
An Approach to Splitting Atoms Safely

Extended Abstract

C. B. Jones1

School of Computing Science
The University of Newcastle upon Tyne

Newcastle, UK

Abstract

The intention of this paper is to make a contribution to (compositional) development methods
for concurrent programs. The topics touched on include interference, atomicity, observability and
granularity. The paper sets out some requirements for an approach to developing systems by
“splitting atoms safely”.

Keywords: Concurrent programs, atomic action, observability, granularity.

1 Introduction

If an action is executed “atomically”, it is assumed that it will not be affected
by interference and that the environment will not be able to observe inter-
mediate steps of the action in question. The bugbear of concurrency is that
interference must be tolerated. With shared state programs, an action must
achieve some required result even though its state can be changed by other
interfering processes.

The aim here is to argue that there is a useful method for developing
concurrent programs which explicitly uses a “fiction of atomicity” as an ab-
straction and then allows steps of development which “split atoms safely”.
This development process might be called “refining atomicity”. One of the

1 cliff.jones@ncl.ac.uk

Electronic Notes in Theoretical Computer Science 155 (2006) 43–60

1571-0661 © 2006 Elsevier B.V.

www.elsevier.com/locate/entcs

doi:10.1016/j.entcs.2005.11.051
Open access under CC BY-NC-ND license.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector

https://core.ac.uk/display/82095914?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.elsevier.com/locate/entcs
http://creativecommons.org/licenses/by-nc-nd/3.0/

things which makes the approach interesting is that it is used widely: much
of database implementation is about preserving the fiction of atomicity when
implementations deliberately overlap the execution of transactions.

What is sought here is a general development method which has the prop-
erties of other formal methods for developing programs.

2 Interference

What classifies a programming language as “imperative” is the ability of its
programs to change some form of “state”. Consider, for example, the (VDM
– [11,8]) specification given in Figure 1 which indicates how a priority queue
might be specified. Starting with an initial state which contains the empty
set, operations ENQ and DEQ (the latter subject to its pre-condition) can
be performed in any order; both operations are shown (ext wr) as changing the
state (queue). The operation ENQ takes an argument but delivers no result
whereas DEQ takes no argument and delivers a result. The function mins

is assumed to deliver the minimum value from its (non-empty set) argument.
It is important to appreciate that the intention of a specification like that in
Figure 1 is that the external behaviour is what is defined. It is not required
that the internal state is implemented with a set data type. The key point
is that it is assumed that the only way of observing the behaviour of the
priority queue is with the (inputs and) outputs of the stated operations. The
term “data reification” is used in VDM for steps of development which choose
(more) concrete representations for objects.

The post-conditions of Figure 1 define acceptable final results and, for
sequential programs, the issue of atomicity is settled.

VDM uses the phrase “operation decomposition” for the use of proof rules
for introducing programming language constructs like while. These rules are
like “Hoare axioms” except that they cope with VDM’s insistence on post-
conditions of two states (initial and final). A post-condition does not require
execution in a single step, such execution can only be thought of as atomic
in the sense of no interference on –and no visibility of– intermediate states.
Development is expected to create a program which executes in many steps;
but for sequential programs, we ignore interference during their execution.

Since the priority queue example is used below, it is worth highlighting the
point about the range of implementations: an implementer could, for example,
arrange for quick response to ENQ by adding new elements to an unordered
state — DEQ would then need to determine the minimum element; at the
other extreme, there are implementations in which ENQ takes more time to
place new elements in an ordered data structure so that DEQ responds quickly.

C.B. Jones / Electronic Notes in Theoretical Computer Science 155 (2006) 43–6044

ENQ (new : X)

ext wr queue : X -set

post queue = ↼−−−queue ∪ {new}

DEQ () r : X

ext wr queue : X -set

pre queue �= { }

post r = mins(↼−−−queue) ∧ queue = ↼−−−queue − {r}

Fig. 1. A specification for a Priority Queue

Section 5 shows how concurrency can be used to make both operations respond
quickly.

Both data reification and operation decomposition are “compositional” in
the sense that the specifications define all that is required of an implemen-
tation. In other words, one can prove that one step of design is correct and
know that –if sub-components are developed according to their specifications–
there will not be a need to reject them because they do not fit their context.

Interference makes it difficult to find compositional development methods
for concurrent systems.

The “Owicki/Gries method” [17] extended Hoare-like approaches to handle
concurrency but the resulting method is non-compositional in the sense that
proven developments of independent processes might have to be discarded if
they fail a final “interference freedom” property of their proofs.

It was striving for compositionality which led this author to look for ways
of documenting interference using rely and guarantee conditions. Essentially, a
rely condition records the interference which an implementation must tolerate
on its state and a guarantee condition documents a limit on the interference
the component can generate. Both rely and guarantee conditions are –like
VDM’s post-conditions– relations over pairs of states. As with pre-conditions,
rely conditions can be thought of as giving permission for the implementer
to ignore certain potential deployments of the code to be created. On the
other hand, guarantee conditions are like post-conditions in that they record
an obligation on the created program.

Papers like [10,21] contain proof rules for showing that a decomposition
into parallel processes will be correct if the components are developed so as to
satisfy their specifications. The details of particular methods vary and are not
important here; [6] contains detailed comparisons of different compositional

C.B. Jones / Electronic Notes in Theoretical Computer Science 155 (2006) 43–60 45

and non-compositional approaches.

3 Atomicity in SOS

What is of more interest in this paper is the connection between interference
and atomicity.

One reason for looking here at techniques for describing language semantics
is to indicate that SOS [18] provide a straightforward way to formalize many
of the points on granularity etc. A stronger justification for exploring SOS can
be seen in Section 6 when the issue of justifying design methods is addressed.

One can think of an SOS description as defining a relation over pairs of
program texts and states; thus

s
−→:P((Statement × Σ) × (Statement × Σ))

What is going on with shared variable concurrency is that interference
occurs when more than one thread of control can read and/or write to the
same portion of a state.

As a simple illustration, consider parallel execution of two sequences of
assignments. Ignoring for now the possibility of non-determinism in expression
evaluation, use

eval : Expression × Σ → Value

The (atomic) execution of the assignment statement from the head of the left
sequence is expressed as

v = eval(e, σ)

([x ← e] � restleft || right , σ)
s

−→ (restleft || right , σ † {x �→ v})

With the obvious symmetric rule for the right sequence,

v = eval(e, σ)

(left || [x ← e] � restright , σ)
s

−→ (left || restright , σ † {x �→ v})

This shows how non-determinism can arise depending on the order in which
statements are executed from the two parallel streams. Thus

(x ← x ∗ 2; x ← x ∗ 3) || (x ← x ∗ 4; x ← x ∗ 5)

will, if the initial value of x is 1, set the final value of x to factorial 5 whatever
order the assignment statements interleave. Whereas, when x starts at 1

(x ← x + 1) || (x ← x ∗ 2)

can leave x as 3 or 4.

C.B. Jones / Electronic Notes in Theoretical Computer Science 155 (2006) 43–6046

Although the basic points are illustrated here with assignment statements,
this should not disguise the fact that the same issues arise at different language
levels. Interference could be shown with separate programs accessing shared
files or separate “transactions” changing a database. Appendix A outlines an
SOS for the concurrent OOL used in Section 5.

4 Granularity and reification

The operational semantics in the previous section shows assignment state-
ments being executed atomically. That is, if the head of left (say x ← e) is
being executed, there are no state changes made between the beginning of the
evaluation of e and the change of x ; nor can right be observing x whilst it is
being changed. For a useful programming language, such an assumption of
atomicity is unrealistic in that it would be extremely expensive to implement
(in terms of say semaphore setting).

One attempt to avoid the problems posed by two threads referring to
shared variables is to say that any assignment statement can use (in either
left or right-hand contexts) at most one shared variable. This is sometimes
referred to as “Reynolds rule”. It has its own obvious disadvantage in that
any statement of the form

x ← e(x)

has to be rewritten as

local ← e(x); x ← local

even where the logic of the program shows that in this context, no other thread
could change x .

More seriously, this idea gives no clue as to how one might handle variables
which cannot be accessed and/or changed atomically: consider for example
array or record assignments (but it is not even safe to assume that numbers
can be changed by an indivisible machine operation).

The preceding section explains how rely and guarantee conditions are as-
sertions about interference but the cited papers on this way of developing
concurrent programs only hint at the question of “atomicity”. In cases like
simple (Boolean) switches, a rely condition which states that the environment
will never set myswitch to false

↼−−−−−−
myswitch ⇒ myswitch

is safe. Conditions that, say, state a variable is monotonically decreasing are
quite often needed in program developments using rely/guarantee conditions
and can be more delicate in the sense that realising changes atomically can

C.B. Jones / Electronic Notes in Theoretical Computer Science 155 (2006) 43–60 47

be difficult in most programming languages.

In many such cases, there is a fascinating interplay with data reification.
There is an example in [17] where two (or more) parallel processes are searching
for the least index (i) to an array A for which a predicate p(A(i)) holds. A
compositional development of a generalisation of this example is given in [9].
A key point in the development there states that both processes rely on,
and guarantee, that the lowest index t where such a value has been found

monotonically decreases (t ≤
↼−
t). If t were itself a shared variable, even an

assignment like t ← v would not safely decrease t in the case where v ≤ t at
the start of execution because interference could reduce t to a value less than
v . What is actually done in [9] is to reify t into two variables v1 and v2 and
use the retrieve function

t = min(v1, v2)

(The ith process can write vi ; either process can read both vj .) The ith
process can now reduce t by changing vi without fear of interference and
without atomicity assumptions on things like assignment statements.

This observation appears to be important because it is echoed in other
examples — some of which are considerably more complicated. In fact, the
extremely subtle “Asynchronous Communication Mechanisms” (ACM) like
Simpson’s “four slot” algorithm can be understood in this way. The essence
of the problem with ACMs is to have a shared variable into which processes
can both read and write without ever waiting on any locks. If it is not assumed
that read and write of whole variables is atomic, this becomes very difficult.
Hugo Simpson has shown that –under the assumption only of atomic update
of some 1-bit indicators– this can be achieved with 4 slots for values (see [19]
and back references therein). The paper [7] develops this example using data
reification.

The same link between data reification and interference can be seen in the
development of a concurrent “Sieve of Eratosthenes”. The aim is to arrange
that some shared set s is set to exactly the set of primes up to some value
n. A sequential sieve would first remove all multiples (2 and above) of 2,
then find the next lowest value in s and remove its multiples and so on up
to the square root of n. The idea of a parallel version is to use a family of
parallel processes Rem(i) –one for each index between 2 and the square root
of n– and make them responsible for removing the multiples of their index.
The specification of each Rem process (i) cannot define a precise set which
will exist after the process completes (because other processes also remove
elements); (ii) can specify that all of its multiples should have been removed;
(iii) can only achieve this under a rely condition that no one re-inserts deleted
values; (iv) must guarantee never to re-insert values itself; (v) must guarantee

C.B. Jones / Electronic Notes in Theoretical Computer Science 155 (2006) 43–6048

only to remove composites. Full developments of this example can be found
in several of the cited papers.

Here, the interest is on the reification of the set s . Even if one had a
programming language which supported variables of type set, an assignment
like

s : = s − {i ∗ n}

would not satisfy the guarantee condition in the presence of interference
(e.g. having accessed s to compute the set difference, another process could
remove some composite j which would then be re-inserted by the assignment
to s). Again, it is the choice of a data representation for s which makes things
work. Essentially, s is represented by a vector of bits; an element of the set can
be removed by setting the corresponding bit to false; this operation is assumed
to be atomic.

5 Splitting atoms safely

If a development method is to be found for concurrent programs, it is worth
looking back at data reification and operation decomposition (under which
heading, for now, development of concurrent programs using rely/guarantee
conditions is included). These approaches are compositional in a useful sense.
From a short specification, key early design decisions can be recorded and
justified in the knowledge that further, more detailed, steps will not invalidate
the early decisions. Development processes, however formal, which create a
whole program which is then subjected to some final “check” leave the danger
of massive “scrap and rework”. Notice that this applies whether the post facto

check is testing, model-checking or even proof. This is precisely the problem
with Owicki’s final “interference freedom” proof: having completely developed
separate programs and shown they satisfy their individual post-conditions,
they might have to be discarded because a statement in one interferes with a
proof step in another.

So we would hope to find methods for developing concurrent programs
which are also compositional. What is being suggested here is to design as
though things will be atomic and then to allow steps of the processes to
overlap. This approach might be called “atomicity refinement”.

There are obviously cases where it is trivial and cases where it is invalid.
Almost all of our programs are now run on operating systems which share
the resources of the hardware; even the physical memory itself is shared via
paging schemes; but it is the responsibility of the operating system to keep such
programs completely independent from interfering with each other. Mostly,
they do this successfully.

C.B. Jones / Electronic Notes in Theoretical Computer Science 155 (2006) 43–60 49

Atomicity can be relaxed where there is no danger of interference.

On the other hand, it is not valid to relax the (unrealistic) assumption
of atomicity on assignments in the sequence of statements in Section 2 for
computing factorial 5.

Once one is aware of the power of the “fiction of atomicity”, it becomes
clear that it is a very useful way of understanding the intention of a large
range of core concurrency ideas. 2

In spite of the fact that this abstraction appears so useful, there is no
general way of arguing that the subsequent splitting of atoms is safe. The
database literature (see [2] for references) is interesting but the methods ex-
hibited there are honed to their specific application and would not offer a
general development method.

A worked example from another domain is worth considering as an exis-
tence proof for a development method.

The example of atomicity refinement in [12] satisfies the properties sought
for a development method. It can be applied to the development of the spec-
ification given in Figure 1. (This example is simpler than examples in earlier
papers; the point here is to draw out the lessons.) In particular some new
comments about observability give pointers to the further work sketched in
the last section of this paper.

After developing rely/guarantee reasoning, it was seen to be “heavy” and
in need of curtailment. What was needed was a clear way to show where
interference could not occur and to limit the use of interference proofs to
minimum portions of the program.

Object-oriented languages in general –and POOL [1] in particular– pro-
vided the inspiration for the next step. Class-based OOLs offer the program
designer ways to control the degree of interference: local “instance” variables
are only accessible via local methods; the degree to which references (i.e. point-
ers to instances) are shared between objects governs the degree of interference.
In earlier papers a language (πoβλ) was explored which required that only one
method was active in any object instance at one point in time. Coupled with
the identification of private references which (among other restrictions) could
not be copied, an intermediate class of interference control was described where

2 There is a sense in which the implementation of databases is all about offering a fiction
of atomicity. It is easy to write an operational semantics for the processing of transactions
which shows one transaction being selected (from a set of waiting transactions) and executed
atomically. The task of the implementer is to achieve one of the possible (non-deterministic)
outcomes described by this semantics. Because transactions can run for a (relatively) long
time, an implementation actually needs to overlap their processing. But this must be done
in a way which does not introduce any new results (such as losing the bank’s money because
of contention on a database).

C.B. Jones / Electronic Notes in Theoretical Computer Science 155 (2006) 43–6050

“islands” were immune from interference and could execute in parallel with
other processes.

For the priority queue specified in Figure 1, it is a straightforward step
of data reification to represent the set by an ordered sequence of values. It
is also not difficult to develop (by sequential operation decomposition) the
(πoβλ) program in Figure 2 3 which sequentially inserts a value into its correct
position.

The idea now is to introduce concurrency into such a sequential program.
Figure 3 shows the return statement at the head of the insert method. In
contrast to the sequential program, this version of insert would release its
client from the rendezvous immediately and the client could proceed in parallel
with the activity within the chained sequence of Priq elements. Furthermore,
as soon as a call is made to insert in the l element, activity can ripple down
the sequence in parallel.

These transformations depend on the properties of references. A prelimi-
nary definition fixes what can(not) be done with private references.

A private reference is defined to be one which is never ‘copied’ nor which
has general (unshared) references passed over it – neither in nor out (since one
can’t pass private references, this restricts to references to ‘immutable’ objects).

One equivalence is:

S ; return(e) is equivalent to return(e); S

providing

• S contains no return or delegate statements and always terminates;

• e is a simple expression and is not affected by S ; and

• every method invoked by S belongs to objects reached by private references.

Not all programs are intended to terminate; even if they are, termination is
not a syntactically checkable property; but it is in the spirit of the development
method envisaged that termination would be proved for relevant methods.
(This point does however make it doubtful whether the kind of equivalences
being considered are suitable for automatic application by a compiler.)

Another equivalence is:

return l .m(x) is equivalent to delegate l .m(x)

providing

• l .m(x) terminates; and

• l is a unique reference.

3 Because the names of variables and methods are used in semantic expressions in Ap-
pendix B, the opportunity is taken to use single character names.

C.B. Jones / Electronic Notes in Theoretical Computer Science 155 (2006) 43–60 51

classQ

vars v : N ← 0; l : private reference Q ← nil;
i(n: N) method

begin

if l = nil then (l ← new Q ; v ← n)
elif v < n then l .i(n)
else (l .i(v); v ← n)
fi;
return

end

r() method r : N
. . .

c(n: N) method r : B
if l = nil then return(false)
elif v < n then return(l .c(n))
elif v = n then return(true)
else return(false)
fi

end Q

Fig. 2. Priority queue program (sequential)

In conclusion, it is worth commenting that it is very difficult even to specify
concurrent πoβλ programs like that in Figure 3. Any attempt to use pre/post-
conditions would have to overcome the problem that both the initial and final
‘states’ are combinations of values and unfinished activity. Such a specifica-
tion would at least need some form of auxiliary variable. So the approach
of introducing parallelism by showing a program which is equivalent to a se-
quential program (whose specification was simple) has avoided considerable
complication.

The equivalences had to be justified against some semantics — two are
sketched in Appendices A and B. Unfortunately, it proved non-trivial to jus-
tify the equivalence rules of πoβλ via the mapping to the π-calculus (see
Appendix B). Attempts include research by David Walker and Davide San-
giorgi (who used “barbed bi-simulation” and introduced the idea of “uniformly
receptive processes”).

Interestingly, it is not true that the behaviour of the sequential and con-
current insert operations is identical. Of course, we have already observed
that operation decomposition introduces extra steps and that data reification
changes internal (state) representations. But in both of these cases, there is
a clear notion of what is observable “at the interface” (via external types). A

C.B. Jones / Electronic Notes in Theoretical Computer Science 155 (2006) 43–6052

classQ

vars v : N ← 0; l : private reference Q ← nil;
i(n: N) method

begin

return;
if l = nil then (l ← new Q ; v ← n)
elif v < n then l .i(n)
else (l .i(v); v ← n)
fi

end

r() method r : N
. . .

c(n: N) method r : B
if l = nil then return(false)
elif v < n then delegate(l .c(n))
elif v = n then return(true)
else return(false)
fi

end Q

Fig. 3. Priority queue program (parallel)

sufficiently rich observation language could observe that in

i(2); i(3); i(1)

the completion of i(1) can precede that of i(3) in the concurrent queue but not
in the sequential queue. The point is that πoβλ is (deliberately) expressively
too weak to be able to detect such differences. (The situation with check is
more complicated but gives rise to a similar collection of issues.)

The transformational introduction of concurrency by the use of πoβλ’s
equivalence rules comes close to meeting the properties sought of development
methods.

6 Further work

A beginning has been made on formalising notions of “atomicity refinement”.
But, as nearly always in research, much remains to be done. (One non-issue
should be recognised: just switching to a Process Algebra is not a solution
to “interference”: communication based concurrency just has to deal with
interfering communication.)

In looking at more transformations, it will be necessary to define the extent

C.B. Jones / Electronic Notes in Theoretical Computer Science 155 (2006) 43–60 53

of their language dependence. Their justification will require looking rather
broadly at interpreted notions of “context”. Observability is clearly crucial.

The ubiquity of informal “atomicity refinement” is both challenging and
a pointer to considerable intellectual leverage. (There are of course, many
concurrent programs which do not fit the mould of atomicity refinement.)

It is important to recognise other related contributions and to understand
the extent to which they might have already solved sub-problems that relate
to atomicity refinement. The work on refinement calculi [4,14,3] has led to
the notion of “Action Systems”.

It will be interesting to see whether embedding SOS definitions like that in
Appendix A in “logical frames” offers any purchase on the proof of the methods
themselves. If one views

s
−→ as a relation, it can be embedded directly into a

proof tool. The “Plotkin rules” are used directly as the inference rules about
programs and the logical frame of the proof tool is enriched to reason about
the logic of

s
−→. (Tobias Nipkow and colleagues have done this for definitions

of significant subsets of Java [16]; the idea is also discussed in [13] but appears
to originate with [5].)

Acknowledgments

For funding to support my research, I am grateful to the (UK) EPSRC
funding for the Dependability IRC (see www.dirc.org.uk) and for the new
project “Splitting atoms safely”; and to the EU-IST funding for “Rodin” (see
rodin.cs.ncl.ac.uk).

References

[1] Pierre America. Issues in the design of a parallel object-oriented language. Formal Aspects of
Computing, 1(4), 1989.

[2] A-Team. The atomicity manifesto: a story in four quarks, 2005. ACM SIGMOD Record.

[3] Ralph-Johan Back and Joakim von Wright. Refinement Calculus: A systematic Introduction.
Springer Verlag, 1998.

[4] K. M. Chandy and J. Misra. Parallel Program Design: A Foundation. Addison-Wesley, 1988.

[5] J. Camilleri and T. Melham. Reasoning with inductively defined relations in the HOL theorem
prover. Technical Report 265, Computer Laboratory, University of Cambridge, August 1992.

[6] W. P. de Roever. Concurrency Verification: Introduction to Compositional and
Noncompositional Methods. Cambridge University Press, 2001.

[7] N. Henderson and S. E. Paynter. The formal classification and verification of Simpson’s 4-slot
asynchronous communication mechanism. In L.-H. Eriksson and P.A Lindsay, editors, FME
2002: Formal Methods – Getting IT Right, volume 2391 of Lecture Notes in Computer Science,
pages 350–369. Springer Verlag, 2002.

C.B. Jones / Electronic Notes in Theoretical Computer Science 155 (2006) 43–6054

[8] ISO. VDM-SL. Technical Report Draft International Standard, ISO/IEC JTC1/SC22/WG19
N-20, 1995.

[9] C. B. Jones. Development Methods for Computer Programs including a Notion of Interference.
PhD thesis, Oxford University, June 1981. Printed as: Programming Research Group, Technical
Monograph 25.

[10] C. B. Jones. Specification and design of (parallel) programs. In Proceedings of IFIP’83, pages
321–332. North-Holland, 1983.

[11] C. B. Jones. Systematic Software Development using VDM. Prentice Hall International, second
edition, 1990. ISBN 0-13-880733-7.

[12] C. B. Jones. Accommodating interference in the formal design of concurrent object-based
programs. Formal Methods in System Design, 8(2):105–122, March 1996.

[13] Cliff Jones. Operational semantics: concepts and their expression. Information Processing
Letters, (88):27–32, 2003.

[14] Carroll Morgan. Programming from Specifications. Prentice-Hall, 1990.

[15] R. Milner, J. Parrow, and D. Walker. A calculus of mobile processes. Information and
Computation, 100:1–77, 1992.

[16] Tobias Nipkow. Jinja: Towards a comprehensive formal semantics for a java-like language.
Manuscript, Munich, 2004.

[17] S. Owicki. Axiomatic Proof Techniques for Parallel Programs. PhD thesis, Department of
Computer Science, Cornell University, 1975. 75-251.

[18] G. D. Plotkin. A structural approach to operational semantics. Technical report, Aarhus
University, 1981.

[19] H. R. Simpson. New algorithms for asynchronous communication. IEE, Proceedings of
Computer Digital Technology, 144(4):227–231, 1997.

[20] J. E. Stoy. Denotational Semantics: The Scott-Strachey Approach to Programming Language
Theory. MIT Press, 1977.

[21] K. Stølen. Development of Parallel Programs on Shared Data-Structures. PhD thesis,
Manchester University, 1990. Available as UMCS-91-1-1.

[22] Davide Sangiorgi and David Walker. The π-calculus: A Theory of Mobile Processes. Cambrisge
University Press, 2001.

C.B. Jones / Electronic Notes in Theoretical Computer Science 155 (2006) 43–60 55

A SOS of πoβλ

Abbreviations used throughout:

Expr Expression

Obj Object

Meth Method

Stmt Statement

Var Variable

Abstract Syntax

A Program contains a collection of named ClassBlocks; it is also here assumed
that execution begins with a single (parameterless) method call.

Program :: classes : Id
m
−→ ClassBlock

start-class : Id

start-meth : Id

ClassBlock :: vars : Id
m
−→ Type

meths : Id
m
−→ Meth

Type = ScalarType | Id

ScalarType = IntTp | BoolTp

Meth :: returns : Type

params : Id∗

paramtps : Id
m
−→ Type

body : Stmt∗

Stmt = Assign | If | New | MethCall | Release | Delegate

Assign :: lhs : Id

rhs : Expr

If :: test : Expr

th : Stmt∗

el : Stmt∗

New :: targ : Id

class : Id

C.B. Jones / Electronic Notes in Theoretical Computer Science 155 (2006) 43–6056

MethCall :: lhs : Id

obj : Id

meth : Id

args : Id∗

Release :: val : Expr

Delegate :: obj : Id

meth : Id

args : Id∗

The definition of Exprs is straightforward and is omitted here.

Furthermore, the Context conditions for the language are also elided.

Semantic objects

Dynamic information 4 about Objects is stored in:

ObjMap = Handle
m
−→ Oinfo

Oinfo :: class : Id

state : VarState

status : Status

remaining : Stmt∗

client : [Handle]

VarState = Id
m
−→ Val

Val = Handle | Z | B

Status = active | idle | Wait

Wait :: lhs : Id

SOS rules

The types of the semantic relations are
s

−→:P((ClassTypes × ObjMap) × ObjMap)

and
e

−→:P((Expr × VarState) × Val)

For Assign

4 Text can be obtained from ClassTypes

C.B. Jones / Electronic Notes in Theoretical Computer Science 155 (2006) 43–60 57

O(a) = mk -Oinfo(c, σ, active, [mk -Assign(lhs , rhs)] � rl , cl)

(rhs, σ)
e

−→ v

aobj ′ = mk -Oinfo(c, σ † {lhs �→ v}, active, rl , cl)

(C ,O)
s

−→ O † {a �→ aobj ′}

For New

O(a) = mk -Oinfo(c, σ, active, [mk -New(targ , c ′)] � rl , cl)

b ∈ (Handle − domO)

aobj ′ = mk -Oinfo(c, σ † {targ �→ b}, active, rl , cl)

σb = {v �→ . . . | . . .}

nobj = mk -Oinfo(c ′, σb , idle, [], nil)

(C ,O)
s

−→ O † {a �→ aobj ′, b �→ nobj}

For invoking methods; note σ(obj) must be quiescent

O(a) = mk -Oinfo(c, σ, active, [mk -MethCall(lhs , obj ,meth, args)] � rl , cl)

O(σ(obj)) = mk -Oinfo(c ′, σ′, idle, [], nil)

C (c ′) = mk -ClassBlock(vars ,meths)

aobj ′ = mk -Oinfo(c, σ,mk -Wait(lhs), rl , cl)

σ′′ = σ′ † {(meths(meth).params)(i) �→ σ(args(i)) | i ∈ indsargs}

sobj = mk -Oinfo(c ′, σ′′, active,meths(meth).body , a)

(C ,O)
s

−→ O † {a �→ aobj ′, σ(obj) �→ sobj}

When a method finishes (remember the Release can have occurred earlier) it
returns to the quiescent status.

O(a) = mk -Oinfo(c, σ, active, [], cl)

aobj ′ = mk -Oinfo(c, σ, idle, [], nil)

(C ,O)
s

−→ O † {a �→ aobj ′}

Releasing a rendez-vous

C.B. Jones / Electronic Notes in Theoretical Computer Science 155 (2006) 43–6058

O(a) = mk -Oinfo(c, σ, active, [mk -Release(e)] � rl , cl)

(e, σ)
e

−→ v

O(cl) = mk -Oinfo(c ′, σ′,mk -Wait(lhs), sl , cl ′)

aobj ′ = mk -Oinfo(c, σ, active, rl , nil)

clobj ′ = mk -Oinfo(c ′, σ′ † {lhs �→ v}, active, sl , cl ′)

(C ,O)
s

−→ O † {a �→ aobj ′, cl �→ clobj ′}

Delegation

O(a) = mk -Oinfo(c, σ, active, [mk -Delegate(obj ,meth, args)] � rl , cl)

O(σ(obj)) = mk -Oinfo(c ′, σ′, idle, [], nil)

C (c ′) = mk -ClassBlock(vars ,meths)

aobj ′ = mk -Oinfo(c, σ, active, rl , nil)

σ′′ = σ′ † {(meths(meth).params)(i) �→ σ(args(i)) | i ∈ indsargs}

sobj = mk -Oinfo(c ′, σ′′, active,meths(meth).body , cl)

(C ,O)
s

−→ O † {a �→ aobj ′, σ(obj) �→ sobj}

B Mapping πoβλ to a process algebra

Another way to give the semantics of a language is to map it to a known
language. It is desirable that it is relatively easy to prove results in this
“known” language. This is the essence of “denotational semantics” (see [20]):
imperative (sequential) languages are mapped to the Lambda calculus which
has a sound mathematical basis in terms of which proofs can be conducted.

It is shown below that there is a rather natural mapping from πoβλ to
the π-calculus [15,22] in the sense that the expansion is linear and there are
concepts in this process algebra which nicely capture key facets of concurrent
OOLs. Given that there is an algebra of the π-calculus, this presents a good
starting point for proofs.

It is not the intention here to present a full mapping function from πoβλ

to the π-calculus. Instead, the main points can be illustrated by looking at
the π-calculus equivalent of one πoβλ program. An example can be used
to illustrate the main points of the mapping. Figure 2 contains a πoβλ class
which has methods for inserting (into an ordered sequence); removing the least
element from the head of a queue; and checking if a value is in the queue. If

C.B. Jones / Electronic Notes in Theoretical Computer Science 155 (2006) 43–60 59

the values were priorities and there was some other information associated
with each entry, this might be a self-organising priority queue.

The class definition itself maps naturally to π-calculus’s replication; this
ensures that an arbitrary number of instances can be generated

[[Q]] = ! IQ

After suitable hiding, IQ emits a unique name for each instance of the class

IQ = qu.BQ

Thus a new(Q) is translated into a receipt of the unique “capability” (or “han-
dle”) for the new object

q(u). · · ·

The hiding involved limits the visibility of the chatter with the processes
which correspond to the two internal variables (v , l). Thus the mapping
(with s̃ = [sv , sl] and ã = [av , al]) is actually

IQ = (ν s̃ ã)(vnil | lnil | qu.BQ)

We will not be concerned with the (indexed) processes v and l here other
than to know that their values are set by the corresponding s (and accessed
by the corresponding a) actions.

The BQ process emits on its private name (u) a sequence α̃ = [αi , αr , αc]
of unique names for its methods

BQ = uα̃.MQ

The π-calculus corresponding to any method has a similar form – for the
i method, which takes a parameter n and delivers no result,

αi (ωn).[[bodyi]].ω.BQ

One can see how ω is used to signal the completion of the method; also how
the recursion on BQ reflects the “single method active” rule of πoβλ.

Thus the π-calculus corresponding to an invocation of i(5) is

q(s).s(α̃).(νω)(αiω5).ω(). · · ·

One can now easily see the effect of commuting the return to the head of
the i method

αi (ωn).ω.[[bodyi]].BQ

C.B. Jones / Electronic Notes in Theoretical Computer Science 155 (2006) 43–6060

	Introduction
	Interference
	Atomicity in SOS
	Granularity and reification
	Splitting atoms safely
	Further work
	References
	SOS of o
	Mapping o to a process algebra

