

_eðt; zÞ ¼ _jz for � H=2 < z < H=2:

According to Norton–Bailey law (3) the shear stress due to creep
is

r ¼
_e

crtk�1

� � 1
mþ1

¼
_jz

crtk�1

� � 1
mþ1

:

Performing the integration over the area of wire we get the
bending moment due to creep

M0
B ¼ B

Z H=2

�H=2
zrðz; tÞdz ¼ BH2

2
mþ 1

3þ 2m
H _j

2tk�1cr

� � 1
1þm

:

Assuming that bending moment M0
B remains constant over

time, from this equation the curvature time rate resolves as

_j ¼ b1tk�1 with jð0Þ ¼ 0 ð46Þ

and

b1 ¼
2cr

H
2M0

B

BH2

3þ 2m
mþ 1

 !mþ1

Thus, the flexure

j ¼ b1tk=k

increases over time as tk.
The results of this section are applicable for springs, that over-

whelmingly stressed by bending loads, like the leaf springs and
torsion springs. Torsion springs may be of helix or spiral type.

5. Fractional creep models

5.1. Fractional generalization of creep laws

The motivation for the introduction of fractional models is as
follows. Scott-Blair (1947) revealed a framework that enabled the
power-law equation proposed by Nutting (1921) through the use
of fractional calculus. Its model was the analogy to the classical
the Hookean spring element, in which the stress in the spring is
proportional to fractional strain rate. This element interpolates
between the constitutive responses of a spring and a dashpot. In
the work (Koeller, 1984) this canonical modal leaded to a mechan-
ical element called the spring-pot, known also as the Scott-Blair
element. Similar to the Maxwell element in hereditary mechanics,
the fractional Scott-Blair element could be considered as the fun-
damental building block from which more complex constitutive
models could be constructed. The creep and relaxation power laws
of the Scott–Blair model are interpreted sometimes in terms of a
continuous spectrum of retardation and relaxation times, respec-
tively (Mainardi, 2010).

In the paper (Jaishankar and McKinley, 2013) was demon-
strated, that fractional stress–strain relationships are also applica-
ble to viscoelastic interfaces, and result in simple constitutive
models that may be used to quantitatively describe the power-
law rheological behavior exhibited by such interfaces.

The use of fractional calculus leads to generalizations of the
classical mechanical models: the basic Newton element of order
one is substituted by the more general Scott–Blair element of order
a. The straightforward way to introduce fractional derivatives in
creep (Mainardi and Spada, 2011) is the replacing in the constitu-
tive equation the creep model the first derivative with a fractional
derivative Da of order 0 < a 6 1,
Dae0ij ¼
3r0ij
2reff

Fðreff ; tÞ; ð47Þ

where

Dae0ij ¼ Daeij �
1
3

dijD
aekk;

is the deviatoric component of fractional creep strain rate.
The function Fðreff ; tÞ describes the material properties, and Da

is the fractional derivative operator (Miller and Ross, 1993). The
basic definitions of fractional calculus in a form most useful for
applications in rheology are briefly outlined in Mainardi and
Gorenflo (2007), Atangana1 and Secer (2013). The actual definition
of the fractional derivative operator is in Appendix D.

5.2. Fractional Norton–Bailey law

Firstly, consider fractional generalization of Norton–Bailey law.
The isotropic stress function reads in this case

Fðreff ; tÞ ¼ �e
t
�t

� �K�1 reff

�r

� �Mþ1
; ð48Þ

where �e, �r, �t; M and K are the experimental constants.
There is only non-vanishing component of stress tensor

(r11 ¼ r) for the uniaxial stress state. Correspondingly, the non-
vanishing components of fractional strain rate are

Dae � Dae11 ¼ �2Dae22 ¼ �2Dae33;

where

Dae ¼ �e
t
�t

� �K�1 r
�r

� �Mþ1
:

For brevity of equations, we introduce the material constant

Cr ¼
�e

�tK�1 �rMþ1
:

With this constant the dependence of uniaxial fractional strain
rate upon stress reads

Dae ¼ CrtKþ1rMþ1: ð49Þ

For pure shear stress state (r12 ¼ r21 ¼ s the non-vanishing
components of deformation rate are

Dae12 ¼ Dae21 �
1
2

Dac ¼ 1
2

�c
t
�t

� �K�1 s
�s

� �Mþ1
;

with the creep constant for shear strain

Cs ¼
�c

�tK�1�sMþ1
:

The fractional Norton–Bailey creep law for pure shear deforma-
tion reduces to

Dac ¼ CstK�1sMþ1: ð50Þ

There is a relation between the constants in Eqs. (49) and (50):

Cs ¼ 3M=2þ1Cr:
5.3. Basic constitutive equations for relaxation in torsion

The creep for the total deformation that remains constant in
time is studied. The elastic and the creep components of strain
are the functions as well of radius and of time, such that:

cðr; tÞ ¼ ceðr; tÞ þ ccðr; tÞ � c0ðrÞ: ð51Þ

The fractional time differentiation of (52) leads to the fractional
differential equation for elastic and creep strain rates:
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Dacðr; tÞ ¼ Daceðr; tÞ þ Daccðr; tÞ � 0; 0 < a 6 1: ð52Þ

Fractional derivation of (12) shows, that the elastic component
of fractional strain rate is

Da _ce ¼
1
G

Da _s: ð53Þ
5.4. Torque relaxation for the materials, that obeys fractional Norton–
Bailey law

The fractional Norton–Bailey law (50) for the state of shear
stress reads

Daccðr; tÞ ¼ GCstK�1sMþ1; ð54Þ

where the order of differentiation is 0 < a < 1.
The substitution of material laws (54) and (55) in Eq. (53)

results in the nonlinear fractional differential equation of order
a for total shear stress sðr; tÞ:

Dasþ GCstK�1sMþ1 ¼ 0: ð55Þ

Eq. (56) is a nonlinear fractional differential equation of the
order a of type (A10). The nonlinear fractional differential equation
(56) with the initial condition (8) could be solved in closed from
using the method of variable separation. The solution is given by
Eq. (A12). The proper choice of constants makes possible, that
the same formula expresses the solutions of both nonlinear frac-
tional differential equation (56) and nonlinear ordinary differential
equation (17). Namely, let the material constant Cs in the Eq. (56)
relates to the constant cs; which appears in the ordinary Norton–
Bailey law with the formula

Cs ¼
mCð1�m� aÞCð1þ kÞ
kCð1þ k� aÞCð1�mÞ cs

¼ ðM � aÞCð1�MÞCðaþ KÞ
ðK � 1þ aÞCð1þ K � 1ÞCð1�M � aÞ cs;

with

K ¼ kþ 1� a;

M ¼ mþ a:

In this case the solution of the fractional differential equation
(56) with initial condition (8) delivers the shear stress over the
cross-section of the twisted rod as the function of time and radius
by means of formula (19). This simplifies the calculation of torque,
because the resulting torque for fractional Norton–Bailey law is
given by the same formula (20).

5.5. Fractional ‘‘engineering creep’’ of rods subjected to torsion

The rod is twisted now with an applied torque M0
T ; which

remains constant over time. Over time, the torque do not change,
although the twist angle of the rod continuously increases.

According to Norton–Bailey law (50) the shear stress due to
creep is

s ¼ Dac
CstK�1

� � 1
Mþ1

¼ rDah

CstK�1

� � 1
Mþ1

:

Performing the integration in (20) over the area of wire we get
the torque due to creep

M0
TðtÞ ¼ 2p

Z R

0
r2sðr; tÞdr ¼ 2p

Z R

0
r2 rDah

CstK�1

� � 1
Mþ1

dr

¼ Dah

CstK�1

� � 1
Mþ1

Ta;
where

Ta ¼ 2p
Z R

0
r2þ 1

Mþ1dr ¼ 2p M þ 1
3M þ 4

R
3Mþ4
Mþ1 :

Assuming that torque M0
T remains constant over time, from this

equation the twist rate resolves as

Dah ¼ tK�1ga with hð0Þ ¼ 0;

where

ga ¼ Cs
M0

T

Ta

 !Mþ1

:

The solution of this fractional inhomogeneous equation of type
(A8) delivers the formula (A9). The twist rate during the ‘‘engineer-
ing creep’’ in fractional case reads

hðtÞ ¼ ga
CðKÞ

CðK þ aÞ t
K�1þa:
5.6. Bending moment relaxation for the material, that obeys fractional
Norton–Bailey law

Consider the problem of stress relaxation in the pure bending of
a rectangular cross-section (B� H) beam. The fractional time dif-
ferentiation of (31) leads to

Dae ¼ Daee þ Daec � 0 ð56Þ
and Hook’s law – likewise to Eq. (54) – reads

Daee ¼
1
E

Dar: ð57Þ

The fractional Norton–Bailey law for a uniaxial state of stress
reads

Daecðz; tÞ ¼ CrtK�1rMþ1; ð58Þ

The substitution of the material law (58) and the Hook’s law in
the Eq. (57) results in the fractional differential equation for uniax-
ial stress

Darþ ECrtK�1rMþ1 ¼ 0: ð59Þ

This is a nonlinear fractional differential equation of the order
a of type (A10). The initial condition (35) for the Eq. (59) delivers
the pure elastic shear stress in the initial moment.

The Euler–Bernoulli hypothesis for initial distribution of stres-
ses over the cross-section of the beam is valid at initial moment
of time, as the deformation of beam starts from the pure elastic
bending.

For the simplification of the mathematical formulas it is
assumed, that the constants of fractional and ordinary differential
equations relates to each other as following

Cr ¼
mCð1�m� aÞCð1þ kÞ
kCð1þ k� aÞCð1�mÞ cr

¼ ðM � aÞCð1�MÞCðaþ KÞ
ðK � 1þ aÞCð1þ K � 1ÞCð1�M � aÞ cr:

In this case the solution of the fractional differential equation
(59) with initial condition (35) and the solution of the ordinary dif-
ferential equation (34) with initial condition (35) coincide. In other
words, the fractional differential equation and the ordinary differ-
ential equation possess the same solution:

rðz; tÞ ¼ r�m
0 ðzÞ þ

cr Emtk

k

� ��1=m

¼ Ej � 1
zm þ

cr jmEmþ1 m
k

tk

" #�1=m

:

ð60Þ
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For calculation of bending moment for the rectangular cross-
section of width B and height H as the function of time the expres-
sion (37) is used. With the Eq. (37) we can calculate the time-
depending bending moment

MBðtÞ ¼ 2BEj
Z H=2

0
z � 1

zm þ
cr jmEmþ1 m

k
tk

" #�1=m

dz: ð61Þ

This makes straightforward the calculation of bending moment,
because the same formula delivers the resulting moment for frac-
tional Norton–Bailey law also. Using the results of Appendix B
(Jpða;m; XÞ; case p ¼ 1), the integral in (61) is expressed in terms
of hypergeometric function by formula (39).

5.7. Basic constitutive equations for creep phenomenon in structural
members subjected to bending

The fractional elongation rate of the strip, which locates on the
perpendicular distance z to the neutral axis, is

Daeðt; zÞ ¼ zDaj for � H=2 < z < H=2:

According to Norton–Bailey law (58) the shear stress due to
creep is

r ¼ 1
CrtK�1 Dae
� � 1

Mþ1

¼ z
CrtK�1 Daj
� � 1

Mþ1

:

Performing the integration over the area of wire we get the
bending moment due to creep

M0
B ¼ B

Z H=2

�H=2
zrðz; tÞdz ¼ BH2

2
M þ 1

3þ 2M
H

2tK�1Cr
Daj

� � 1
1þM

:

Assuming that bending moment M0
B remains constant over

time, from this equation the curvature time rate resolves as

Daj ¼ batK�1; ð62Þ

where

ba ¼
2Cr

H
2M0

B

BH2

3þ 2M
M þ 1

 !Mþ1

:

Eq. (62) is a linear inhomogeneous fractional differential equa-
tion of type (A8). The solution of fractional differential equation
(62) is given by Eq. (A9) and with the initial condition

jð0Þ ¼ 0

reads:

jðtÞ ¼ ba
CðKÞ

Cðaþ KÞ t
K�1þa: ð63Þ

As shown above, the analogous time dependence of twist angle
upon time appears in creep under constant torque.

6. Application of the derived formulas for design of structural
elements

The application of the solutions allows accurate analytic
description of creep and relaxation of practically important prob-
lems in mechanical engineering. As the bending and torsion fre-
quently occur in structural members, the results are immediately
applicable. The derived formulas are immediately relevant for
creep calculation of torsion members with circular cross-sections,
like shafts and twist beams.

Another example of high loaded elements of machinery deliver
the springs made of steel. The springs store the elastic energy
either by means of bending or torsion. Respectively, in material
dominates either uniaxial or pure shear stress state. The physical
phenomenon with metal springs is that at stress below the yield
strength of the material a slow inelastic deformation take place.
In the spring branch this is called creep when a spring under con-
stant load loose length and it is called relaxation when a spring
under constant compression lose load. The creep and relaxation
rates depend on the temperature, the stress in the metal, the yield
strength and the time. Increased temperature, stress and time also
increase the creep and relaxation rates. Especially the temperature
and stress have a major influence. The precise creep description is
essentially important for correct dimensioning of springs.

7. Conclusion

The essential task of this Article is the derivation of the exact
closed form expressions for torsion and bending creep for isotropic
materials, which obey the commonly accepted constitutive laws.
The laws of Norton–Bailey, Prandtl–Garofalo and Naumenko–
Altenbach–Gorash allow the closed form solution. The fractional
generalization of Norton–Bailey law is also solved in closed form.
The relaxation of stresses was studied for structural elements sub-
jected to torsion and bending moments.

The structures examined are elementary – a beam in bending, a
rod in torsion and helical and disk springs – but demonstrate the
basic characteristics of nonlinear creep. The closed form solutions
with common creep models allow a deeper understanding of
hereditary effects in structural members and make easier the
design procedure.

Appendix A. Integrals with polylogarithm

The weighted integrals of the function

f ðxÞ ¼ lnðtanhðaþ arctanhðexpðbxÞÞÞÞ

are:

I0ða; b; XÞ �
Z X

0
f ðxÞdx ¼ X lnðtanhðaÞÞ þ 1

b
ðK2 �M2 þ l2 � k2Þ;

ðA1Þ

I1ða; b; XÞ �
R X

0 f ðxÞxdx ¼ 1
6b2 p2 lnðcothðaÞÞ þ ln3ðcothðaÞÞ
h

þ3b2X2 lnðtanhðaÞÞ
i
þ 1

b2 ðM3 �K3Þ � X
b ðM2 �K2Þ;

ðA2Þ

I2ða; b; XÞ �
R X

0 f ðxÞx2dx ¼ X3

3 lnðtanhðaÞÞþ
þ 2

b3 ðK4 �M4 þ l4 � k4Þ þ 2X
b2 ðM3 �K3Þ � X2

b ðM2 �K2Þ:
ðA3Þ

The following abbreviations are used:

Mk ¼ Likð� cothðaÞ expðbXÞÞ;
Kk ¼ Likð� tanhðaÞ expðbXÞÞ;
lk ¼MkjX¼0 � Likð� cothðaÞÞ;
kk ¼ KkjX¼0 � Likð� tanhðaÞÞ:

In these expressions is LikðzÞ the polylogarithm of order k and
argument z.

The expression of polylogarithm as the integral of the
Bose–Einstein distribution is used:

LikðzÞ ¼
1

CðkÞ

Z 1

0

xk�1

z�1 expðxÞ � 1
dx

This integral converges for Re(k) > 0 and all z except for z real
and P1.



Table 1
Ordinary and fractional differential equations, that possess the same solution.

Ordinary equation Fractional equation Solution

_sþ Gcstk�1smþ1 ¼ 0 Dasþ GCstK�1sMþ1 ¼ 0 sðr; tÞ ¼ s�m
0 ðrÞ þ

cs G m tk

k

h i�1=m

cs Cs ¼ � Cð1�m�aÞCð1þkÞ
Cð1þk�aÞCð1�mÞ cs

_rþ Ecrtk�1rmþ1 ¼ 0 Darþ ECrtK�1rMþ1 ¼ 0 rðz; tÞ ¼ r�m
0 ðzÞ þ

cr E m tk

k

h i�1=m

cr Cr ¼ mCð1�m�aÞCð1þkÞ
kCð1þk�aÞCð1�mÞ cr

k K ¼ kþ 1� a
m M ¼ mþ a
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Appendix B. Integrals with hypergeometric function

The weighted integrals of the function

g ¼ ðaþ x�mÞ�1=m
;

are

Jpða;m; XÞ �
Z X

0
xpgðxÞdx ¼ 2F1

1
m
;
2þ p

m
;
2þ pþm

m
;�aXm

� �
X2þp

2þ p
;

p P 0: ðA4Þ
Appendix C. Integrals with incomplete beta function

The weighted integrals of the function

jc � rj
r

� �1=n

are

Knða; b; cÞ �
1
c

Z b

a

jc � rj
r

� �1=n

dx

¼ 1
c

Z c

a

c � r
r

� �1=n
dxþ

Z b

c

r � c
r

� �1=n
dx

" #

¼ 1
c

lim
e!þ0

Z c

a

c � r þ e
r

� �1=n

dxþ
Z b

c

r � c þ e
r

� �1=n

dx

" #

¼ ð�1Þ�1=np
n

iþ cot
p
2n

� �� �
� B

a
c

;
n� 1

n
;
nþ 1

n

� �

� ð�1Þ1=nB
b
c

;
n� 1

n
;
nþ 1

n

� �
ðA5Þ

and

Lnða;b;cÞ�
1
c2

Z b

a

jc�rj
r

� �1=n

ðc�rÞdx

" #

¼ 1
c2

Z c

a

c�r
r

� �1=n
ðc�rÞdxþ

Z b

c

r�c
r

� �1=n
ðc�rÞdx

" #

¼ 1
c2 lim

e!þ0

Z c

a

c�rþe
r

� �1=n

ðc�rÞdxþ
Z b

c

r�cþe
r

� �1=n

ðc�rÞdx

" #

¼ ip
exp ip

n


 �
�1

1þn
n2 þB

a
c

;
2n�1

n
;
nþ1

n

� �
�B

a
c

;
n�1

n
;
nþ1

n

� �

þð�1Þ�1=n B
b
c

;
2n�1

n
;
nþ1

n

� �
�B

b
c

;
n�1

n
;
nþ1

n

� �� �
: ðA6Þ

In these expressions

Bðx; p; qÞ¼2F1ðp;1� q; pþ 1; xÞ x
p

p
¼
Z x

0
zp�1ð1� zÞq�1dz

is the incomplete beta function (Pearson, 1968).

Appendix D. Solutions of some fractional differential equations

The Davidson–Essex definition of derivative operator (Davison
and Essex, 1998) is the following:

Da;p;nf ðtÞ ¼ dnþ1�p

dtnþ1�p

Z t

0

ðt � 1Þn�a

Cð1þ n� aÞ
dpf ð1Þ

d1p d1

where 0 < p 6 nþ 1.
If n ¼ 0 and p ¼ 1 the Davidson–Essex derivative operator turns

to be Caputo derivative operator

Daf ðtÞ ¼
Z t

0

ðt � 1Þ�a

Cð1� aÞ
df ð1Þ

d1
d1 for ð0 < a < 1: ðA7Þ
The solution of linear fractional differential equation (Podlubny,
1999)

Daf ¼ btK�1 ðA8Þ

could be found using Laplace transformation. The Laplace transfor-
mation of the fractional differential equation reads

�f ð0Þqa�1 þ qa f̂ ðqÞ ¼ bCðKÞq�K

where f̂ ðqÞ is the Laplace transformation of the function f ðtÞ.
The Laplace transformation is

f̂ ðqÞ ¼ bCðKÞq�a�K þ f ð0Þq�1:

Its inversion delivers

f ðtÞ ¼ yð0Þ þ b
CðKÞ

CðK þ aÞ t
Kþa�1: ðA9Þ

The solution of nonlinear fractional differential equation

Daf þ btK�1f Mþ1 ¼ 0 with f ð0Þ ¼ f0 for ð0 < a < 1;M > 0;K P 1:

ðA10Þ

is found using separation of variables. The Eq. (A7) is equivalent to

Daf
f Mþ1 �

Daf0

f Mþ1
0

þ btK�1Dat ¼ 0:

Applying the fractional differential operator D�a, we get

Cð1�MÞ
Cð1�M þ aÞ ðf

a�M � f a�M
0 Þ þ b

CðKÞ
CðK þ aÞ t

K�1þa ¼ 0: ðA11Þ

The resolution of the algebraic equation (A8) with respect to
f ¼ f ðtÞ provides the desired solution of fractional differential
equation (A7) as

f a�M ¼ f a�M
0 � b

Cð1�M þ aÞCðKÞ
CðK þ aÞCð1�MÞ t

K�1þa
� � 1

a�M

: ðA12Þ

For the proper choice of parameters the solutions of ordinary
and fractional equations coincide (see Table 1).
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