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Abstract

The area+perimeter generating function of directed column-convex polyominoes will be writ-
ten as a quotient of two expressions, each of which involves powers of q of all kinds: positive,
zero and negative. The method used in the proof applies to some other classes of column-convex
polyominoes as well. At least occasionally, that method can do the case q = 1 too.
c© 2000 Elsevier Science B.V. All rights reserved.

1. General discussion

The model of a self-avoiding polygon (SAP) on the step-set {N; S;E;W} has its
origins in various physical and chemical contexts. The things that would be most
interesting to know about SAPs are: what is the number of SAPs whose perimeter is
p, or the number whose area is n, or the number whose perimeter is p and area is n.
But these questions are all open, and there are little chances to answer any of them in
the near future.
Hoping to get insight into the above-mentioned di�cult problems, scientists started

studying various simpli�ed, but still nontrivial SAP models. Such models proved to be
a rich vein of appealing exact results. Here we shall recall only the necessary minimum
of those results. For comprehensive surveys of the subject, see e.g. [24,8].
Our approaching considerations will involve three models: the directed column-convex

(dcc-) polyominoes, the parallelogram polyominoes, and the directed convex polyomi-
noes. Let us see, for example, what is known about the dcc-polyominoes.
First, the number of dcc-polyominoes of area n is the Fibonacci number F2n−1

[20,10].
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Second, the number of dcc-polyominoes with c columns, 2v vertical edges and d
L-shaped corners is

1
c

(
c
d

)(
c + v− 2
v− d− 1

)(
c + v− d− 1

v

)

[14,10]. The generating function (gf) for these numbers is algebraic of degree three.
Third, let V (x; y; q) be the gf for dcc-polyominoes in which the variables x; y and

q mark horizontal edges, vertical edges and area respectively. The function V was
expressed by Bousquet–M�elou [7] as

V = y2
∑∞

i=1
x2i(y2−1)i−1qi(i+1)=2

(q)i−1(y2q)i−1(y2q)i

1−∑∞
i=1

x2i(y2−1)i−1qi(i+1)=2

(q)i(y2q)i−1(y2q)i

: (1)

Formula (1) is the only expression for V that can be found in the literature.

Remark. The method which produced formula (1) is markedly versatile. Besides the
dcc-polyominoes, that method can also handle e.g. stack, parallelogram, directed con-
vex, convex, and column-convex polyominoes (see [7,6,15]).

The �rst thing we are going to do here is to forget all about formula (1) and derive
the function V anew. By carrying out this oddly sounding plan we wish to give a
transparent �rst illustration for an alternative q-counting method.
The basic idea of that new method is to combine Delest’s [9] coding for column-

convex polyominoes with a factorization of lattice paths used in Gessel [18]. It should
be mentioned, however, that the formulas obtained in such a way are somewhat di�erent
from those derived in [7,6,15]. Namely, whereas the formulas of Bousquet-M�elou
[7,6] and Fereti�c and Svrtan [15] involve only positive and zero powers of q, in our
formulas negative powers of q are present too.
To appetize the reader for �nding those ‘negative’ formulas, let us mention some

historical facts: the �rst to discover a result of (nearly) that kind was P�olya [23] in
1938. P�olya’s formula, and so too the akin results of F�edou and Rouillon [13], Flajolet
[17], Gessel [18] and Goulden and Jackson [19] concern the parallelogram polyominoes.
As far as the other polyomino models are concerned, by now almost no results of the
‘negative’ sort have been derived. (To my knowledge, the only exception is a result
about directed diagonally convex polyominoes given in [16]).
To a certain extent, the present paper provides a remedy for that. Namely, our al-

ternative method has fairly wide scope. To illustrate that feature, we shall, after the
dcc-polyominoes (which are q-enumerated in Sections 3–5), q-enumerate also the par-
allelogram polyominoes (Section 6) and the directed convex polyominoes (Section 7).
The latter species of polyominoes will be enumerated by perimeter as well (Section 8).
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2. De�nitions, conventions and notations

2.1. Directed column-convex polyominoes

Let x = (1; 0); �x = (−1; 0); y = (0; 1); and �y = (0;−1): Suppose we have paths �1
and �2 such that

(i) �1 lies in {x; y}∗, starts with an x-step, and ends with a y-step;
(ii) �2 lies in {x; y; �y}∗, has no factors y �y or �yy, starts with a y-step, and ends

with an x-step;
(iii) �1 and �2 have the same origin and the same terminus, but are internally

disjoint.
Let P be the plane �gure bounded by �1 and �2. The �gure P is called a directed

column-convex polyomino (dcc-polyomino, Fig. 1, left). The paths �1 and �2 are the
lower border and the upper border of P, respectively. The ith column of P is the part
of P that lies between the vertical lines passing through the ends of the ith x-step
of �1. We denote the minimal and the maximal ordinate of the ith column of P by
yi(P) and Yi(P), respectively. If no ambiguity need be feared, we suppress the ‘P’ and
simply write yi and Yi.
A parallelogram polyomino is a dcc-polyomino whose upper border makes no

�y-steps. A directed convex polyomino is a dcc-polyomino which has convex intersec-
tion with every horizontal straight line. Or equivalently, a directed convex polyomino
is a dcc-polyomino whose upper border either makes no �y-steps, or can be written as
a product u · �y · v, where u ∈ {x; y}∗ and v ∈ {x; �y}∗.
Let P be a dcc-polyomino. If the boundary of P consists of j horizontal steps and

k vertical steps, we say that the horizontal and vertical perimeters of P are j and k,
respectively, and we write h(P)= j; v(P)= k. If the area of P is n, we write a(P)=n.
For 
 a family of dcc-polyominoes, we de�ne the generating function (gf) of 
 to

be the formal sum

gf (
) =
∑
P∈


xh(P)yv(P)qa(P):

The case q= 1 of gf (
) is the perimeter gf of 
.
We denote the set of all dcc-polyominoes by V, and we put V = gf (V).

2.2. Lattice paths

Let W be the set of the paths on the step-set {x; y; �y} which begin on the x-axis
and have no factors y �y or �yy.
Let w ∈ W. If |w|x = n, then w has a unique factorization
w = u1 · x · u2 · x · · · un · x · un+1;

where ui ∈ {y}∗ ∪ { �y}∗, for every i. We call the paths ui nests of w. Clearly enough,
by the odd nests of w we mean the nests u1; u3; u5; : : : , while by the even nests of w
we mean the nests u2; u4; u6; : : : . An x-step of w is odd (resp. even) when it comes
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Fig. 1. A dcc-polyomino P and its code.

after an odd (resp. even) nest of w. The rank of w (denoted r(w)) is de�ned to be
the ordinate of the terminus of w. We write a1(w) (resp. a2(w)) for the sum of the
ordinates of the odd (resp. even) x-steps of w. Finally, with S⊆W we associate two
generating functions, gf 1(S) and gf 2(S), de�ned by

〈xiy jqntz〉gf 1(S) = |{w ∈ S: |w|x = i; |w|y + |w| �y = j; a1(w) = n; r(w) = z}|;

〈xiy jqntz〉gf 2(S) = |{w ∈ S: |w|x = i; |w|y + |w| �y = j; a2(w) = n; r(w) = z}|:
(The symbol 〈uk〉f(u) means the coe�cient of uk in f(u).)

2.3. Notations for products

Assuming from now on any empty product to be one, we write

(a)n =
n−1∏
i=0

(1− qia) (n ∈ N0) and
[
n
j

]
=
(qn−j+1)j
(q)j

(n; j ∈ N0):

The second one of the above two items is a q-binomial coe�cient, also called a
Gaussian polynomial.
Gaussian polynomials have a long history and numerous applications. In this paper,

however, we shall only need a few basic results (in fact, identities) about them. Any
such identity will be quoted before use, and will be numbered (A:3:3:7) or similarly;
this (A:3:3:7) means that the result in question appears in Andrews’ book [1], and is
numbered (3:3:7) therein.

3. A coding for dcc-polyominoes

The �rst step of our method is to encode the dcc-polyominoes.
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Let Vcvn be the set of dcc-polyominoes which have c columns, 2v vertical edges
and area n. With P ∈ Vcvn we associate a path ’(P) ∈ W which
(i) starts and ends on the x-axis, and
(ii) has 2c − 1 x-steps, whose ordinates are, from left to right:

Y1 − y1; Y1 − y2; Y2 − y2; Y2 − y3; : : : ; Yc − yc: (2)

(See Fig. 1 for an example.)
On account of the geometry of dcc-polyominoes, the numbers displayed in (2) are

all positive, which means that the internal vertices of ’(P) all lie in the half-plane
y¿ 0.
The �rst di�erences of sequence (2) are

y1 − y2; Y2 − Y1; y2 − y3; : : : ; Yc − Yc−1: (3)

Since y16y26y36 · · ·, we see that each even x-step of ’(P) stands on the same or
lower level than the last x-step before it. Hence the even nests of ’(P) all lie in { �y}∗.
Further, the absolute value of any of the numbers in (3) is the length of an internal
nest of ’(P). So

|’(P)|y + |’(P)| �y = (Y1 − y1) + |y1 − y2|+ |Y2 − Y1|
+|y2 − y3|+ · · ·+ |Yc − Yc−1|+ (Yc − yc): (4)

In (4), we readily recognize the side after the equals sign: it is nothing else than the
vertical perimeter of P. Thus |’(P)|y + |’(P)| �y = 2v.
Further, it is obvious that the ordinates of the odd x-steps of ’(P) sum up to the

area of P, i.e. to n.
Let Ccvn be the set of those w ∈ W which meet the following �ve conditions:
(i) the origin and terminus of w are on the x-axis, and all the internal vertices of

w lie in the half-plane y¿ 0,
(ii) all even nests of w lie in { �y}∗,
(iii) |w|x = 2c − 1,
(iv) |w|y + |w| �y = 2v,
(v) a1(w) = n:
We have shown that ’ maps the set Vcvn into Ccvn. What is more, this mapping is

readily seen to be a bijection.
Let

C0 =
⋃

c; v; n¿1

Ccvn:

(The family C0 consists of those w ∈ W which possess the properties (i) and (ii) and
have an odd number of x-steps.)
For all c; v; n ∈ N we have

〈x2cy2vqn〉V = 〈x2c−1y2vqn〉gf 1(C0)
which means that

V = x · gf 1(C0): (5)
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Fig. 2. A path u ∈ A0 has a unique factorization u = �z, where � ∈ B0 and z ∈ C0.

4. A factorization of lattice paths

It turns out advantageous to regard the paths of C0 as right factors of certain other
lattice paths. The relevant de�nitions follow.
Let A be the set of those u ∈ W which possess the properties:
(i) |u|x is a nonzero even number,
(ii) the odd nests of u lie in { �y}∗,
(iii) the last (odd) nest of u is nonempty.
Let A0 = {u ∈ A: r(u) = 0}.
Further, let B be the set of those v ∈ W which possess the properties:
(i) |v|x is an odd number,
(ii) the odd nests of v lie in { �y}∗,
(iii) the last (even) nest of v lies in {y}∗.
Let B0 = {v ∈ B: r(v) = 0}.
Now, let u ∈ A0. Consider the factorization u = vz, where v is the longest among

such left factors of u which are di�erent from u and have rank zero. A little thought
shows that here we have v ∈ B0 and z ∈ C0. (See Fig. 2.) Evidently,

|u|x = |v|x + |z|x and |u|y + |u| �y = (|v|y + |v| �y) + (|z|y + |z| �y):
Since |v|x is an odd number, the odd x-steps of z are even x-steps of u, and consequently
a2(u)=a2(v)+a1(z). Furthermore, the factorization just described is actually a bijection
between A0 and the cartesian product B0 × C0.
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Putting these remarks together, we �nd

gf 2(A0) = gf 2(B0) · gf 1(C0): (6)

From (5) and (6) it follows that

V = x · gf 2(A0)
gf 2(B0)

: (7)

5. Computations

As we see, now we need to compute the functions gf 2(A0) and gf 2(B0). A good
way to do that is to compute gf 2(A) and gf 2(B) �rst, and then read o� the coe�cients
of t0.
In what follows, for k a negative integer, we write y k to mean �y (−k).
Now, the family A consists of all paths of the form

u= yn1x · yn2x · yn3x · yn4x · · ·yn2i−1x · yn2i x · yn2i+1 ;
with i ∈ N, the odd-indexed n’s up through n2i−1 nonpositive, n2i+1 strictly negative,
and the even-indexed n’s arbitrary integers. It is easy to see that for such a u we have

a2(u) = i · n1 + i · n2 + (i − 1) · n3 + (i − 1) · n4 + · · ·+ n2i−1 + n2i
and

gf 2({u}) = x2i · (y|n1|qin1 tn1 ) · (y|n2|qin2 tn2 ) · (y|n3|q(i−1)n3 tn3 ) · (y|n4|q(i−1)n4 tn4 )
· · · (y|n2i−1|qn2i−1 tn2i−1 ) · (y|n2i|qn2i tn2i) · (y|n2i+1|tn2i+1):

Now we sum this latter equation over i¿1 and over all legal values of n1; : : : ; n2i+1.
Using the evaluations

0∑
n=−∞

y|n| qkntn =
1

1− yq−k t−1

and ∑
n∈Z

y|n|qkntn =
1− y2

(1− yq−k t−1) · (1− yqkt) ;

which are valid for every k ∈ Z, we �nd that

gf 2(A) =
∞∑
i=1

x2i(1− y2)iyt−1
(a)i(b)i(b)i+1

; (8)

where a= yqt and b= yq−it−1.

Remark. Handling formal power series with positive and negative exponents can some-
times be tricky (and lead to errors). But here we are pretty safe, in that we are dealing
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with formal power series in x and y, the coe�cients of which are Laurent polynomials
in q and t.

Our next move is expanding gf 2(A) in a series in powers of t. What enables us to
do that is the well-known result

1
(c)n

=
∞∑
r=0

[
n+ r − 1

r

]
· cr (n ∈ N): (A.3.3.7)

Applying (A.3.3.7) turns formula (8) into

gf 2(A) =
∞∑
i=1

∞∑
j;k;l=0

[
i + j − 1

j

][
i + k − 1

k

][
i + l
i

]
·

× x2i(1− y2)iy j+k+l+1q−i(k+l)+jt j−k−l−1:
To complete the derivation of gf 2(A0), it is now enough to take the coe�cient of

t0. That gives the formula

gf 2(A0) =
∞∑
i; j=1

x2i(1− y2)iy2jqi+j−ij
[
i + j − 1

j

]

×
j−1∑
k=0

[
i + k − 1

k

][
i + j − k − 1

i

]
: (9)

The function gf 2(B0) is found in much the same way as gf 2(A0). So we omit the
derivation and merely state that

gf 2(B0) = x ·

 1
1− y2 +

∞∑
i=1

∞∑
j=0

x2i(1− y2)iy2jq−ij
[
i + j
j

]

×
j∑
k=0

[
i + k − 1

k

][
i + j − k

i

]
 : (10)

Combining (7), (9) and (10), we establish the following:

Theorem 1. The gf for directed column-convex polyominoes is given by

V =

∑∞
i; j=1 x

2i(1− y2)iy2jqi+j−ij
[
i+j−1
j

]
·∑j−1

k=0

[
i+k−1
k

][
i+j−k−1

i

]
1=(1− y2) +∑∞

i=1

∑∞
j=0 x

2i(1− y2)iy2jq−ij
[
i+j
j

]
·∑j

k=0

[
i+k−1
k

][
i+j−k
i

] :
(11)

Thus we have got the ‘negative’ counterpart of formula (1).
It is plausible that the equivalence of formulas (1) and (11) can also be proved

in a direct (no-polyominoes) way. However, we have not (yet?) found such a direct
way out.
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6. q-enumeration of parallelogram polyominoes

To q-enumerate the dcc-polyominoes, we �rst encoded them, then found a factor-
ization of lattice paths, and then completed the job by carrying out computations. In
this section we shall see that the parallelogram (p-)polyominoes also lend themselves
to that kind of treatment.
First, coding. Recall that in Section 3 we de�ned a mapping ’. Now let F0 be

the set of the images of p-polyominoes under ’. The set F0 is easy to characterize.
Indeed, it consists of just those paths w ∈ W which have the properties:

(i) the origin and terminus of w are on the x-axis, and all the internal vertices of
w lie in the half-plane y¿ 0,
(ii) |w|x is an odd number,
(iii) all odd nests of w lie in {y}∗,
(iv) all even nests of w lie in { �y}∗.
Next we factorize lattice paths. Of course, the �rst thing to do is to tell exactly what

path-families are we going to consider. So, the relevant de�nitions are these.
Let D be the set of those u ∈ W which possess the properties:
(i) |u|x is a nonzero even number,
(ii) the odd nests of u lie in { �y}∗,
(iii) the last (odd) nest of u is nonempty,
(iv) the even nests of u lie in {y}∗.
Let D0 = {u ∈ D: r(u) = 0}.
Further, let E be the set of those v ∈ W which possess the properties:
(i) |v|x is an odd number,
(ii) the odd nests of v lie in { �y}∗,
(iii) the even nests of v lie in {y}∗.
Let E0 = {v ∈ E: r(v) = 0}.
Now, for every u ∈ D0 there exists exactly one pair (v; z) such that v ∈ E0; z ∈ F0,

and u = vz. (As in Section 4, the path v is the longest among such left factors of u
which are di�erent from u and have rank zero.) This fact immediately implies that
gf 2(D0) = gf 2(E0) · gf 1(F0).
Let P be the gf for the p-polyominoes. Since P = x · gf 1(F0), we have

P = x · gf 2(D0)
gf 2(E0)

:

At this point, there is no other way but to dive into the calculations.
To derive gf 2(E0), we �rst note that the family E consists of all paths of the

form

yn1x · yn2x · yn3x · yn4x · · ·yn2i+1x · yn2i+2

with i ∈ N0, the odd-indexed n’s nonpositive, and the even-indexed n’s nonnegative.
Having determined what does a single path of the above form contribute to gf 2(E),
we sum those contributions over all i ∈ N0 and over all legal values of n1; : : : ; n2i+2.
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Thus we �nd that

gf 2(E) = x ·
∞∑
i=0

x2i

(yt)i+1(yq−it−1)i+1
: (12)

With the aid of (A.3.3.7), we manage to express (12) as

gf 2(E) = x ·
∞∑

i; j;k=0

[
i + j
i

][
i + k
k

]
x2iy j+kq−ik t j−k

and then we are almost �nished, since

gf 2(E0) = 〈t0〉 gf 2(E) = x ·
∞∑
i; j=0

[
i + j
i

][
i + j
j

]
x2iy2jq−ij :

The function gf 2(D0) is derived similarly, and the result is

gf 2(D0) =
∞∑
i; j=1

[
i + j − 1

i

][
i + j − 1

j

]
x2iy2jqi+j−ij :

Putting the pieces together, we arrive at the following conclusion:

Theorem 2. The gf for parallelogram polyominoes is given by

P =

∑∞
i; j=1

[
i+j−1
i

][
i+j−1
j

]
x2iy2jqi+j−ij∑∞

i; j=0

[
i+j
i

][
i+j
j

]
x2iy2jq−ij

: (13)

It would be exaggerated to say that our formula (13) is new, because it can be
obtained from the result of Goulden and Jackson’s [19, exercise 5.5.2.b] by the simple
change of variables z = y2; q= q, and s= x2y−2.

Remark. In substance, there exist three ‘positive’ formulas for P. One of them is x–y
asymmetric and involves onefold summations. Another formula is x–y symmetric, but
involves twofold summations. Finally, there is also an x–y symmetric formula which,
being stated in terms of continued fractions, looks quite di�erent from the other two.
The reader may refer to Bousquet-M�elou and Viennot [4] and Klarner and Rivest
[21] for the �rst formula, to Bousquet-M�elou and Viennot [4] for the second, and to
Bousquet-M�elou and Viennot [4] and Gessel [18] for the third.

Next of kin to (13) is the identity

x2 + y2 + P(x; y; q) + P(x; y; q−1) = 1− 1∑∞
i; j=0

[
i+j
i

][
i+j
j

]
· x2iy2jq−ij

: (14)

The case x = y of (14) was found by P�olya in 1938 [23]. The general case x 6= y is
more recent, and is due to Gessel [18].
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The identity (14) can be derived from (13) without too great creativity. Indeed, by
the de�nition of Gaussian polynomials, for i; j ∈ N0 it holds that[

i + j
i

]
with q replaced by 1=q

=
[
i + j
i

]
· q−ij :

Using this fact, one readily �nds from (13) that

P(x; y; q−1) =

∑∞
i; j=1

[
i+j−1
i

][
i+j−1
j

]
x2iy2jq−ij∑∞

i; j=0

[
i+j
i

][
i+j
j

]
x2iy2jq−ij

: (15)

(A good news: (13) and (15) have the same denominator.) Hence

x2 + y2 + P(x; y; q) + P(x; y; q−1) =
D1 + D2 + D3 + D4∑∞

i; j=0

[
i+j
i

][
i+j
j

]
· x2iy2jq−ij

; (16)

where

D1 = x2 · (the common denominator of (13) and (15));
D2 = y2 · (that denominator);
D3 = the numerator of (13);

and

D4 = the numerator of (15):

Now there are two things to remember: �rst, that[
n− 1
j − 1

]
+ qj ·

[
n− 1
j

]
=
[
n
j

]
(n; j ∈ N) (A.3.3.4)

and second, that the Gaussian polynomial n choose j equals the Gaussian polynomial
n choose n− j (A.3.3.2).
The proof then goes on as follows:
(1) Let S1 be the part of D1 in which j is zero, and let S2 be the part of D2 in

which i is zero. Using (A.3.3.4) and sporadically also (A.3.3.2), we merge D1 − S1
and D3 into one double sum (say D5), and we merge D2−S2 and D4 into another one
double sum (say D6).
(2) We merge D5 and D6 into a certain double sum D7.
(3) We incorporate S1 and S2 into D7.
This three-step procedure outputs the formula

D1 + D2 + D3 + D4 =


 ∞∑
i; j=0

[
i + j
i

][
i + j
j

]
x2iy2jq−ij


− 1

which combines with (16) into the result we wanted to prove.
So, this is how identity (14) can be derived once (13) is known. However, it is fair

to say that not all the roads to (14) go via (13). Indeed, Flajolet [17] gave an elegant
derivation of (14) in which only the denominator of (13) is computed, and the job is
then completed by taking a close look at some near relatives of the paths of E0.
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7. q-enumeration of directed convex polyominoes

Our method is already well described, so this time we shall proceed in medias res.
Let I0 be the set of the images of directed convex (dc-) polyominoes under the

coding ’ (de�ned in Section 3). A path w ∈ W lies in I0 if and only if it holds that
(i) the origin and terminus of w are on the x-axis, and all the internal vertices of

w lie in the half-plane y¿ 0,
(ii) |w|x is an odd number,
(iii) the odd nests of w behave unimodally. That is to say, up to the last of the odd

nests which lie in {y}∗\{�}, no odd nest lies in { �y}∗\{�},
(iv) the even nests of w all lie in { �y}∗.
To pave the rest of our way, now we de�ne some new objects.
Let G be the set of those u ∈ W which possess the properties:
(i) |u|x is a nonzero even number,
(ii) the odd nests of u lie in { �y}∗,
(iii) the last (odd) nest of u is nonempty,
(iv) at least one of the even nests of w lies in {y}∗\{�},
(v) the even nests of w obey the ‘unimodality’ rule: up to the last one which lies

in {y}∗\{�}, none lies in { �y}∗\{�}.
Let G0 = {u ∈ G: r(u) = 0}.
Let K be the gf for the dc-polyominoes.
Now, every u ∈ G0 has a unique factorization u= vz with v ∈ E0 and z ∈ I0. From

this it follows easily that gf 2(G0) = gf 2(E0) · gf 1(I0). Since K = x · gf 1(I0), we have

K = x · gf 2(G0)
gf 2(E0)

:

As we know gf 2(E0) from Section 6, here we only need to �nd gf 2(G0). For that
purpose, we �rst remark that the family G consists of all paths of the form

yn1x · yn2x · · ·yn2k x · yn2k+1x · yn2k+2x · · ·yn2i x · yn2i+1

with i ∈ N; k ∈ {1; : : : ; i}, the odd-indexed n’s through n2i−1 nonpositive, n2i+1 strictly
negative, the even-indexed n’s through n2k−2 nonnegative, n2k strictly positive, and the
even-indexed n’s from n2k+2 on nonpositive. From this we �nd that

gf 2(G) =
∞∑
i=1

i∑
k=1

x2iy2qi−k+1

(yq−it−1)i(yqi−k+1t)k(yq−(i−k)t−1)i−k+1
: (17)

The next two steps are expanding (17) by use of (A.3.3.7) and taking the coe�cient
of t0. Thus we obtain

gf 2(G0) =
∞∑
i; j=1

i∑
k=1

j∑
l=1

[
i + l− 2
i − 1

][
j + k − 2
j − 1

][
i + j − k − l

i − k
]
· x2iy2jqi+j−kl:

Now we have all the ingredients for the following theorem.
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Theorem 3. The gf for directed convex polyominoes is given by

K =

∑∞
i; j=1

∑i
k=1

∑j
l=1

[
i+l−2
i−1

][
j+k−2
j−1

][
i+j−k−l
i−k

]
· x2iy2jqi+j−kl∑∞

i; j=0

[
i+j
i

][
i+j
j

]
· x2iy2jq−ij

: (18)

Formula (18) �rmly testi�es that K is an x–y symmetric function.

Remark. At the current state of a�airs, there exists, in substance, only one ‘positive’
formula for K . That formula was found by Bousquet-M�elou and Viennot [4], and was
subsequently touched up by Bousquet-M�elou [6]. The touched-up version reads

K = y2 ·
∑∞

i=1 x
2iqi=(y2q)i

∑i−1
k=0 (−1)kq(k−1)k=2=(q)k(y2qk+1)i−k−1∑∞

i=0 (−1)ix2iqi(i+1)=2=(q)i(y2q)i
:

8. Perimeter enumeration of directed convex polyominoes

Lin and Chang [22] have found that the dc-polyominoes have an algebraic perimeter
gf, viz.

K(x; y; 1) =
x2y2√

1− 2x2 − 2y2 + (x2 − y2)2 : (19)

Is our method able to reproduce their result? 1

Let us see: : : We have K = x · gf 2(G0)=gf 2(E0), and gf 2(E0) is no doubt a simpler
function than gf 2(G0). So, to begin with, let us try to �nd the case q=1 of gf 2(E0).

2

From (12) we have

gf 2(E) = x ·
∞∑
i=0

x2i

(1− yt)i+1(1− yt−1)i+1 ;

which the geometric series evaluation readily puts into the form

gf 2(E) =
x

(1− yt)(1− yt−1)− x2 :

For convenience, in gf 2(E) we now substitute y−1t for t. Thus we obtain a new
function, viz.

E =
x

(1− t)(1− y2t−1)− x2 ; (20)

in which the coe�cient of t0 is the same as in gf 2(E). That is, 〈t0〉E = 〈t0〉gf 2(E) =
gf 2(E0).

1 This interesting question was posed to us by one of the referees.
2 The symbol which so far has been denoting a given gf 2, from now on will denote another thing, namely
the case q = 1 of that gf 2.
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The denominator of (20) is equal to −t−1[t2 − (1 − x2 + y2)t + y2], and the roots
of t2 − (1− x2 + y2)t + y2 = 0 are

r1 =
1− x2 + y2 +√

�
2

and r2 =
1− x2 + y2 −√

�
2

;

with �= 1− 2x2 − 2y2 + (x2 − y2)2.
So we have −t−1[t2−(1−x2+y2)t+y2]=−t−1 ·(t−r1)(t−r2). It is now immediate

that

E =
x

(r1 − t)(1− r2t−1) = x ·
( ∞∑

i=0

ti

ri+11

)
·

 ∞∑

j=0

rj2
t j


 ;

and that

gf 2(E0) = 〈t0〉E = x ·
∞∑
i=0

ri2
ri+11

=
x

r1 − r2 =
x√

1− 2x2 − 2y2 + (x2 − y2)2 : (21)

So, gf 2(E0) was pretty easy. Let us now try to work out the more complicated
function gf 2(G0).
It follows from (17) that

gf 2(G) =
∞∑
i=1

i∑
k=1

x2iy2

(1− yt−1)2i−k+1(1− yt)k

=
y2

1− yt−1
∞∑
k=1

1
(1− yt)k(1− yt−1)−k

∞∑
i=k

x2i

(1− yt−1)2i

=
x2y2(1− yt−1)

(1− x − yt−1)(1 + x − yt−1)[(1− yt)(1− yt−1)− x2] :

Let G be the function which results from changing t to y−1t in gf 2(G). We have

G =
x2y2(1− y2t−1)

(1− x − y2t−1)(1 + x − y2t−1)[(1− t)(1− y2t−1)− x2]

=
x2y2(1− y2t−1)

(1− x − y2t−1)(1 + x − y2t−1)(r1 − t)(1− r2t−1)

= x2y2(1− y2t−1) ·
∞∑

i; j;k;l=0

rj2 · y2(k+l) · ti−j−k−l
ri+11 (1− x)k+1(1 + x)l+1 :

In order to get gf 2(G0), we now take the coe�cient of t
0. This leaves us with two

triple sums, which we then put together by changing i to i + 1 in one of them. Next
we replace j + k by j, and we sum on i; j and k (in that order). Thus we obtain

gf 2(G0) =
x2y2r1(r1 − y2)

[(r1 − y2)2 − x2r21](r1 − r2)
:
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Using r1 + r2 = 1− x2 + y2 and r1r2 = y2, we have that
(r1 − y2)2 − x2r21 = (1− x2)r21 − 2y2r1 + y4

= (r1 + r2 − y2)r21 − 2r21r2 + y2r1r2
= r1(r1 − y2)(r1 − r2):

Therefore,

gf 2(G0) =
x2y2r1(r1 − y2)

r1(r1 − y2)(r1 − r2)2 =
x2y2

(r1 − r2)2 =
x2y2

1− 2x2 − 2y2 + (x2 − y2)2 :

(22)

(This function is rational!)
Eventually, we plug (21) and (22) into the relation K = x · gf 2(G0)=gf 2(E0), and we

quickly get the required result (19).

Incidentally, the number of dc-polyominoes with perimeter 2n+ 4 is
(
2n
n

)
[5]. But

clearly enough,
(
2n
n

)
is also the number of those 2n-step members of {y; �y}∗ which

start and end on the x-axis. For (at least attempted) explanations of this curious coin-
cidence, see [3,12].

9. For further reading

The following references are also of interest to the reader: [11] and [2].
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