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ABSTRACT 

The n x n permanent is not a projection of the m X m determinant if 
m<&n-66. 

1. INTRODUCTION 

The definitions of permanent and determinant look very similar: 

perrij = C xrO, . . . lcnon 
O~Sym” 

differs from det xii only in the signs of the summands. However, while 
Gaussian elimination provides an efficient way of calculating the determi- 
nant, no fast algorithm is known for the permanent. (We assume an arbitrary 
ground field of characteristic different from two, since otherwise perXij = 
det xi j.) Evidence for the difficulty of computing the permanent was given in 
Valiant’s (1979a) theory of pcompleteness, an arithmetic analogue of the 
Boolean theory of P versus NP [see von zur Gathen (1987) for an exposition]. 
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by Schweizerischer Nationalfonds, grant 21754.83, and by NSERC, grant 3-650-126-40. A 
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The determinant can be computed in polynomial time, but the permanent is 
“p-complete”: a polynomial-time algorithm for the permanent would imply 
one for a host of problems which have so far withstood attempts to find fast 
algorithms. Valiant’s hypothesis is the conjecture that no such fast algorithms 
exist, in particular no arithmetic algorithms for the n X n permanent using 
constants from the ground field, indeterminates, and no(l) arithmetic oper- 
ations +, -, *, /. One of the motivations for Valiant’s theory is the hope 
that the powerful tools of algebra may allow us to solve problems which are 
very hard in the Boolean context, maybe even Valiant’s arithmetic analogue 
of Cook’s hypothesis P # NP. 

The Boolean problem of computing the permanent of a matrix with 
integer entries is #P-complete (Valiant 197913). 

The n X n permanent is said to be a projection of the m X m determinant 
if there exists an m X m matrix f whose entries are constants and indeter- 
minates xii (1~ i, j < n) such that perxij = detf. Let us denote by p(n) the 
smallest such m. Valiant proves p(n) = 0(n22”). Valiant’s hypothesis would 
follow from 

p(n) > n is trivial. The main result of the present paper is the first nontrivial 
lower bound for this problem, showing that p(n) > an - Sh over an 
infinite field of characteristic different from two. The author had obtained 
p(n) > 1.06n - 1; the stated bound is due to Babai and Seress (1987). 

The question of what kind of relations exist between permanent and 
determinant, in particular whether the permanent can be expressed as the 
determinant of a matrix, is a classical mathematical problem. SzegB (1913), 
answering a question posed by Polya (1913), showed that for n z 3, there is 
no way of generalizing 

i.e., of affixing f signs to the indeterminate entries xi j such that 

perxij=det( f xii)* 

In view of this question, we consider “ f-projections” f with per x = det f 
as above, ‘but where now constants, indeterminates zi ., and also - xij are 
allowed. p * (n) is the minimal m with this property. Clearly p * (n) Q p(n). 

Marcus and Mint (1961) proved that one cannot relate certain permanen- 
tal and determinantal functions by linear mappings. In particular, for n >, 3, 
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there are no linear forms fkl in indeterminates xii (1~ i, j, k, I < n) such 
that per xi j = det fkl. The methods of this paper yield an easy proof of this 
result, generalized to arbitrary infinite fields of characteristic different from 
two, and also allowing affine linear forms with nonzero constant terms. 

A general background on permanents is given in Mint (1978). 
The paper is organized as follows. In Section 2, we give bounds on the 

dimension (in the sense of algebraic geometry) of the singular locus of the 
permanent and determinant polynomials. In Section 3, we derive a criterion 
on mappings that transform the permanent into the determinant. The result 
of Marcus and Mint follows immediately. As an aside, absolute irreducibility 
of the permanent is a corollary. Applying the criterion, a combinatorial 
argument proves in Section 4 that p * (n) > an - 66. 

We note that the combinatorial argument can be applied directly to prove 
lower bounds for p(n), without using the geometry of Sections 2 and 3 (see 
the preliminary version). However, that approach seems a dead end, while it 
remains open whether the present method can yield better lower bounds. 

2. THE SINGULAR LOCUS OF DETERMINANT AND PERMANENT 

Throughout the paper, F is a field of characteristic different from two, 
n E N, and xi j are indeterminates over F for 1~ i, j < n. We use elementary 
notions from algebraic geometry, as e.g. in Shafarevich (1974, Chapter I). For 
simplicity, we assume F algebraically closed in this section. We say that the 
n X n matrix r=(xij)lci,j_ consists of the coordinates on the ring F nXn of 
n x n matrices over F. We alsolet x= {~i~,x~s,...,x~~}, so that perx,detx 
E F[x]. If f E Fly,,..., y,] is square-free, then the singular locus sing Y of 
the hypersurface 

Y={f=O}={ aEF”:f(a)=O} cF” 

is the closed subvariety of F” defined as 

singY= ncY:g(o)= ... 
i 1 

=-$)=o}. 
n 

Let Z,Jc {l,..., n}, Raring,andu~R”~“beann~nmatrixoverR. 
We denote by u(Z1.Z) the (n-#bZ)x(n-#I) matrix obtained from u by 
deleting the rows from Z and the columns from I. We also write u(i1.Z) and 
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u(i, jlJ> if I = {i} and I = {i, j}, respectively; similarly for 1. we let 

D,, = {det z = 0} c Fnx”, 

P, = {perx = 0} c Fnx”. 

Since ~3 det x/8xij = ( - l)‘+jdet(x(ilj)), and similarly for per, we have 

sing D, = {a E Fnx” :Vi, j Q n det a(ilj) = 0} 

= {~EF”~” :rankaQn-2}, 

sing P, = {a E Fnx” :Vi, j Q 12 peru(ilj) = O}. 

LEMMA 2.1. Let F be ulgebruicully closed, n > 2. Then sing( 0,) is 
irreducible of dimension n2 - 4. 

Proof. For 1~ i < j Q n, let 

Sij= {uEF”~” : rows i and j of a are linearly 
dependent on the other rows of a } . 

Then Sn-l,n, e.g., is the image of the mapping 

Cp: F(n--9x73 x F”-2 x F”-2 + F”X”, 

b 

(b,c,d)-t xckbk* , I 1 &hbk* 

where b,. is the kth row of b. The generic fibre of + consists of one point, 
and therefore each Sij is irreducible of dimension n2 - 4. Furthermore, 

sing D,, = IJ S,,, 
l<i<j<n 

and for any i < j, Sij n S,,n_l is a dense open subset of Sn,“_i. It follows 
that sing D,, equals the Zariski closure of S,_ i, ,,. n 
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This lemma is also valid in characteristic two. 

EXAMPLE 2.2. In this example we determine sing Pa. First note that for 
any n, the group G, consisting of row permutations, column permutations 
and transposition on Fnxn leaves sing P, invariant. Let 

U= 

Here, * denotes an arbitrary entry from F. W consists of 6 + 9 = 15 
irreducible components of dimension 3. Clearly W c sing P3, and we prove 
that equality holds. Let a E sing J’?. We can assume that some entry of a is 
nonzero, and hence that a,, # 0. Then 

- a1zaz1 
a 22= > 

a11 

and similarly a i j for i, j E {2,3} are rational functions of ai, and 
l< i, j < 3. 

After substitution and multiplication by - a,,/2, the remaining 
equations give 

o = a12a13a21 = a12a13a31 = a12a21a31 

= a13a21a31 = a12a,3a21a31/all~ 

All the solutions are contained in W. 

aljy 

five 

n 

LEMMA 2.3. Let n > 3, and F be algebraically closed. Then every 
irreducible component of sing P,, has dimension at most n2 - 5. 

Proof. Let CGF”~” be an irreducible component of sing I’,,. If all 
(n - 2) x (n - 2) permanents vanish on C, the claim follows by induction. 
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After possibly reordering rows and columns, we can assume that with 
J= {n - 1, n} and g = perx(JIJ) wehavegrCf0. For lgi,j<n, Aj= 
perx( ilj) vanishes on C. Then e.g. developing f,, along the (n - 1)st 
column gives 

6211~ C ‘i,n-1 per4k4J)+ x,-l,,plg. 

l<i<n-2 

Thus x n _ 1 fl _ I is a rational function on C of the n2 - 4 variables xi j with 
i P J or j 6 J. Similarly, we can use fn-l,n-l, f,-l n, and f, n_l to express 
x x ” n-1, and X,-l fly nn, , 
remaining n2 - 4 variables. 

respectively, as rationai function\ on C of the 
This proves dim C Q n2 - 4, and it remains to 

find a nonzero polynomial h in these n2 - 4 variables that vanishes on C. 
Consider 

h= l&2,” - fn-l,n perx(n - 2,nI.l) 

-f,,perx(n-%n-1I.l) 

= c xi,.-,[Perx(i,n-2ll)perx(n-1,nl.I) 
l<i<n-3 

- perx(l,n - lIJ)perx(n - 2,nlj) 

- perx(i,nIJ)perx(n-2,n-11_/)] 

- 2x ._,,._,perx(n-2,fl-lIJ)perx(n-2,nI_I). 

The coefficient of x,_~, n_ 1 in h is 

- 2perx(n - 2, n - llJ)perx(n - 2, n1.f) # 0, 

and therefore h is not the zero polynomial. Since h r C = 0, the claim follows. 
n 

REMARK 2.4. We have not determined sing P,,, or its dimension. One can 
show that e.g. the matrices with last two columns equal to zero form a 
component of sing P,, of dimension n2 - 2n. The set of 4 X 4 matrices of the 
form * * 0 0 0 0 

I 1 ;; * *’ 0 0 * * 
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with the two 2 X2 permanents equal to zero, forms a component C of 
sing P4, of dimension 6. Each component of sing P4 outside the orbit of C 
under G, has dimension 8, and contains at least one zero row or column. To 
generalize C, one takes two diagonal squares, say of sizes s X s and (n - s) X 
(n - s), and sets the corresponding two permanents equal to zero and 
all entries outside the squares equal to zero. The resulting dimension is 
s2 +(n - s)2- 2. 

3. POLYNOMIAL MAPPINGS 

The following theorem is our tool for proving lower bounds on functions 
relating the permanent and determinant. 

THEOREM 3.1. Let F be an infinite field of characteristic different from 

two, m, n EN, n > 3, x coordinates on Fnx”, and 

f: F”x” _., F”Xm 

a polynomial mapping such that im f n sing D,,, # 0. Then per x z det f. 

Proof. We first assume that F is algebraically closed, perx = det f, and 
let y=(ykl)16k,Ibm be coordinates on FmXm. Thus D,= {dety=O}. By 
assumption, f is given by polynomials: 

f = (fkJl<k,I<rn E (FM)“X”- 

(For the application in Section 4, it is sufficient to consider affine linear f.) 

For a E Fnx” and 1~ i, j Q n, we have 

Pera( (F)(a)= (y)(a) 

= c 
l<k,lbrn 

F(f)%)(a) 
kl ‘I 
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If f(a) E sing D,, then each summand vanishes, and therefore per a (il j) = 0 
and a E sing I’,. Letting S = f ‘(sing D,,,), we have shown that S c sing I’,,. 
If S#0, then dimS>n2-m2+(m2-4)=n2-4 by Lemma 2.1 and the 
theorem on the dimension of fibres (Shafarevich 1974, Chapter I, Section 3). 
Therefore Lemma 2.3 implies that S = 0 ; the claim is proven for algebraically 
closed fields. 

If F is an arbitrary infinite field and K an algebraic closure of F, then f 
defines a polynomial mapping f: K n x n + Km x “‘. The theorem for f implies 
that for f. n 

The theorem as stated also holds over a finite field F, since perx = det f 
would be valid over arbitrary extension fields of F. However, it is more 
relevant to consider the condition 

Vu E Fnx” pera = det f(u), 

and this may not extend to larger fields. 

. 
REMARK 3.2. The theorem is a special case of the following situation. Let 

f: X -+ Y be a morphism of smooth varieties, g a regular function on Y with 
g~f+O,V={g=0}~Y,W={g~f=O}=f’V~X,and 

dgof 
aEW:Vi - at, 

I 

where the ti form a system of local parameters on X at a. Then f ‘sing V L T. 
Note that sing W c T may be a proper inclusion, if g 0 f is not square-free: 
for f: F + F2 with f(a) = (a, a) and g = xy, where x, y are the coordinates 
on F2, we have W=T= (0) and singW=0. 

Marcus and Mint (1961) deal with representations of the permanent as 
linear combinations of determinants of linear forms. As a corollary, they 
obtain that for a field F of characteristic zero and n >, 3, the n X n 
permanent is not the n X n determinant of some linear forms, i.e., 

nxn 

per x # det f. 

This is a trivial consequence of Theorem 3.1, since for any such f: F” Xn + 
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Fnx’ we have f(0) = 0 E sing 0,. We generalize this statement to arbitrary 
infinite fields, and also allow constants in the linear forms, in order to include 
the “ +_ -projections” considered in Section 4. 

THEOREM 3.3. Let F be an infinite field of characteristic diffkrent jkm 
two, n> 3, xcoordinates onFnX",and f:Fnx"+ Fnx" afjkelirwar. Then 
per x # det f. 

Proof. We split f = g + h into its constant and linear parts, with 
g E Fnx" and 

ht ( c 
lCi,j<n 

Fx~~)"~", 

and distinguish two cases. 

Case 1: 3aEFnX"\{0} h(a)=O. We choose aEFnX" with h(a) 
= 0 and a,, # 0, after possibly permuting rows and columns of x. Let 
bE Fnx" be such that 

a+b=i b= 0 0 0 -*- 1 9 a11 

1 * 

aI2 e-e al" 

. * 0 . 0 1 ] , 

i.e., bli = 0 for 1 d i Q n, and (a + b)ij = aij for 2 < i < n, I < j < n. Then 
either per b # det f(b), or else 

per(a+b)=all 

#O=perb=det[g+h(b)] 

=det[g+h(a)+h(b)] =det[g+h(a+b)] =detf(a+b). 

Case 2. VaEFnX" \ (0) h(a) # 0. Then f is an affine linear auto- 
morphism of Fnx", and im f = Fnx". In particular, 0 E im f, and the claim 
follows by Theorem 3.1. n 
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We note as an easy consequence the well-known absolute irreducibility of 
the permanent; this will not be used in the sequel. 

THEOREM 3.4. Let F be any field, n >, 1, and x coordinates on FnXn. 
Then per x E F [x] is absolutely irreducible. 

Proof. We can assume that F is algebraically closed, since absolute 
irreducibility means irreducibility over an algebraic closure. If char F = 2, 
then per x = det x is irreducible [see e.g. van der Waerden (1970); that 
approach can also be used to prove Theorem 3.41. For characteristic different 
from two, we can assume n > 3. Let g, h E F[x] with perx = gh. Consider 
the polynomial mapping f: F” Xn + F2x2 given by 

f= [; ;] EF[x]~~~. 

Then perr = det f. Since perx is homogeneous, also g and h are homoge- 
neous. If both g and h are nonconstant, then g(0) = h(0) = 0, and f(0) = 0, 
contradicting Theorem 3.1. q 

4. THE PERMANENT AS PROJECTION OF THE DETERMINANT 

We first recall Valiant’s (1979a) notion of projection in our case. 

DEFINITION 4.1. Let F be a jk?d, n EIBI, x coordinates on Fnxn, 

x= {x11,x12,...,xnn}, ad 

p(n)=min{mEN:3f E(FUx)mXm perx=detf}. 

If f is as above, then we say that tk n X n permment is a projection of the 
m X m determinant. Let *x = xU { - xllr - xl2 ,..., - xnn}, and 

p.(n)=min{mEN:3f E(Fu*x)“X”perx=detf}. 

We call such an f a f-projection. 

Clearly p*(n)<p(n), and p*(2)=2<p(2) (if charFZ2). Valiant 
proves p(n) = 0(n22”). The interest in lower bounds on p(n) stems from 
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the fact that 

p ( n) = 2oog nY(‘) 

implies Valiant’s hypothesis, the arithmetic analogue of Cook’s hypothesis 
P # NP. Szegii [1913] h s owed p +(n) > n; Theorem 4.4 improves this to 
p.(n)>fin-66. 

_ 

If we define pl, and p,, similarly, by allowing f to consist of linear or 
affine linear polynomials respectively, then Marcus and Mint (1961) prove 
pIi, > n, and Theorem 3.3 reads pl,, > pdf > n. 

For the remainder of this section we fix the following notation. F is an 
infinite field of characteristic different from two, m >, n > 3, x consists of 
coordinates on Fnx”, f E (F U +x)~~~, and perx = det f. 

DEFINITION 4.2. A free square for f consists of four indices 1 Q kr < ks 
G m, 1 G I, -C 1, Q m such that fk,[, E -t x, say 

for r, s E { l,2}; each such fk,[, occurs only once in fi - fk,l, does not occur 
in f; and ii, Z i,, j,, + j,. 

LEMMA 4.3. f has no free square. 

Proof. We assume that k,, k,, l,, 1, form a free square for f. After 
possibly permuting rows and columns in f (so that per x = k det f ), we can 
assume that k 1 = 2, = 1, k, = I, = 2, so that 

fll fl2 

f = $21 fiz g1 ’ L---l-l g2 g3 

where each fkl is some + riLljtr for k, 1 E { 1,2}, and these variables do not 
occur in g,, g,, g,. As a further simplification, we may also assume Jj = * xii, 
say Aj = eijxij with eije { - l,l} for i, j E {1,2}. We show that we can 
make d=detg, nonzero by appropriate substitutions for xij, and then 
adjust the four variables in the top left comer so that the resulting matrix has 
rank m - 2. Let S = { rrr, xi2, zzl, xas } consist of the four special variables, 
and z = filfiz. Thus all entries of g,, g,, g, are from T = (F U kx)\ h S. 
The coefficient of z in det f is * d, and the coefficient of z in per x is 
nonzero, using the last condition in Definition 4.2. Thus d # 0. The two rows 
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of g, E YP(m-2) are linear combinations of the rows of g, E T(m-2)x(m-2), 

say 

for l<i<2<j<n,with ui,EF[x\S]. 
We choose values a’ in F for the n2 - 4 indeterminates in x \ S such that 

d(a’) # 0, and set 

aij = cij C (yhj)Ca’) E F 
3skgn 

for 4 j E {1,2}. This completes a’ to a E Fnx" with rankf(a) =rn - 2, 
contradicting Theorem 3.1. n 

The author had originally used this lemma to show p f (n) > 1.08n - 1. 
The following improvement is due to Babai and Seress (1987). 

THEOREM 4.4. Let F be an infinite field of characteristic diffhent j&n 

two, andnEN. Thenp*(n)>fin-6fi. 

Proof. Suppose that f E (F U i- x)” Xm is a matrix with per x = det f. 
We show that m > fin - 66. For 1~ k < m2, let ak denote the number of 
those indeterminates xi j for which xi j and - xi j together occur exactly k 

times in f. Then 
. 

a,+2a2+3a3+ e-e <m2, 

a1 + a2 + a3 + . . . = n2, 

2n2 - a1 Q m2, 

and we will prove that a1 is small. 
We define a line of f to be either a row or a column of f, and let X c x 

denote the set of indeterminates occurring exactly once in f. If xi j, xkl E X 
occur (with a + sign) in the same line of f, then either i = k or j = 1. Hence 
we can label those lines of f which contain at least two elements of X by 
“r ,, or “c 7,; a line receives the label T if it contains indeterminates from a 
single row of x, and c if from a single column of x. 

Let G be the undirected bipartite graph whose vertices are the 2m lines 
of f, and with an edge between those lines that have an element of X at their 
intersection. Let e denote the number of edges of G. Any xii E X either 
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corresponds to an edge in G, or lies on an unlabelled line. There are at most 
2m unlabelled lines, with at most one xi j per line. Thus (pi < 2m + e. 

We split G into four subgraphs, each of which has the same set of vertices 
as G, and the (disjoint) union of their edges is the edge set of G. G, is the 
graph whose edges connect vertices labelled r, G, is the graph connecting 
vertices labelled c, G, contains the edges which connect rows labelled r with 
columns labelled c, and G, contains the edges connecting rows labelled c 
with columns labelled r. 

We first consider a connected component H of G, or G,. Since all edges 
in H represent members of the same line of X, H contains at most n edges. 
Thus if H has at least h vertices, the average degree of vertices is at most 6. 
The same is trivially true for H with less than 6 vertices, and so the average 
degree in G, and G, is at most 6. 

A four-cycle in G, or G, corresponds to a free square in fi By Lemma 
4.3, G, and G, contain no four-cycles, and thus each have at most (2m)3’2 
edges (see Lovhz (1979), Ch. 10, Ex. 36). 

Assuming that m Q fin - 6& < fin, we find 

e < 2.rn.h +2.(2m)3’2 < an312, 

with a = 2&f + 84fi. A simple calculation shows that 

zn2 - (2\/?;n + an312) Q 2n2 - (2m + e) Q 2n2 - a1 < m2 < (fin - 66)” 

implies n < 70. However, fin - 66 < n < p *(n) for n < 70, using Szegii 
(1913) (or Theorem 3.3). n 

5. CONCLUSION AND OPEN QUESTIONS 

One of the goals of Valiant’s theory of “pcompleteness” is to provide an 
analogue of the notorious Boolean conjecture P # NP in a more structured 
setting (here: arithmetic computations), where powerful tools are available. 
The present criterion on maps relating the permanent and determinant yields 
an easy proof of (a generalization of) a theorem of Marcus and Mint. The 
main result is that p(n)>p,(n)>fin-6h. Mesh&m (1987) has 
extended this to affine linear projections. It “remains” to improve this lower 
bounds, ultimately to superpolynomial in n. Theorem 3.1 by itself will not 
lead much further, since there are matrices f~(F~{r~~,x~~,...,x,,})~~~ 
with m G &n + 2, dim(im f) = n2, and im f n sing 0, = 0 (e.g. an upper 
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triangular matrix with ones on the diagonal and entries xi j in the upper 
triangle). 

From a geometric point of view, it would be interesting to determine the 
number of irreducible components of sing P,, and their dimensions. It is, 
however, not clear that such a result would yield new information on p(n). 

Many thanks go to LAX& Babai and Akos Seress for permission to include 
their proof: I have had many stimulating discussions with Volker Strassen 
and Michael Clausen about the subject and thank Allan Donsig and Gaston 
Gannet for help in calculating sing(P,) on the Maple system. 
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