Hedlund metrics and the stable norm

Madeleine Jotz
Section de Mathématiques, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland

A R T I C L E I N F O

Article history:

Received 3 March 2008
Received in revised form 8 August 2008
Available online 5 February 2009
Communicated by T.S. Ratiu

MSC:

53C22
53C38
58A10
58F17
53B21

Keywords:

Riemannian metrics
Stable norm
Polytopes

Abstract

The real homology of a compact Riemannian manifold M is naturally endowed with the stable norm. The stable norm on $H_{1}(M, \mathbb{R})$ arises from the Riemannian length functional by homogenization. It is difficult and interesting to decide which norms on the finitedimensional vector space $H_{1}(M, \mathbb{R})$ are stable norms of a Riemannian metric on M. If the dimension of M is at least three, I. Babenko and F. Balacheff proved in [I. Babenko, F. Balacheff, Sur la forme de la boule unité de la norme stable unidimensionnelle, Manuscripta Math. 119 (3) (2006) 347-358] that every polyhedral norm ball in $H_{1}(M, \mathbb{R})$, whose vertices are rational with respect to the lattice of integer classes in $H_{1}(M, \mathbb{R})$, is the stable norm ball of a Riemannian metric on M. This metric can even be chosen to be conformally equivalent to any given metric. In [I. Babenko, F. Balacheff, Sur la forme de la boule unité de la norme stable unidimensionnelle, Manuscripta Math. 119 (3) (2006) 347358], the stable norm induced by the constructed metric is computed by comparing the metric with a polyhedral one. Here we present an alternative construction for the metric, which remains in the geometric framework of smooth Riemannian metrics.

(C) 2009 Elsevier B.V. All rights reserved.

1. Introduction

On every compact Riemannian manifold M the real homology vector spaces $H_{m}(M ; \mathbb{R})$ are endowed with a natural norm $\|\cdot\|_{s}$, called stable norm. This concept appeared for the first time in Federer [4] and was named stable norm in Gromov [5]. The stable norm on $H_{1}(M ; \mathbb{R})$ arises directly from the Riemannian metric on the manifold M. The following equality for an integral class $v \in H_{1}(M ; \mathbb{R})$ (see [5])

$$
\|v\|_{s}:=\inf \left\{n^{-1} L(\gamma) \mid \gamma \text { is a closed curve representing } n v, n \in \mathbb{N}\right\}
$$

allows a description of this object that is geometrically very intuitive: the stable norm describes the geometry of the Abelian covering \bar{M} of M from a point of view from which fundamental domains look arbitrarily small. Knowing the unit ball of this norm, one can decide on existence and properties of some of the minimal geodesics relative to the Riemannian Abelian covering of the manifold; these are curves in M whose lifts to the Riemannian Abelian covering minimize arc length between each two of their points. Bangert has presented in [3] a Riemannian metric on the 3-torus \mathbb{T}^{3}, such that the unit ball of the induced stable norm on $H_{1}\left(\mathbb{T}^{3} ; \mathbb{R}\right) \simeq \mathbb{R}^{3}$ is a symmetric octahedron. Furthermore, Babenko and Balacheff have shown in [1] that, given a compact Riemannian manifold (M, ρ) of dimension greater than 2 , for every centrally symmetric and convex polytope in $H_{1}(M ; \mathbb{R})$ with nonempty interior, such that the directions of its vertices are rational, there is a Riemannian metric on M that is conformal to ρ and induces the given polytope as unit ball of the stable norm. Here we propose an alternative Riemannian metric, satisfying the same conditions. Our construction is a generalization of the Hedlund metric in [3]. The idea, that can be already found in the original paper of Hedlund [6] and is also used

[^0]in [1], is to construct a metric that is "small" in tubular neighborhoods of disjoint closed curves representing the vertices of the polytope, and much "bigger" everywhere else. The convexity properties of the polytope play a decisive role in our computation of the stable norm induced by the Hedlund metric.

Bangert and Hedlund use such metrics in order to illustrate their results on minimal geodesics. Here we focus only on the proof of the theorem of Babenko and Balacheff [1]. In fact, if we wanted to show results on minimal geodesics, we would need to specify the definition of the Hedlund metric we give here. A discussion of the minimal geodesics for such metrics (with additional assumptions) was made in Jotz [7].

Outline of the paper. The construction of tubular neighborhoods of curves will be recalled in the next section. A lemma on the existence of representatives for cohomology classes with "good" properties on the tubular neighborhood will be stated. The construction of the Riemannian metric will be given in the following section, and the formula for the corresponding stable norm will be computed.

Notations. In the following M will denote a compact smooth manifold with $\operatorname{dim} M \geqslant 3$, and ρ a Riemannian metric on M. Let \bar{M} denote the Abelian covering of M. More precisely \bar{M} is the subcovering of the universal covering whose group of deck transformations is the set $H_{1}(M ; \mathbb{Z})_{\mathbb{R}}$ of integer classes in $H_{1}(M ; \mathbb{R})$. We denote by $p: \bar{M} \rightarrow M$ the covering map and by $\bar{\rho}:=p^{*} \rho$ the pull-back metric. If $h: \pi_{1}(M) \rightarrow H_{1}(M ; \mathbb{Z})$ denotes the Hurewicz homomorphism (see [9]) and T the torsion subgroup of $H_{1}(M ; \mathbb{Z})$, then the Abelian covering can be described as the quotient manifold by the action of the normal subgroup $h^{-1}(T) \subseteq \pi_{1}(M)$ of the fundamental group on the universal cover \tilde{M} of M. Hence the operation

$$
\begin{aligned}
& \Phi: H_{1}(M ; \mathbb{Z})_{\mathbb{R}} \times \bar{M} \rightarrow \bar{M} \\
& (v, m) \mapsto \Phi(v, m)=: m+v
\end{aligned}
$$

of $H_{1}(M ; \mathbb{Z})_{\mathbb{R}}$ on \bar{M} is Abelian and torsionfree (that is why we choose to use this +-notation).
The de Rham cohomology vector space $H_{\mathbf{d R}}^{1}(M)$ is isomorphic to the dual of $H_{1}(M ; \mathbb{R})$ [8, de Rham theorem]. In the following, we will use this isomorphism without mentioning it.

Given a Riemannian metric g on M, we will write g^{*} for its dual metric. The space of 1 -forms on M (respectively on \bar{M}) will be denoted by $\Omega^{1}(M)$ (respectively $\Omega^{1}(\bar{M})$). We will denote by $\|\cdot\|_{x}$ (or also simply $\|\cdot\|$) the norm on $T_{x} M$ induced by the considered metric on M (we will also use this notation for the norm on $T_{\bar{x}} M, \bar{x} \in M$, induced from the corresponding metric on $\bar{M})$. For a curve $\gamma: I \rightarrow M, L(\gamma)$ will be the length induced from the given metric on M and for a curve $\bar{\gamma}: I \rightarrow \bar{M}, \bar{L}(\bar{\gamma})$ the length induced from the corresponding periodic metric on \bar{M}.

Given a polytope P, we will call the set $\left\{\sum_{i=1}^{k} \alpha_{i} v_{i} \mid \alpha_{i} \geqslant 0\right\}$ the cone over the face S of the polytope if v_{1}, \ldots, v_{k} are the vertices of P lying in this face (i.e. $S=\left\{\sum_{i=1}^{k} \alpha_{i} v_{i} \mid \alpha_{i} \geqslant 0\right.$ and $\left.\sum_{i=1}^{k} \alpha_{i}=1\right\}$).

An integer class v in $H_{1}(M ; \mathbb{Z})_{\mathbb{R}}$ will be called indivisible if the equation $v=n \cdot v^{\prime}, n \in \mathbb{Z}$ and $v^{\prime} \in H_{1}(M ; \mathbb{Z})_{\mathbb{R}}$ yields $n= \pm 1$.

2. Tubular neighborhoods of curves, adapted one-forms

Tubular neighborhoods and semi-geodesic coordinates. Let $\gamma:[0,1] \rightarrow M$ be a regular, simple closed curve. In the following, such a curve will be called admissible. We can write $\gamma: \mathbb{S}^{1} \rightarrow M$ and assume the curve γ is parametrized proportionally to arc length.

For $\varrho>0$, let $V_{\varrho}(\Gamma)$ denote the bundle of balls of radius ϱ in the normal bundle $\pi: N \Gamma \rightarrow \Gamma$ of the embedded submanifold $\Gamma:=\gamma\left(\mathbb{S}^{1}\right)$ in M. Analogously, if $I \subseteq \mathbb{S}^{1}$ is an interval, then $V_{\varrho}(\gamma(I))=V_{\varrho}(\Gamma) \cap \pi^{-1}(\gamma(I))$. We choose $\varrho>0$ small enough such that the normal exponential map E restricted to $V_{\varrho}(\Gamma)$ is a diffeomorphism onto an open neighborhood $U_{\varrho}(\Gamma) \subseteq M$ of Γ (and similarly $U_{\varrho}(\gamma(I))=E\left(V_{\varrho}(\gamma(I))\right)$). Such an open set $U_{\varrho}(\Gamma)$ is called the tubular neighborhood (of radius ϱ) of Γ.

Choose an orthogonal frame $\left(E_{1}, \ldots, E_{m}\right)$ on $U \subseteq M$ open, such that for all $x=\gamma(t)$ in $\Gamma \cap U$,

$$
\left.E_{1}\right|_{x}=\dot{\gamma}(t)
$$

and, consequently, $\left(\left.E_{2}\right|_{x}, \ldots,\left.E_{m}\right|_{x}\right)$ forms a basis for $N_{\chi} \Gamma$. Assume that the open set U is such that $U_{\varrho}(\Gamma) \cap U=U_{\varrho}(\gamma(I))$ for an open interval $I \subseteq \mathbb{S}^{1}$. The diffeomorphism

$$
\begin{aligned}
& \varphi: U_{\varrho}(\gamma(I)) \rightarrow I \times B_{\varrho}^{m-1} \subseteq \mathbb{R}^{m} \\
& x \mapsto\left(s(x), \varphi_{2}(x), \ldots, \varphi_{m}(x)\right),
\end{aligned}
$$

where $\varphi_{j}(x)$ and $s(x)$ are such that

$$
E^{-1}(x)=\left.\sum_{j=2}^{m} \varphi_{j}(x) \cdot E_{j}\right|_{\gamma(s(x))} \in \mathcal{V}_{\varrho}
$$

will be called a semi-geodesic chart for $U_{\varrho}(\Gamma)$. A particularity of this chart is that $\left.\partial_{1}^{\varphi}\right|_{x}=\dot{\gamma}(t)$ and, for $j=2, \ldots, m,\left.\partial_{j}^{\varphi}\right|_{x}=$ $\left.E_{j}\right|_{x}$ holds for all $x=\gamma(t) \in \Gamma \cap U$ (note that $\Gamma \cap U=\gamma(I)$).

The map s is defined globally on $U_{\varrho}(\Gamma)$ and we have the identity

$$
\begin{equation*}
\left.d s\right|_{\gamma(t)}(\dot{\gamma}(t))=\frac{d}{d t} s \circ \gamma(t)=\frac{d}{d t} t=1 \tag{1}
\end{equation*}
$$

for all t in \mathbb{S}^{1}.
Let $\gamma_{1}, \ldots, \gamma_{N}$ be disjoint admissible loops and choose $\varrho>0$ so that the construction above is possible for all the curves $\gamma_{1}, \ldots, \gamma_{N}$ simultaneously. Choose furthermore ε with $\varrho>\varepsilon>0$ such that the tubular neighborhoods with radius ε of the curves are disjoint. Set $\Gamma_{j}=\gamma_{j}\left(\mathbb{S}^{1}\right), \Gamma=\bigcup_{j=1}^{N} \Gamma_{j}$, and $U_{\varepsilon}(\Gamma):=\bigcup_{j=1}^{N} U_{\varepsilon}\left(\Gamma_{j}\right)$. Then there exists a bump-function ζ on M for the tubular neighborhoods, i.e., ζ is a smooth function such that the following holds:

$$
\zeta(y)= \begin{cases}1, & y \in U_{\varepsilon}(\Gamma) \tag{2}\\ 0, & y \in M \backslash U_{\varrho}(\Gamma)\end{cases}
$$

"Good" one-forms. Choose a connected fundamental domain F_{0} for the action of $H_{1}(M ; \mathbb{Z})_{\mathbb{R}}$ on \bar{M}. Denote by $\bar{\gamma}_{j}$ the lift of γ_{j} to \bar{M} such that $\bar{\gamma}_{j}(0) \in F_{0}$ (note that γ_{j} is here considered as a smooth 1-periodic curve $\gamma_{j}: \mathbb{R} \rightarrow M$). Write $\bar{\Gamma}_{i}=\bar{\gamma}_{i}(\mathbb{R})$ and $U_{\varrho}\left(\bar{\Gamma}_{i}\right)$ the corresponding lift to \bar{M} of $U_{\varrho}\left(\Gamma_{i}\right)$. Hence $U_{\varrho}\left(\bar{\Gamma}_{i}\right)$ is the tubular neighborhood of radius ρ of $\bar{\Gamma}_{i}$. The notion of a semi-geodesic chart for $U_{\varrho}\left(\bar{\Gamma}_{i}\right)$ makes also sense here, and $\bar{s}_{i}: U_{\varrho}\left(\bar{\Gamma}_{i}\right) \rightarrow \mathbb{R}$ exists with $\bar{s}_{i}\left(\bar{\gamma}_{i}(t)\right)=t$ for all $t \in \mathbb{R}$. Since the covering map $p: \bar{M} \rightarrow M$ is a local isometry,

$$
\bar{x} \in \exp _{\bar{M}}\left(N_{\bar{\gamma}_{i}(t)} \bar{\Gamma}_{i}\right) \Leftrightarrow p(\bar{x}) \in \exp _{M}\left(N_{p \circ \bar{\gamma}_{i}(t)} \Gamma_{i}\right)
$$

holds for all $\bar{x} \in U_{\varrho}\left(\bar{\Gamma}_{i}\right)$ and

$$
\begin{equation*}
\left.\left(p^{*} d s_{i}\right)\right|_{U_{\varrho}\left(\bar{\Gamma}_{i}\right)}=d \bar{s}_{i} \tag{3}
\end{equation*}
$$

Define $L_{i}=\bar{\Gamma}_{i}+H_{1}(M ; \mathbb{Z})_{\mathbb{R}}$ and $U_{\varrho}\left(L_{i}\right)=U_{\varrho}\left(\bar{\Gamma}_{i}\right)+H_{1}(M ; \mathbb{Z})_{\mathbb{R}}$, as well as $L=\bigcup_{j=1}^{N} L_{j}$ and $U_{\varrho}(L)=\bigcup_{j=1}^{N} U_{\varrho}\left(L_{j}\right)$. Choose ε with $0<\varepsilon<\varrho$ and define $U_{\varepsilon}\left(\bar{\Gamma}_{i}\right), U_{\varepsilon}\left(L_{i}\right)$ and $U_{\varepsilon}(L)$ as above. The connected components of L will be called lines in the following.

Proposition 2.1. Let v_{1}, \ldots, v_{N} be indivisible integer classes in $H_{1}(M ; \mathbb{Z})_{\mathbb{R}}$, that span $H_{1}(M ; \mathbb{R})$ as a real vector space. Let $\gamma_{1}, \ldots, \gamma_{N}$ be disjoint admissible representatives of those classes, and $U_{\varepsilon}\left(\Gamma_{1}\right), \ldots, U_{\varepsilon}\left(\Gamma_{N}\right)$ disjoint tubular neighborhoods of these curves. Furthermore let $\lambda \in H_{d R}^{1}(M)$ be an arbitrary cohomology class. Then there exists a one-form ω representing λ such that:

$$
\left.\omega\right|_{x}=\left.\lambda\left(v_{i}\right) d s_{i}\right|_{x} \quad \text { for } x \in U_{\varepsilon}\left(\Gamma_{i}\right), i=1, \ldots, N
$$

Proof. The function \bar{s}_{j} is defined on $U_{\varrho}\left(\bar{\Gamma}_{j}\right)$ for $j=1, \ldots, N$. Set $\bar{s}_{j}=0$ on $U_{\varrho}\left(\bar{\Gamma}_{i}\right)$ for $i \neq j$ and define:

$$
\begin{aligned}
& s_{\lambda}: U_{\varrho}(L) \rightarrow \mathbb{R} \\
& x=x_{0}+v_{0} \mapsto \sum_{i=1}^{N} \lambda\left(v_{i}\right) \bar{s}_{i}\left(x_{0}\right)+\lambda\left(v_{0}\right) .
\end{aligned}
$$

Doing so, each element $U_{\varrho}\left(L_{j}\right)$ is written $x=x_{0}+v_{0}$ with $x_{0} \in U_{\varrho}\left(\bar{\Gamma}_{j}\right) \cap F_{0}$ and $v_{0} \in H_{1}(M ; \mathbb{Z})_{\mathbb{R}}$. For $x \in U_{\varrho}\left(\bar{\Gamma}_{j}\right) \cap F_{0}$ holds: $s_{\lambda}(x)=\lambda\left(v_{j}\right) \bar{s}_{j}(x)$. Thus, with the definition of s_{λ}, for $v=z \cdot v_{j}$ with $z \in \mathbb{Z}$:

$$
s_{\lambda}(x+v)=\lambda\left(v_{j}\right) \bar{s}_{j}(x)+\lambda(v)=\lambda\left(v_{j}\right) \cdot\left(\bar{s}_{j}(x)+z\right) \stackrel{(3)}{=} \lambda\left(v_{j}\right) \cdot \bar{s}_{j}(x+v)
$$

This leads to $\left.s_{\lambda}\right|_{U_{\varrho}\left(\bar{\Gamma}_{j}\right)}=\lambda\left(v_{j}\right) \bar{s}_{j}$, and analogously: $\left.s_{\lambda}\right|_{U_{\varrho}\left(\bar{\Gamma}_{j}\right)+v}=\lambda\left(v_{j}\right) \bar{s}_{j} \circ \Phi(-v, \cdot)+\lambda(v)$. Thus, s_{λ} is a smooth function.
Choose an arbitrary representative ω^{\prime} for λ. Since ω^{\prime} is closed, the 1 -form $\tilde{p}^{*} \omega^{\prime} \in \Omega^{1}(\tilde{M})$ is also closed, where $\tilde{p}: \tilde{M} \rightarrow M$ is the universal covering of M. Since each closed 1 -form on \tilde{M} is exact, there exists $\tilde{f} \in C^{\infty}(\tilde{M})$ such that $\tilde{p}^{*} \omega^{\prime}=d \tilde{f}$. One can show easily that \tilde{f} is invariant under the action of $h^{-1}(T)$ on \tilde{M} and descends to $\bar{f} \in C^{\infty}(\bar{M})$, i.e., $\tilde{f}=\bar{f} \circ q$ where $q: \tilde{M} \rightarrow \tilde{M} / h^{-1}(T)=\bar{M}$ is the projection. We have $p \circ q=\tilde{p}$ and $q^{*} d \bar{f}=d \tilde{f}=\tilde{p}^{*} \omega^{\prime}=q^{*}\left(p^{*} \omega^{\prime}\right)$, which leads to $d \bar{f}=p^{*} \omega^{\prime}$. Define $\bar{g}:=s_{\lambda}-\left.\bar{f}\right|_{U_{\varrho}(L)}: U_{\varrho}(L) \rightarrow \mathbb{R}$. A computation shows that for all $x \in U_{\varrho}(L)$ and $v \in H_{1}(M ; \mathbb{Z})_{\mathbb{R}}$, we have $\bar{g}(x+v)=\bar{g}(x)$ and the existence of $g: U_{\varrho}(\Gamma) \rightarrow \mathbb{R}$ with $\bar{g}=g \circ p$ follows.

The map g is smooth and we have on $U_{\varrho}(L)$:

$$
p^{*} d g=d \bar{g}=\sum_{i=1}^{N} \lambda\left(v_{i}\right) d \bar{s}_{i}-d \bar{f}=p^{*}\left(\sum_{i=1}^{N} \lambda\left(v_{i}\right) d s_{i}-\omega^{\prime}\right) .
$$

Since p is a surjective local diffeomorphism, the equality $d g=\sum_{i=1}^{N} \lambda\left(v_{i}\right) d s_{i}-\omega^{\prime}$ follows.
Define now the smooth 1 -form

$$
\omega:=g d \zeta+(1-\zeta) \omega^{\prime}+\zeta \sum_{i=1}^{N} \lambda\left(v_{i}\right) d s_{i}
$$

with ζ as in (2). Using the fact that ω^{\prime} is closed on $U_{\varrho}(\Gamma)$ and the properties of ζ, one can easily verify that ω is smooth and closed. Furthermore, for $x \in U_{\varepsilon}\left(\Gamma_{j}\right)$:

$$
\left.\omega\right|_{x}=\left.g(x) d \zeta\right|_{x}+\left.(1-\zeta(x)) \omega^{\prime}\right|_{x}+\left.\zeta(x) \cdot \sum_{i=1}^{N} \lambda\left(v_{i}\right) d s_{i}\right|_{x}=\left.\lambda\left(v_{j}\right) d s_{j}\right|_{x}
$$

as claimed. We get

$$
[\omega]\left(v_{j}\right)=\int_{\gamma_{j}} \omega=\left.\lambda\left(v_{j}\right) \int_{0}^{1} d s_{j}\right|_{\gamma_{j}(t)}\left(\dot{\gamma}_{j}(t)\right) d t \stackrel{(1)}{=} \lambda\left(v_{j}\right)
$$

for $j=1, \ldots, N$. With $\operatorname{span}\left\{v_{1}, \ldots, v_{N}\right\}=H_{1}(M ; \mathbb{R})$, this yields that ω is a representative for λ.
In the following, such a representative ω will be called a good representative of λ with respect to the family $\left\{v_{1}, \ldots, v_{N}\right\}$.

3. Hedlund metrics

Let P be a centrally symmetric and convex polytope in $H_{1}(M ; \mathbb{R})$ with nonempty interior, such that the directions of its vertices are rational. Such a polytope will be called admissible. We call $\tilde{V}_{P}=\left\{\tilde{v}_{1}, \ldots, \tilde{v}_{N},-\tilde{v}_{1}, \ldots,-\tilde{v}_{N}\right\}$ the set of vertices of P.

Let v_{1}, \ldots, v_{N} be indivisible integer classes such that $v_{i}=\varepsilon_{i} \tilde{v}_{i}$ with $\varepsilon_{i}>0, i=1, \ldots, N$. Define $V_{P}:=\left\{v_{1}, \ldots, v_{N},-v_{1}\right.$, $\left.\ldots,-v_{N}\right\}$ and let J_{i} be the subset of V_{P} consisting of the indivisible integer classes corresponding to the vertices belonging to the i th face S_{i} of P. In order to simplify the notation, we assume without loss of generality that $J_{1}=\left\{v_{1}, \ldots, v_{k}\right\}$ for an integer $k \leqslant N$. The norm $|\cdot|$ on $H_{1}(M ; \mathbb{R})$, whose unit ball is P, is given as follows (for vectors lying in the cone over the face S_{1}):

$$
\begin{equation*}
v=\sum_{j=1}^{k} \alpha_{j} \tilde{v}_{j} \quad \text { with } \quad \sum_{j=1}^{k} \alpha_{j}=1 \quad \text { and all } \quad \alpha_{j} \geqslant 0 \Rightarrow|v|=1 \tag{4}
\end{equation*}
$$

or generally

$$
v=\sum_{j=1}^{k} \alpha_{j} \tilde{v}_{j} \quad \text { with all } \quad \alpha_{j} \geqslant 0 \Rightarrow|v|=\sum_{j=1}^{k} \alpha_{j}
$$

and likewise for every other face of P.
Since P is convex, there exists for each face S_{i} of P an element λ_{i} of $H_{d R}^{1}(M) \simeq H^{1}(M, \mathbb{R})$ such that

$$
\lambda_{i}\left(\tilde{v}_{j}\right) \begin{cases}=1, & v_{j}=\varepsilon_{j} \tilde{v}_{j} \in J_{i} \\ <1, & v_{j}=\varepsilon_{j} \tilde{v}_{j} \notin J_{i}\end{cases}
$$

(i.e. $\lambda_{i} \equiv 1$ on the plane defined by the face S_{i} and λ_{i} is smaller on the rest of the polytope). Now, since P is symmetric, $-\lambda_{i}$ is the 1 -form corresponding to $-S_{i}$ and we get in fact:

$$
\begin{equation*}
-1<\lambda_{i}\left(\tilde{v}_{j}\right)<1 \quad \text { for } \pm v_{j} \notin J_{i} . \tag{5}
\end{equation*}
$$

We get an alternative definition for the norm:

$$
\begin{equation*}
v \in \bigoplus_{j=1}^{k} \mathbb{R}_{\geqslant 0} \cdot v_{j} \Rightarrow|v|=\lambda_{1}(v) \tag{6}
\end{equation*}
$$

and likewise for every other face of P.
The metrics defined below will be called Hedlund metrics because such a metric first appears in Hedlund's paper [6] in the case $M=\mathbb{T}^{3}$:

Definition 3.1. Let P be an admissible polytope with vertices $\left\{\tilde{v}_{1}, \ldots, \tilde{v}_{N},-\tilde{v}_{1}, \ldots,-\tilde{v}_{N}\right\}$. Let $v_{1}, \ldots, v_{N} \in H_{1}(M, \mathbb{Z})_{\mathbb{R}}$ be the indivisible integer classes such that $\varepsilon_{i} \tilde{v}_{i}=v_{i}$ for some $\varepsilon_{i}>0, i=1, \ldots, N$. Choose disjoint admissible curves $\gamma_{1}, \ldots, \gamma_{N}$ representing the classes v_{1}, \ldots, v_{N}. For each face S_{i} of P, let η_{i} be a good representative of λ_{i} with respect to the family $\left\{v_{1}, \ldots, v_{N}\right\}$. A Hedlund metric associated to P on (M, ρ) is a Riemannian metric g that is conformal to ρ and such that its dual metric g^{*} satisfies:
(H1) $g_{\gamma_{i}(t)}^{*}\left(\left.d s_{i}\right|_{\gamma_{i}(t)},\left.d s_{i}\right|_{\gamma_{i}(t)}\right)=\max _{x \in U_{\varepsilon}\left(\Gamma_{i}\right)} g_{x}^{*}\left(\left.d s_{i}\right|_{x},\left.d s_{i}\right|_{x}\right)=\frac{1}{\varepsilon_{i}^{2}}$ for all $t \in[0,1]$ and $g_{x}^{*}\left(\left.d s_{i}\right|_{x},\left.d s_{i}\right|_{x}\right)<\frac{1}{\varepsilon_{i}^{2}}$ for $x \in U_{\varepsilon}\left(\Gamma_{i}\right) \backslash \Gamma_{i}$ and all $i \in\{1, \ldots, N\}$.
(H2) $g_{x}^{*}\left(\left.\eta_{i}\right|_{x},\left.\eta_{i}\right|_{x}\right) \leqslant 1$ for all $i=1, \ldots, N$ and $x \notin U_{\varepsilon}(\Gamma)$.
Remark that for orientable compact surfaces of positive genus, it is not possible to choose disjoint loops representing the vertices of the polytope. In fact, it is shown in Bangert [3] that in the case of the 2 -torus, the stable norm induced by a Riemannian metric on \mathbb{T}^{2} has always a strictly convex unit ball. Yet, Massart shows in [10] that this is not true in general: the stable norm induced by a smooth Finsler metric on a closed, orientable surface has neither to be strictly convex, nor smooth. For a non-orientable surface, the analogon to Theorem 3.5 can be found in Balacheff and Massart [2]: they show that if M is a closed non-orientable surface equipped with a Riemannian metric, then there exists in every conformal class a metric on M whose stable norm has a polyhedron as its unit ball.

Existence and properties of such a metric.
Proposition 3.2. On every compact Riemannian manifold (M, ρ) with $\operatorname{dim} M \geqslant 3$ and for every admissible polytope P in $H_{1}(M, \mathbb{R})$ there exists a Hedlund metric associated to P on (M, ρ).

Proof. Given the admissible polytope P, choose disjoint admissible curves $\gamma_{1}, \ldots, \gamma_{N}$ representing the indivisible integer classes v_{1}, \ldots, v_{N} corresponding to its vertices $\tilde{v}_{1}, \ldots, \tilde{v}_{N}$. Let $\varepsilon_{1}, \ldots, \varepsilon_{N}$ be the coefficients as in Definition 3.1. For each face S_{i} of $P, i=1, \ldots, l$, let η_{i} be a good representative for λ_{i}. Set

$$
\Omega:=\max _{\substack{j=1, \ldots, l \\ x \in M \backslash U_{\varepsilon}(\Gamma)}} \rho_{x}^{*}\left(\left.\eta_{j}\right|_{x},\left.\eta_{j}\right|_{x}\right)
$$

and

$$
\Omega_{i}:=\max \left\{\max _{\substack{j=1, \ldots, l \\ x \in U_{\varrho}\left(\Gamma_{i}\right)}} \frac{\rho_{x}^{*}\left(\left.\eta_{j}\right|_{x},\left.\eta_{j}\right|_{x}\right)}{\rho_{x}^{*}\left(\left.d s_{i}\right|_{x},\left.d s_{i}\right|_{x}\right)}, \varepsilon_{i}^{2}\right\}
$$

for $i=1, \ldots, N$. Define:

$$
\begin{aligned}
& h_{i}: U_{\varrho}\left(\Gamma_{i}\right) \rightarrow(0, \infty) \\
& x \mapsto \frac{1}{\varepsilon_{i}^{2} \rho_{x}^{*}\left(\left.d s_{i}\right|_{x},\left.d s_{i}\right|_{x}\right)} \cdot \exp \left(-C_{i} \cdot \ell(x)^{2}\right)
\end{aligned}
$$

where $C_{i}:=\ln \left(\Omega_{i} / \varepsilon_{i}^{2}\right) \cdot \frac{1}{\varepsilon^{2}}>0$ and $\ell(x)$ is the distance from to x to its "projection" $\gamma_{i}\left(s_{i}(x)\right) \in \Gamma_{i}$. Define the smooth function $F: M \rightarrow(0, \infty)$ by

$$
F(x)=\zeta(x) \cdot \sum_{i=1}^{N} h_{i}(x)+(1-\zeta(x)) \cdot \frac{1}{\Omega}
$$

where ζ is a smooth bump function as in (2). It is then easy to verify that the metric g defined by

$$
g_{x}^{*}=F(x) \rho_{x}^{*} \quad \text { for all } x \in M
$$

is a Hedlund metric associated to P.

Proposition 3.3. It results immediately from Definition 3.1 and from the properties of an admissible polytope that

$$
\begin{equation*}
\left\|\eta_{i}\right\|^{*}:=\max _{x \in M}\left\|\left.\eta_{i}\right|_{x}\right\|_{x}^{*}=1 \tag{7}
\end{equation*}
$$

for each face S_{i} of P.
Proof. Here again, we assume that $i=1$. The arguments are the same for every other face of P. Outside of $U_{\varepsilon}(\Gamma)$, Definition 3.1 yields $\left\|\left.\eta_{1}\right|_{x}\right\|_{x}^{*} \leqslant 1$. With

$$
\left\|\left.\eta_{1}\right|_{x}\right\|_{x}^{*}= \begin{cases}\varepsilon_{j}\left\|\left.d s_{j}\right|_{x}\right\|_{x}^{*}=1, & x \in \Gamma_{j} \text { and } j=1, \ldots, k \\ \varepsilon_{j}\left\|\left.d s_{j}\right|_{x}\right\|_{x}^{*}<1, & x \in U_{\varepsilon}\left(\Gamma_{j}\right) \backslash \Gamma_{j} \text { and } j=1, \ldots, k \\ \left|\lambda_{1}\left(v_{j}\right)\right| \cdot\left\|\left.d s_{j}\right|_{x}\right\|_{x}^{*}=\varepsilon_{j}\left|\lambda_{1}\left(\tilde{v}_{j}\right)\right| \cdot \frac{1}{\varepsilon_{j}} \stackrel{(5)}{<} 1, & x \in U_{\varepsilon}\left(\Gamma_{j}\right) \text { and } j>k,\end{cases}
$$

this proves the statement.

For the proof of the following lemma, we need to compute the lengths of the chosen admissible curve $\gamma_{1}, \ldots, \gamma_{N}$ relative to the new metric. Choose $x=\gamma_{i}(t) \in \Gamma_{i}$ and a semi-geodesic chart φ around x. Recall the construction of such a chart; the
matrix representing ρ relative to the orthogonal basis $\left(\dot{\gamma}_{i}(t),\left.\partial_{2}^{\varphi}\right|_{x}, \ldots,\left.\partial_{m}^{\varphi}\right|_{x}\right)$ of $T_{x} M$ is diagonal. Hence, because g is conformal to ρ, the matrix representing g relative to the same basis is diagonal, too. Since the covectors $\left(\left.d s_{i}\right|_{x},\left.d \varphi_{2}\right|_{x}, \ldots,\left.d \varphi_{m}\right|_{x}\right)$ form a dual basis of $T_{x}^{*} M$, we obtain

$$
g_{x}\left(\dot{\gamma}_{i}(t), \dot{\gamma}_{i}(t)\right)=\frac{1}{g_{x}^{*}\left(\left.d s_{i}\right|_{x},\left.d s_{i}\right|_{x}\right)},
$$

using the fact that the matrix representing g_{x} in the basis $\left(\dot{\gamma}_{i}(t),\left.\partial_{2}^{\varphi}\right|_{x}, \ldots,\left.\partial_{m}^{\varphi}\right|_{x}\right)$ is inverse to the matrix representing g_{x}^{*} in the dual basis. But because of (H1) in Definition 3.1, we have $g_{x}^{*}\left(\left.d s_{i}\right|_{x},\left.d s_{i}\right|_{x}\right)=\frac{1}{\varepsilon_{i}^{2}}$. Hence, this leads to:

$$
\begin{equation*}
L\left(\gamma_{i}\right)=\int_{0}^{1} \varepsilon_{i} d t=\varepsilon_{i} \tag{8}
\end{equation*}
$$

It is possible to show that γ_{i} is even the shortest curve representing v_{i} : Assume, without loss of generality, that $v_{i} \in J_{1}$ and choose an arbitrary curve $c:[0,1] \rightarrow M$ representing v_{i}. We have $\lambda_{1}\left(v_{i}\right)=\varepsilon_{i}$ and hence

$$
\varepsilon_{i}=\int_{c} \eta_{1}=\left.\int_{0}^{1} \eta_{1}\right|_{c(t)}(\dot{c}(t)) d t \leqslant \int_{0}^{1}\left\|\left.\eta_{1}\right|_{c(t)}\right\|^{*}\|\dot{c}(t)\| d t \stackrel{(7)}{\leqslant} \int_{0}^{1} 1 \cdot\|\dot{c}(t)\| d t=L(c)
$$

Lemma 3.4. There is a constant $C=C(M, P)$ such that for each face S_{i} of P, every $w \in \bigoplus_{v \in J_{i}} \mathbb{N} \cdot v$ and every $x \in \bar{M}$, the distance from x to $x+w$ is bounded above by $\lambda_{i}(w)+C$.

Proof. Recall the definitions of $\gamma_{i}, \Gamma_{i}, \bar{\gamma}_{i}, \bar{\Gamma}_{i}, i=1, \ldots, N, L$ and F_{0}. Let d be the distance induced on M by the Hedlund metric g and define

$$
\begin{aligned}
& D:=\max _{1 \leqslant i, j \leqslant N} \min _{\substack{x \in \Gamma_{i} \\
y \in \Gamma_{j}}} d(x, y), \\
& \operatorname{diam}(M):=\max _{x, y \in M} d(x, y)
\end{aligned}
$$

and choose a real positive number e such that $e>\max _{i=1, \ldots, N} \varepsilon_{i}$. Set

$$
\begin{equation*}
C:=2 \cdot \operatorname{diam}(M)+\kappa \cdot(D+e), \tag{9}
\end{equation*}
$$

where $\kappa=\kappa(P)$ is the maximal number of vertices lying on a common face of P.
Without loss of generality, we assume that $w \in \bigoplus_{v \in J_{1}} \mathbb{N} \cdot v$, i.e., we can write $w=\sum_{i=1}^{k} n_{i} v_{i}$ with $n_{1}, \ldots, n_{k} \in \mathbb{N}$. We give a path from x to $x+w$ that has length bounded above by $\lambda_{1}(w)+C=\sum_{i=1}^{k} \varepsilon_{i} n_{i}+C$. Assume that $x \in F_{0}$ (otherwise, if $x \in F_{0}+u$ with $u \in H_{1}(M ; \mathbb{Z})_{\mathbb{R}}$, we can replace the path with startpoint $x-u$ as constructed below with its image under Φ_{u}). We join x with $x+w$ by a path that runs as much as possible in L with "changes of lines" that are as short as possible:

Choose $i_{1} \in\left\{j \mid 1 \leqslant j \leqslant k, n_{j} \neq 0\right\}$ such that the point x_{1} in $L \cap F_{0}$ with minimal distance from x lies in $\bar{\Gamma}_{i_{1}}$. Let τ_{1} be the corresponding geodesic segment from x to x_{1} with minimal length. This length $\bar{L}\left(\gamma_{1}\right)$ is smaller than diam (M). Let c_{1} be the segment of $\bar{\gamma}_{i_{1}}$ connecting x_{1} and $x_{1}+n_{i_{1}} v_{i_{1}}$. This segment has length equal to

$$
\bar{L}\left(c_{1}\right)=n_{i_{1}} \cdot L\left(\gamma_{i_{1}}\right) \stackrel{(8)}{=} n_{i_{1}} \cdot \varepsilon_{i_{1}}
$$

Now choose $i_{2} \in\left\{j \mid 1 \leqslant j \leqslant k, n_{j} \neq 0\right\} \backslash i_{1}$ and $x_{2} \in \bar{\Gamma}_{i_{2}}+n_{i_{1}} v_{i_{1}}$ such that x_{2} is the point of $\left(L \backslash \bar{\Gamma}_{i_{1}}\right) \cap\left(F_{0}+n_{i_{1}} v_{i_{1}}\right)$ having minimal distance from $\bar{\Gamma}_{i_{1}} \cap\left(F_{0}+n_{i_{1}} v_{i_{1}}\right)$. Let x_{1}^{\prime} be the point in $\bar{\Gamma}_{i_{1}} \cap\left(F_{0}+n_{i_{1}} v_{i_{1}}\right)$ at this minimal distance from x_{2}. Let c_{1}^{\prime} be the section of $\bar{\gamma}_{i_{1}}$ connecting x_{1} and x_{1}^{\prime}; the length of c_{1}^{\prime} lies in $\left[n_{i_{1}} \cdot \varepsilon_{i_{1}}-e, n_{i_{1}} \cdot \varepsilon_{i_{1}}+e\right]$. Let τ_{2} be the minimal geodesic segment joining x_{1}^{\prime} and x_{2}, it has length smaller than D. Now continue in this way; choose $i_{3} \in\left\{j \mid 1 \leqslant j \leqslant k, n_{j} \neq 0\right\} \backslash\left\{i_{1}, i_{2}\right\}$ and $x_{3} \in \bar{\Gamma}_{i_{3}}+n_{i_{1}} v_{i_{1}}+n_{i_{2}} v_{i_{2}}$ such that x_{3} is the point of $\left(L \backslash\left(\bar{\Gamma}_{i_{1}} \cup \bar{\Gamma}_{i_{2}}\right)\right) \cap\left(F_{0}+n_{i_{1}} v_{i_{1}}+n_{i_{2}} v_{i_{2}}\right)$ having minimal distance from $\bar{\Gamma}_{i_{2}} \cap\left(F_{0}+n_{i_{1}} v_{i_{1}}+n_{i_{2}} v_{i_{2}}\right)$. Let x_{2}^{\prime} be the point in $\bar{\Gamma}_{i_{2}} \cap\left(F_{0}+n_{i_{1}} v_{i_{1}}+n_{i_{2}} v_{i_{2}}\right)$ at this minimal distance from x_{3}. The curve c_{2}^{\prime} joining x_{2} and x_{2}^{\prime} on $\bar{\Gamma}_{i_{2}}+n_{i_{1}} v_{i_{1}}$ has length smaller than $n_{i_{2}} \cdot \varepsilon_{i_{2}}+e$.

If $n_{j} \neq 0$ for $j=1, \ldots, k$, our path will be the composition

$$
\gamma:=\tau_{1} * c_{1}^{\prime} * \tau_{2} * c_{2}^{\prime} * \cdots * c_{k}^{\prime} * \tau_{i_{k+1}}
$$

where τ_{k+1} is the path joining the last point in $L \cap\left(F_{0}+\sum_{i=1}^{k} n_{i} v_{i}\right)$ with minimal distance from $x+w$ to $x+w$ and has length smaller than $\operatorname{diam}(M)$. Summing all the lengths of those segments we get

$$
\begin{aligned}
\bar{L}(\gamma) & \leqslant \operatorname{diam}(M)+n_{i_{1}} \cdot \varepsilon_{i_{1}}+e+D+n_{i_{2}} \cdot \varepsilon_{i_{2}}+e+D+\cdots+n_{i_{k}} \cdot \varepsilon_{i_{k}}+e+\operatorname{diam}(M) \\
& =\lambda_{1}(w)+k \cdot e+k \cdot D+2 \cdot \operatorname{diam}(M) \leqslant \lambda_{1}(w)+C .
\end{aligned}
$$

Finally, if $n_{j}=0$ for some $j \in\{1, \ldots, k\}$, we need to make fewer changes of lines, and the inequality can be shown the same way.

The stable norm and the main theorem. In the introduction of this paper, we gave the definition of the stable norm induced on $H_{1}(M ; \mathbb{R})$ by a Riemannian metric g on M. We present here a way to compute the stable norm of a vector lying in $H_{1}(M ; \mathbb{Z})_{\mathbb{R}}$: Define

$$
\begin{aligned}
& f: H_{1}(M ; \mathbb{Z})_{\mathbb{R}} \rightarrow \mathbb{R}_{\geqslant 0} \\
& v \mapsto \inf \{L(\gamma) \mid \gamma \text { closed curve representing } v\}
\end{aligned}
$$

and $f_{n}: n^{-1} H_{1}(M ; \mathbb{Z})_{\mathbb{R}} \rightarrow \mathbb{R} \geqslant 0, f_{n}(v)=n^{-1} f(n v)$. In Bangert [3] it is shown that f_{n} converges uniformly on compact sets to the stable norm $\|\cdot\|_{s}$. Especially, we have: if $\left(v_{n}\right)_{n \in \mathbb{N}}$ is a sequence in $H_{1}(M ; \mathbb{Z})_{\mathbb{R}}$ with $\lim _{n \rightarrow \infty} \frac{v_{n}}{n}=v \in H_{1}(M$; $\mathbb{R})$ (relative to the standard topology on the vector space $\left.H_{1}(M ; \mathbb{R}) \simeq \mathbb{R}^{b}\right)$, then we have for the norm of v :

$$
\|v\|_{s}=\lim _{n \rightarrow \infty} \frac{f\left(v_{n}\right)}{n}
$$

If \bar{d} is the distance on \bar{M} induced from $p^{*} g$, we have for $v \in H_{1}(M ; \mathbb{Z})_{\mathbb{R}}$:

$$
f(v)=\inf _{x \in \bar{M}} \bar{d}(x, x+v)=\min _{x \in F_{0}} \bar{d}(x, x+v)
$$

because $p^{*} g$ is a periodic metric and the closure of F_{0} is a compact set. With $\lim _{n \rightarrow \infty} \frac{n v}{n}=v$, this yields:

$$
\begin{aligned}
\|v\|_{s} & =\lim _{n \rightarrow \infty} \frac{f(n v)}{n} \\
& =\lim _{n \rightarrow \infty} \frac{\min _{x \in F_{0}} \bar{d}(x, x+n v)}{n} .
\end{aligned}
$$

Theorem 3.5. The polytope P is the unit ball of the stable norm on $H_{1}(M ; \mathbb{R})$ induced by an arbitrary Hedlund metric associated to P on M.

Note that by Definition 3.1, the Hedlund metric is chosen in the conformal class of the given Riemannian metric ρ on M.
Proof. Let g be a Hedlund-metric associated to P. We show that for each $w \in \bigoplus_{j=1}^{k} \mathbb{N} \cdot v_{j}$, the stable norm of w is given by $\|w\|_{s}=\lambda_{1}(w)$. The proof of this works analogously for each other face of P. Consequently, this holds for all vectors in $H_{1}(M ; \mathbb{R})$ that can be written as linear combinations of the vectors v_{1}, \ldots, v_{N} with rational coefficients, and then, by continuity, this holds for all vectors in $H_{1}(M ; \mathbb{R})$. Let x be an arbitrary point in F_{0} and let $n \in \mathbb{N}$. Let $\gamma:[0,1] \rightarrow \bar{M}$ be an arbitrary path from x to $x+n w$. We have

$$
\lambda_{1}(n w)=\int_{\gamma} \eta_{1}=\left.\int_{0}^{1} \eta_{1}\right|_{\gamma(t)}(\dot{\gamma}(t)) d t \leqslant \int_{0}^{1}\left\|\left.\eta_{1}\right|_{\gamma(t)}\right\|^{*}\|\dot{\gamma}(t)\| d t \stackrel{(7)}{\leqslant} \int_{0}^{1} 1 \cdot\|\dot{\gamma}(t)\| d t=\bar{L}(\gamma) .
$$

With this and Lemma 3.4 we get

$$
\lambda_{1}(n \cdot w) \leqslant \bar{d}(x, x+n w) \leqslant \lambda_{1}(n \cdot w)+C .
$$

Thus

$$
\lambda_{1}(n \cdot w) \leqslant \min _{x \in F_{0}} \bar{d}(x, x+n w) \leqslant \lambda_{1}(n \cdot w)+C
$$

and

$$
\lambda_{1}(w) \leqslant \frac{\min _{x \in F_{0}} \bar{d}(x, x+n w)}{n} \leqslant \lambda_{1}(w)+\frac{C}{n} .
$$

Letting n go to infinity, this yields $\|w\|_{s}=\lambda_{1}(w)$, as claimed.

Acknowledgements

I would like to thank Prof. Dr. Victor Bangert who supervised my diploma thesis and gave me much advice for this paper. I am also very grateful that he gave me the possibility to stay at the University of Freiburg during a few months after my diploma.

I also thank the referees for many useful comments.

References

[1] I. Babenko, F. Balacheff, Sur la forme de la boule unité de la norme stable unidimensionnelle, Manuscripta Math. (ISSN 0025-2611) 119 (3) (2006) 347-358.
[2] F. Balacheff, D. Massart, Stable norms of non-orientable surfaces, Ann. Inst. Fourier 58 (4) (2008) 1337-1369.
[3] V. Bangert, Minimal geodesics, Ergodic Theory Dynam. Systems (ISSN 0143-3857) 10 (2) (1990) 263-286.
[4] H. Federer, Real flat chains, cochains and variational problems, Indiana Univ. Math. J. (ISSN 0022-2518) 24 (1974/75) 351-407.
[5] M. Gromov, Metric Structures for Riemannian and Non-Riemannian Spaces, Transl. from the French by Sean Michael Bates. With appendices by M. Katz, P. Pansu, and S. Semmes. Edited by J. LaFontaine and P. Pansu, 3rd printing, Modern Birkhäuser Classics, Birkhäuser, Basel, 2007, xx, 585 pp.
[6] G.A. Hedlund, Geodesics on a two-dimensional Riemannian manifold with periodic coefficients, Ann. of Math. (2) (ISSN 0003-486X) 33 (4) (1932) 719-739.
[7] M. Jotz, Hedlund-Metriken und die stabile Norm, Diplomarbeit, Albert-Ludwigs-Universität Freiburg. Available at the author's web page, 2007.
[8] J.M. Lee, Introduction to Smooth Manifolds, Graduate Texts in Mathematics, vol. 218, Springer, New York, 2002, xvii, 628 p.
[9] J.M. Lee, Introduction to Topological Manifolds, Graduate Texts in Mathematics, vol. 202, Springer-Verlag, New York, ISBN 0-387-98759-2, 2000.
[10] D. Massart, Stable norms of surfaces: local structure of the unit ball of rational directions, Geom. Funct. Anal. (ISSN 1016-443X) 7 (6) (1997) 996-1010.

[^0]: E-mail address: madeleine.jotz@epfl.ch.
 0926-2245/\$ - see front matter © 2009 Elsevier B.V. All rights reserved. doi:10.1016/j.difgeo.2009.01.012

