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We investigate reproducing kernel Hilbert spaces (RKHS) where two functions are
orthogonal whenever they have disjoint support. Necessary and sufficient conditions in
terms of feature maps for the reproducing kernel are established. We also present concrete
examples of finite dimensional RKHS and RKHS with a translation invariant reproducing
kernel. In particular, it is shown that a Sobolev space has the orthogonality from disjoint
support property if and only if it is of integer index.
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1. Introduction

Let C(X) denote the set of all the continuous functions on a prescribed topological space X . The support supp f of a
function f ∈ C(X) is the closure in X of the subset

Ω f := {
x ∈ X: f (x) �= 0

}
.

Assume that we have a Hilbert space H all of whose elements are continuous functions on X . We say that disjoint support
implies orthogonality in H if for all f , g ∈ H satisfying supp f ∩ supp g = ∅ there holds ( f , g)H = 0, where (·,·)H denotes
the inner product on H. If disjoint support implies orthogonality in H we also say that H has the orthogonality from
disjoint support property.

One may take it for granted that a given Hilbert space of functions has the orthogonality from disjoint support property.
Although such an expectation is true for most commonly used Hilbert spaces, there exists a large class that does not possess
this property. We point this out by presenting two typical examples below.

Example 1.1 (Finite topological spaces). Let X be a finite set with the discrete topology. Without loss of generality, assume
that X = Nm := {1,2, . . . ,m} for some m ∈ N. Under the discrete topology, every function a on X is continuous, and can be
identified as a vector a := {a j: j ∈ Nm} ∈ C

m . Thus, the space H of continuous functions on X is identified as C
m . We make

it a Hilbert space by choosing an m × m hermitian and strictly positive definite matrix A and endowing H with the inner
product

(a,b)H :=
∑
j∈Nm

∑
k∈Nm

a jbk Akj, a,b ∈ H. (1.1)
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Note that for each a ∈ H, supp a = { j ∈ Nm: a j �= 0}. Thus, it can be seen that disjoint support implies orthogonality in H if
and only if A is diagonal.

Example 1.2 (Sobolev spaces). Let X := R, s > 1/2 and

Hs(R) :=
{

f ∈ L2(R):
∫
R

∣∣ f̂ (ξ)
∣∣2(

1 + ξ2)s
dξ < +∞

}
(1.2)

with inner product

( f , g)Hs(R) :=
∫
R

f̂ (ξ)ĝ(ξ)
(
1 + ξ2)s

dξ. (1.3)

Here ĥ is the Fourier transform of h defined for h ∈ L1(R) as

ĥ(ξ) :=
∫
R

h(x)e−i2πxξ dx, ξ ∈ R,

and for h ∈ L2(R) by a standard approximation process [9]. By the Sobolev imbedding theorem (see, for example, [1, p. 97]),
Hs(R) ⊆ C(R). As a corollary to the main result of Section 3, we shall see that disjoint support implies orthogonality in
Hs(R) if and only if s ∈ N. The set N of positive integers has zero Lebesgue measure in (1/2,+∞). In this sense, there are
very few Sobolev spaces with the orthogonality from disjoint support property.

We are interested in the Hilbert spaces H of functions on a prescribed topological space X where point evaluations are
always continuous. In other words, we require that for each x ∈ X , the point evaluation δx : H → C given as

δx( f ) := f (x), f ∈ H,

be a continuous linear functional on H. Such spaces are called Reproducing Kernel Hilbert Spaces (RKHS). They are an essen-
tial component in the theory of mathematical learning, [5,8,11,16,21,22,27]. They are also responsible for many interesting
applications in various fields (see, for example, [4,6,12,20,23]).

The purpose of this paper is to investigate RKHS where disjoint support implies orthogonality. This question occurred
to the author in the study of refinable kernels [29]. We shall establish characterizations in terms of feature maps for the
corresponding reproducing kernel in the next section. Concrete examples of finite dimensional RKHS and RKHS with a
translation invariant reproducing kernel will be presented in Sections 2 and 3, respectively.

2. Characterizations in terms of feature maps

Let H be an RKHS on a topological space X . By the Riesz representation theorem applied to the continuous linear
functional δx for every x ∈ X , there exists a unique function K : X × X → C such that

K (·, x) ∈ H, for all x ∈ X, (2.1)

and

f (x) = (
f , K (·, x)

)
H, for all x ∈ X and f ∈ H. (2.2)

It can be verified by (2.1) and (2.2) that for any finite subset {x j: j ∈ Nm} ⊆ X , the m × m matrix

[
K (x j, xk)

]
j,k∈Nm

is hermitian and positive semi-definite. In other words, K is a positive definite kernel (or kernel for short) on X , [2]. We
interpret Eq. (2.2) as that functions in H can be reproduced through their inner products with the kernel K . Thus, K is
usually referred to as the reproducing kernel of H. Conversely, if K is a kernel on X then there exists a unique RKHS on X
that takes K as its reproducing kernel. It is constructed explicitly as the completion of the linear space

H̃ := span
{

K (·, x): x ∈ X
}

under an inner product defined for all x j, yk ∈ X and c j,dk ∈ C, j ∈ Np , k ∈ Nq as( ∑
j∈N

c j K (·, x j),
∑

k∈N

dk K (·, yk)

)
H̃

:=
∑
j∈N

∑
k∈N

c jdk K (yk, x j).
p q p q



H. Zhang / J. Math. Anal. Appl. 349 (2009) 201–210 203
To signify the bijective correspondence between RKHS and their reproducing kernels, we shall denote H as H K and call it
the RKHS of K .

It is well known that K is a positive definite kernel on X if and only if there is a function Φ from X to a Hilbert space W
such that

span Φ(X) = W (2.3)

and

K (x, y) = (
Φ(x),Φ(y)

)
W , x, y ∈ X . (2.4)

The function Φ is called a feature map for K . There is a well-known characterization [15,17,21,22,29] of the RKHS H K of K
in terms of its feature maps.

Lemma 2.1. Suppose that Φ : X → W is a feature map for K satisfying (2.3) and (2.4). Then

H K = {(
Φ(·), u

)
W : u ∈ W

}
with the inner product

((
Φ(·), u

)
W ,

(
Φ(·), v

)
W

)
H K

= (v, u)W , u, v ∈ W . (2.5)

We assume that Φ is continuous from X to W . By (2.4), this is equivalent to saying that K is a continuous function on
X × X . By the Schwartz inequality, we get for f = (Φ(·), u)W where u ∈ W that∣∣ f (x) − f (y)

∣∣ � ‖u‖W
∥∥Φ(x) − Φ(y)

∥∥
W = ‖ f ‖H K

∥∥Φ(x) − Φ(y)
∥∥

W .

It follows that f is continuous on X . Since by Lemma 2.1, (Φ(·), u)W , u ∈ W , exhaust all the functions in H K , H K ⊆ C(X).
We are in a position to present a necessary and sufficient condition for disjoint support to imply orthogonality in H K .

For each subset U ⊆ X , we denote by Φ(U ) the image of U under Φ , and Φ(U )⊥ the set of elements in W that are
orthogonal to Φ(U ). We also make the convention that Φ(∅) := {0}.

Theorem 2.2. Suppose that Φ is a continuous function from X to a Hilbert space W that satisfies (2.3), and K is a kernel on X defined
by (2.4). Then disjoint support implies orthogonality in H K if and only if for all open subsets U , V of X satisfying U ∪ V = X there
holds

Φ(U )⊥ ⊥ Φ(V )⊥, (2.6)

or equivalently, Φ(U )⊥ ⊆ span Φ(V ), the closure of span Φ(V ) in W .

Proof. Suppose that (2.6) holds true for all open U , V ⊆ X such that U ∪ V = X . Let f , g ∈ H K with supp f ∩ supp g = ∅.
By Lemma 2.1, there exist u, v ∈ W such that

f = (
Φ(·), u

)
W , g = (

Φ(·), v
)

W (2.7)

and

( f , g)H K = (v, u)W . (2.8)

Set U := X \ supp f and V := X \ supp g . Then U , V are open in X and

X \ (U ∪ V ) = (X \ U ) ∩ (X \ V ) = supp f ∩ supp g = ∅.

Thus, U ∪ V = X . Since f vanishes on X \ supp f , u is orthogonal to Φ(U ) in W . Similarly, v ⊥ Φ(V ). By (2.6), u is
orthogonal to v in W . This follows by (2.8) that ( f , g)H K = 0. Therefore, disjoint support implies orthogonality in H K .

Conversely, suppose that disjoint support implies orthogonality in H K . Let U , V be open subsets of X satisfying that
U ∪ V = X . Set u ∈ Φ(U )⊥ and v ∈ Φ(V )⊥ . We introduce two functions f , g ∈ H K as defined by (2.7). Since u ⊥ Φ(U ),
f vanishes on U . Thus, supp f ⊆ X \ U . Likewise, supp g ⊆ X \ V . Since

supp f ∩ supp g ⊆ (X \ U ) ∩ (X \ V ) = X \ (U ∪ V ) = ∅,

functions f and g have disjoint support. By our assumption that disjoint support implies orthogonality in H K , ( f , g)H K = 0,
which follows by (2.8) that (u, v)W = 0. Hence, (2.6) holds true. The proof is completed by noting that (2.6) is equivalent
to Φ(U )⊥ ⊆ span Φ(V ) since (Φ(V )⊥)⊥ = span Φ(V ). �
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Sometimes, the support of a continuous function may not well reflect the place where f is really “supported.” For
instance, by slightly modifying the construction of the Cantor set, one can obtain for each ε > 0 a function f ∈ C(R) such
that supp f = R while the Lebesgue measure |Ω f | of Ω f is not greater than ε (see [19, p. 58]). In some applications,
one may hence have to use Ω f instead of supp f (see, for example, [29, Theorem 23]). We next present a necessary and
sufficient condition ensuring that f , g ∈ H K are orthogonal whenever Ω f ∩ Ωg = ∅.

Corollary 2.3. Suppose that K is a kernel on X defined by (2.4) through a function Φ from X to a Hilbert space W that satisfies (2.3).
Then ( f , g)H K = 0 for all f , g ∈ H K with Ω f ∩ Ωg = ∅ if and only if for all subsets U ⊆ X there holds

Φ(U )⊥ ⊥ Φ(X \ U )⊥, (2.9)

or equivalently,

Φ(U )⊥ ⊆ span Φ(X \ U ). (2.10)

Proof. We reassign X the discrete topology. Then every subset of X is both open and closed under this topology. Thus we
have that H K ⊆ C(X) and that for each f ∈ H K , Ω f = supp f . Therefore, it suffices to prove under the discrete topology
that disjoint support implies orthogonality in H K if and only if (2.9) holds true for all subsets U of X .

Suppose first that disjoint support implies orthogonality in H K . Set U ⊆ X and V := X \ U . Then U ∪ V = X and they are
both open. By Theorem 2.2, (2.9) holds true. On the other hand, suppose that there holds (2.10) for all subsets U ⊆ X . Set
U , V ⊆ X with U ∪ V = X . Then we have X \ U ⊆ V . It follows by (2.10) that

Φ(U )⊥ ⊆ span Φ(X \ U ) ⊆ span Φ(V ).

Therefore, (2.6) holds true for all subsets U , V ⊆ X with U ∪ V = X . By Theorem 2.2, disjoint support implies orthogonality
in H K . The proof is complete. �

For applications of Theorem 2.2 and Corollary 2.3, we next investigate finite dimensional RKHS. Let X be a discrete
topological space, and K a kernel on X for which H K is of finite dimension m ∈ N. By a theorem on page 347 of [2], there
exists an m × m hermitian and strictly positive definite matrix A, and m linearly independent functions φ j , j ∈ Nm , on X
such that

K (x, y) = (
Aφ(x),φ(y)

)
Cm , x, y ∈ X, (2.11)

where φ(x) := {φ j(x): j ∈ Nm} ∈ C
m , and (·,·)Cm denotes the standard inner product on C

m . By Lemma 2.1, we have

H K =
{ ∑

j∈Nm

c jφ j: c = {c j: j ∈ Nm} ∈ C
m
}

with inner product( ∑
j∈Nm

c jφ j,
∑
j∈Nm

d jφ j

)
H K

= ((
AT )−1

c,d
)
Cm .

We shall consider the case where φ j , j ∈ Nm , have disjoint support, that is,

suppφ j ∩ supp φk = ∅, j �= k, j,k ∈ Nm. (2.12)

Proposition 2.4. Suppose that K is a kernel on a discrete topological space X defined by (2.11) via a hermitian and strictly positive
definite matrix A and linearly independent functions φ j , j ∈ Nm, on X satisfying (2.12). Then disjoint support implies orthogonality
in H K if and only if A is diagonal.

Proof. We first identify by (2.11) a feature map Φ : X → C
m for K as

Φ(x) := A1/2φ(x), x ∈ X . (2.13)

Suppose that A is diagonal. Then A1/2 is diagonal as well. Let a j , j ∈ Nm , be the diagonal components of A1/2. Assume
that U , V are disjoint open subsets of X such that U ∪ V = X . Set

IU := { j ∈ Nm: U ∩ supp φ j �= ∅}, I V := { j ∈ Nm: V ∩ suppφ j �= ∅}.
Let c ∈ C

m be orthogonal to Φ(U ), namely,∑
a jc jφ j(x) = 0, x ∈ U .
j∈Nm
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By (2.12), we have for each j ∈ IU that

c jφ j(x) = 0, x ∈ suppφ j ∩ U ,

which follows that c j = 0, j ∈ IU . Similarly, for d ⊥ Φ(V ) we have d j = 0, j ∈ I V . Since U ∪ V = X , IU ∪ I V = Nm . Therefore,
for c ∈ Φ(U )⊥ and d ∈ Φ(V )⊥ , there holds c jd j = 0, j ∈ Nm . Consequently, c ⊥ d. By condition (2.6) in Theorem 2.2, disjoint
support implies orthogonality in H K .

Conversely, suppose that A is not diagonal. Then A−1 is not diagonal. In other words, there exists j �= k ∈ Nm such that
(A−1) jk �= 0. Set U = X \ supp φ j and V = X \ suppφk . By (2.12), U ∪ V = X . We also observe by definition (2.13) that

Φ(U )⊥ = {
c ∈ C

m:
(

A1/2c
)

l = 0, l �= j
}

and

Φ(V )⊥ = {
c ∈ C

m:
(

A1/2c
)

l = 0, l �= k
}
.

Thus A−1/2e j ∈ Φ(U )⊥ and A−1/2ek ∈ Φ(V )⊥ , where for l ∈ Nm , el denotes the vector in C
m whose lth component is one

and whose l′th component is zero for l′ �= l. We verify that(
A−1/2ek, A−1/2e j

)
Cm = (

A−1ek, e j
)
Cm = (

A−1)
jk �= 0.

Thus (2.6) is not satisfied. By Theorem 2.2, H K does not possess the orthogonality from disjoint support property. The proof
is complete. �

We remark that the first example in the introduction may be viewed as a direct consequence of the above proposition.
To see this, let H be the RKHS on X := Nm with inner product (1.1). Next we set φ j := e j , j ∈ Nm , to observe that the kernel
for H has the form

K = ((
AT )−1

φ(·),φ(·))
Cm .

Therefore, by Proposition 2.4, disjoint support implies orthogonality in H if and only if A is diagonal.
To study orthogonality from disjoint support in a more concrete context, we shall investigate translation invariant kernels

in the next section.

3. Translation invariant reproducing kernels

In this section, we specify the topological space X to be the real line R and study RKHS on R with a reproducing
kernel K that is translation invariant in the sense that

K (x − a, y − a) = K (x, y), for all x, y,a ∈ R.

Translation invariant kernels have been extensively investigated for their particular importance in the theory of learning
(see, for example, [21,22,24,25,27,29]). Denote by B+(R) the set of all the finite positive Borel measures on R. It was
established by Bochner [3] that K is a continuous translation invariant reproducing kernel on R if and only if there exists a
μ ∈ B+(R) such that

K (x, y) =
∫
R

ei2π(x−y)ξ dμ(ξ), x, y ∈ R. (3.1)

Our purpose is to characterize the Borel measure μ such that for the kernel K defined above, disjoint support implies
orthogonality in H K . To this end, we apply the Lebesgue–Radon–Nikodym theorem (see [19, p. 121]) to μ to get that there
exists a nonnegative φ ∈ L1(R) and a Borel measure ν ∈ B+(R) that is singular with respect to the Lebesgue measure such
that for each Borel subset U ⊆ R

μ(U ) =
∫
U

φ(ξ)dξ + ν(U ). (3.2)

The above decomposition yields a corresponding one for the kernel K , that is, K = Kc + Ks , where

Kc(x, y) :=
∫
R

ei2π(x−y)ξ φ(ξ)dξ, x, y ∈ R, (3.3)

Ks(x, y) :=
∫

ei2π(x−y)ξ dν(ξ), x, y ∈ R. (3.4)
R
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We shall establish a result that can somewhat allow us to reduce the question to the two spaces H Kc and H Ks . To
prepare for it, we set Wc the Hilbert space of Borel measurable functions u on R such that

∫
R

|u(ξ)|2φ(ξ)dξ < +∞ with
the inner product (u, v)Wc := ∫

R
u(ξ)v(ξ)φ(ξ)dξ , u, v ∈ Wc . Similarly, we let Ws be the Hilbert space of Borel measurable

functions u on R such that
∫

R
|u(ξ)|2 dν(ξ) < +∞ with the inner product (u, v)Ws := ∫

R
u(ξ)v(ξ)dν(ξ), u, v ∈ Ws . Finally,

we define W to be the direct sum of Wc and Ws . In other words, W = {(u, v): u ∈ Wc, v ∈ Ws} with inner product(
(u1, v1), (u2, v2)

)
W = (u1, u2)Wc + (v1, v2)Ws .

By (3.3) and (3.4), Φc : R → Wc and Φs : R → Ws given for each x ∈ R as Φc(x)(ξ) = Φs(x)(ξ) := ei2πxξ , ξ ∈ R, are a feature
map for Kc and Ks , respectively. Similarly, we observe by (3.1) that a feature map Φ : R → W for K is

Φ(x) := (
Φc(x),Φs(x)

)
, x ∈ R. (3.5)

Proposition 3.1. If H K has the orthogonality from disjoint support property then so does H Kc and H Ks .

Proof. Assume that disjoint support implies orthogonality in H K . Let U , V be open subsets of X with U ∪ V = X . Set
u1 ∈ Φc(U )⊥ and u2 ∈ Φc(V )⊥ . Then it is clear that (u1,0) ∈ Φ(U )⊥ and (u2,0) ∈ Φ(V )⊥ . Since disjoint support implies
orthogonality in H K , by Theorem 2.2, (2.6) holds true. Consequently, we have

(u1, u2)Wc = (
(u1,0), (u2,0)

)
W = 0,

which implies that Φc(U )⊥ ⊥ Φc(V )⊥ . Therefore, by Theorem 2.2, H Kc has the orthogonality from disjoint support property.
The result for H Ks can be proved in a similar way. �

By Proposition 3.1, we shall discuss orthogonality from disjoint support respectively in H Kc and H Ks . Let us start with
H Kc by recalling some basic facts on distributions [7,9].

Let D(R) be the space of infinitely differentiable functions on R with compact support and S(R) the Schwartz class
on R. For the topology on D(R) and S(R), see, for example, [7]. Denote by D′(R) and S ′(R) the dual of D(R) and S(R),
respectively. We have the inclusion relations that for all p ∈ [1,+∞],

D(R) ⊆ S(R) ⊆ L p(R) ∩ C(R), L p(R) ∪ C(R) ⊆ L1
loc(R) ⊆ D′(R),

L p(R) ∪ {polynomials} ⊆ S ′(R) ⊆ D′(R).

Elements in D′(R) are called distributions and those in S ′(R) are called temperate distributions. Borel measurable functions f
on R for which there exists a polynomial p such that∣∣ f (ξ)

∣∣ �
∣∣p(ξ)

∣∣, ξ ∈ R, (3.6)

are temperate distributions.
The support supp T of a distribution T consists of all the points x0 ∈ R such that for any open neighborhood U of x0

there exists ϕ ∈ D(R) with suppϕ ⊆ U so that 〈T ,ϕ〉 := T (ϕ) �= 0. This definition is consistent with the ordinary one when
T is a continuous function. The derivative T ′ of a distribution T is again a distribution defined by

〈T ′,ϕ〉 = −〈T ,ϕ′〉.
One can see that supp T ′ ⊆ supp T for each T ∈ D′(R). For a temperate distribution T , its Fourier transform T̂ is defined to
be a temperate distribution by the dual equation

〈T̂ ,ϕ〉 = 〈T , ϕ̂〉. (3.7)

This definition is also consistent with the one when T ∈ L1(R) ∪ L2(R). A result connecting the Fourier transform and
support of distributions is the Paley–Wiener theorem (see, for example, [9, p. 293]), which states that if T ∈ S ′(R) has
compact support then T̂ extends to an analytic function on C. A consequence is that for compactly supported T ∈ S ′(R),
supp T̂ = R unless T is the zero distribution.

Let us return to the Hilbert space H Kc , which is identified by Lemma 2.1 as

H Kc =
{

f ∈ C(R):
∣∣Ω f̂ \ Ωφ

∣∣ = 0,

∫
R

∣∣ f̂ (ξ)
∣∣2 1

φ(ξ)
dξ < +∞

}
(3.8)

with inner product

( f , g)H Kc
=

∫
f̂ (ξ)ĝ(ξ)

1

φ(ξ)
dξ, f , g ∈ H Kc . (3.9)
R
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It may happen that we cannot even have two nontrivial functions in H Kc with disjoint support. Such a case occurs when
φ is compactly supported. A typical example is the sinc kernel

sinc(x, y) := sinπ(x − y)

π
=

1
2∫

− 1
2

ei2π(x−y)ξ dξ, x, y ∈ R,

which plays a fundamental role in the sampling theory [10,13,18]. It can be seen that the φ for the sinc kernel is the
characteristic function of interval [− 1

2 , 1
2 ]. In general, suppose that suppφ is compact. Note that the condition |Ω f̂ \Ωφ | = 0

in (3.8) implies that supp f̂ ⊆ supp φ for each f ∈ H Kc . By the Paley–Wiener theorem, functions in H Kc are real-analytic
on R. There hence do not exist two nontrivial functions in H Kc with disjoint support.

Same thing happens if 1
φ(ξ)

increases too fast as |ξ | goes to infinity. For example, if 1/φ has an exponential growth, that
is, there exist C, λ > 0 such that

1

φ(ξ)
� Ceλ|ξ |, for |ξ | big enough

then every function f ∈ H Kc is the restriction on R of

F (z) :=
∫
R

ei2π zξ f̂ (ξ)dξ, z ∈ C,
∣∣ Im(z)

∣∣ <
λ

4π
,

which is analytic over {z ∈ C: | Im(z)| < λ/4π}. Thus, every f ∈ H Kc is also real-analytic on R. A concrete example of this
case is the important Gaussian kernels in learning theory (see, for example, [14,21,26,28]), which are defined as

Gδ(x, y) := e−δ(x−y)2
, x, y ∈ R, δ > 0.

By the Fourier transform of Gaussian functions,

Gδ(x, y) =
∫
R

ei2π(x−y)ξ

√
π

δ
e− π2

δ
ξ2

dξ, x, y ∈ R.

Thus, for the Gaussian kernels,

1

φ(ξ)
=

√
δ

π
e

π2
δ

ξ2
, ξ ∈ R,

which increases much faster than any exponential function.
By the above discussion, to make the question of orthogonality from disjoint support in H Kc interesting, we have to

impose some restrictions on the support of φ and the growth of 1/φ. We shall assume that Ωφ = R and 1/φ does not
increase too fast. A natural choice is to require that 1/φ has at most a polynomial growth. Since by (3.6) locally integrable
functions with at most a polynomial growth are temperate distributions, to reach more generality, we assume that

1

φ
∈ S ′(R). (3.10)

This requirement means that 1/φ ∈ L1
loc(R) and ϕ → ∫

R

1
φ(ξ)

ϕ(ξ)dξ defines a continuous linear functional on S(R).

Theorem 3.2. Suppose that Kc is defined by (3.3) through nonnegative φ ∈ L1(R) satisfying Ωφ = R and the growth condition (3.10).
Then disjoint support implies orthogonality in H Kc if and only if 1/φ is a polynomial.

Proof. Suppose that 1/φ is a polynomial. Since φ is positive everywhere on R and φ ∈ L1(R), there exists m ∈ N and
constants c j , 0 � j � 2m, where c0, c2m > 0 such that

1

φ(ξ)
=

2m∑
j=0

c jξ
j, ξ ∈ R.

By (3.8), functions in H Kc are contained by the Sobolev space Hm(R). Thus, for every f ∈ H Kc , the distributional deriva-
tives f ( j) , 0 � j � 2m, are in L2(R). This together with (3.9) and Parseval’s identity yields for all f , g ∈ H Kc that

( f , g)H Kc
=

2m∑
j=0

c j

∫
f̂ (ξ)ĝ(ξ)ξ j dξ =

2m∑
j=0

c j
i j−2 j̄

(2π) j

∫
f ( j̄)(x)g( j− j̄)(x)dx, (3.11)
R R
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where j̄ is defined to be j/2 if j is even and ( j + 1)/2 if j is odd. Suppose that f , g ∈ H Kc have disjoint support. Then

since supp T ′ ⊆ supp T for any distribution T , f ( j̄) and g( j− j̄) have disjoint support for each j. Thus, we get by (3.11) that
( f , g)H Kc

= 0. Therefore, disjoint support implies orthogonality in H Kc .
Conversely, suppose that H Kc has the orthogonality from disjoint support property. The assumption that 1/φ ∈ S ′(R)

ensures that for each ϕ ∈ S(R)∫
R

∣∣ϕ(ξ)
∣∣2 1

φ(ξ)
dξ < +∞.

This follows by (3.8) that D(R) ⊆ H Kc . Choose f , g ∈ D(R) with disjoint support. Since disjoint support implies orthogo-
nality in H Kc , we have by (3.9) that〈( ¯̂f 1

φ

)̂
, g

〉
=

〈 ¯̂f 1

φ
, ĝ

〉
=

∫
R

f̂ (ξ)ĝ(ξ)
1

φ(ξ)
dξ = (g, f )H Kc

= 0.

Note that the above equality holds true for all g ∈ D(R) with supp g ⊆ R \ supp f . Therefore, we must have

supp

( ¯̂f 1

φ

)̂
⊆ supp f . (3.12)

The above inclusion holds true for all f ∈ D(R). We hence claim that

supp

(
1

φ

)̂
⊆ {0}. (3.13)

Otherwise, assume that we have a ∈ supp( 1
φ
)̂ \ {0}. Choose a neighborhood U of a that is free of the origin. By definition,

there exists some ϕ ∈ D(R) with suppϕ ⊆ U such that 〈( 1
φ
)̂ ,ϕ〉 �= 0. We set f := ϕ(−·) and check by the relation between

convolution and the Fourier transform that( ¯̂f 1

φ

)̂
(0) =

〈(
1

φ

)̂
, f (−·)

〉
=

〈(
1

φ

)̂
,ϕ

〉
�= 0,

which implies that 0 ∈ supp(
¯̂f 1

φ
)̂ . However, since supp f ⊆ −U , 0 /∈ supp f . We reach a contradiction with (3.12). Therefore,

(3.13) holds. We complete the proof by pointing out the fact that the Fourier transform of a temperate distribution is
supported at the origin if and only if the distribution is a polynomial (see [7, p. 103]). �
Corollary 3.3. For 1

2 < s < +∞, disjoint support implies orthogonality in the Sobolev space Hs(R) if and only if s ∈ N.

Proof. By the Sobolev imbedding theorem, Hs(R) is a RKHS. Let us figure out its reproducing kernel. Set f ∈ Hs(R)

and x ∈ R. We get by the inverse Fourier transform that

f (x) =
∫
R

f̂ (ξ)ei2πxξ dξ =
∫
R

f̂ (ξ)
ei2πxξ

(1 + ξ2)s

(
1 + ξ2)s

dξ = (
f , G(·, x)

)
Hs(R)

,

where by (1.3) and Parseval’s identity the kernel G is identified as

G(t, x) :=
∫
R

ei2π(t−x)ξ 1

(1 + ξ2)s
dξ, t ∈ R.

Clearly, the φ for G is 1/(1 + ξ2)s . By Theorem 3.2, disjoint support implies orthogonality in Hs(R) if and only if 1/φ =
(1 + ξ2)s is a polynomial, which happens if and only if s ∈ N. �

Our next task is to establish similar results for H Ks . Let ν ∈ B+(R) be singular with respect to the Lebesgue measure.
Denote by Z the set of all integers. Similar to the continuous case, we assume that suppν = Z and

Tν :=
∑
n∈Z

δn

νn
∈ S ′(R), (3.14)

where νn := ν({n}), n ∈ Z, and for all a ∈ R, δa is the delta distribution at a defined for all ϕ ∈ D(R) by 〈δa,ϕ〉 := ϕ(a).
Condition (3.14) is equivalent to that 1/νn is slowly increasing in the sense that there exists a polynomial p such that
1/νn � |p(n)|, n ∈ Z (see [9, p. 340]). Under these assumptions, we identify H Ks by Lemma 2.1 as
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H Ks =
{

f ∈ C(R): f is periodic with period 1,
∑
n∈Z

∣∣cn( f )
∣∣2 1

νn
< +∞

}
(3.15)

with inner product

( f , g)H Ks
=

∑
n∈Z

cn( f )cn(g)

νn
, f , g ∈ H Ks ,

where cn( f ) is the nth Fourier coefficient of f defined as

cn( f ) :=
1∫

0

f (t)e−i2πnt dt, n ∈ Z.

Theorem 3.4. Suppose that Ks is defined by (3.4) through ν ∈ B+(R) satisfying suppν = Z and the growth condition (3.14). Then
disjoint support implies orthogonality in H Ks if and only if there exists a polynomial q such that 1/νn = q(n), n ∈ Z.

Proof. The arguments are similar to those in the proof of Theorem 3.2. The key point is to show that if H Ks has the
orthogonality from disjoint support property then the Fourier transform of Tν defined by (3.14) is supported on Z. And the
main tool is the Fourier transform of periodic distributions. �

Note that the discussion above much relies on the periodicity of functions in H Ks . Translation invariant kernels defined
by a general singular measure deserve further attention.

Corollary 3.5. Let 1/2 < p < +∞ and H p[0,1] the Sobolev space of all functions f ∈ L2[0,1] satisfying∑
n∈Z

(
1 + n2)p∣∣cn( f )

∣∣2
< +∞

with inner product

( f , g)H p [0,1] :=
∑
n∈Z

(
1 + n2)p

cn( f )cn(g), f , g ∈ H p[0,1].

Then disjoint support implies orthogonality in H p[0,1] if and only if p ∈ N.

Proof. The result follows from Theorem 3.4 and similar arguments as those in the proof of Corollary 3.3. �
By Theorems 3.2 and 3.4, we have obtained a class of Kc and Ks whose RKHS have the orthogonality from disjoint

support property. However, the RKHS of the sum of such Kc and Ks does not have the property.

Proposition 3.6. Suppose that Kc and Ks are defined respectively by (3.3) and (3.4), where nonnegative φ satisfies supp φ = R

and (3.10), singular Borel measure ν ∈ B+(R) satisfies suppν = Z and (3.14). Then for K = Kc + Ks, H K does not have the orthogo-
nality from disjoint support property.

Proof. Suppose to the contrary that disjoint support implies orthogonality in H K . Select an arbitrary nontrivial function
ϕ ∈ D(R) such that suppϕ ⊆ [0,1]. By (3.8), ϕ ∈ H Kc . Define

ψ(x) := ϕ(x) −
∑
n∈Z

cn(ϕ)ei2πnx, x ∈ R.

Then by (3.15), ψ − ϕ ∈ H Ks and suppϕ ∩ suppψ = ∅. We write ϕ,ψ in terms of the feature map (3.5) as

ϕ(x) =
∫
R

ei2πxξ ϕ̂(ξ)

φ(ξ)
φ(ξ)dξ, x ∈ R,

and

ψ(x) =
∫
R

ei2πxξ ϕ̂(ξ)

φ(ξ)
φ(ξ)dξ −

∑
n∈Z

ei2πnx cn(ϕ)

νn
νn, x ∈ R.

Therefore, we get by Lemma 2.1 that ϕ,ψ ∈ H K . Since they have disjoint support, we must have
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∫
R

∣∣ϕ̂(ξ)
∣∣2 1

φ(ξ)
dξ = (ϕ,ψ)H K = 0,

which yields that ϕ̂ ≡ 0, contradicting that ϕ is nontrivial. �
Combining Theorems 3.2, 3.4 and the above proposition, we may conclude that there are not many RKHS with a trans-

lation invariant reproducing kernel where disjoint support implies orthogonality. We end the paper by remarking that one
can obtain similar results for the multidimensional case by carefully dealing with polynomials of several variables.
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